
TRIPXML USER’S GUIDE V3.1

Copyright © 2018 infinIT Services GmbH

TRIPxml
User's Guide

Version 3.1

TRIPXML USER’S GUIDE V3.1

page 2

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family
and software (altogether “Software”) supplied by infinIT Services GmbH (infinIT) are
exclusively owned by infinIT.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of infinIT. Furthermore, the customer has the right to use licensed
Software and / or process solutions supplied by infinIT to the extent specified in his
contract with infinIT.

The free-to-use non-commercial version doesn’t require a prior written agreement
with infinIT but such customers, organizations and/or third parties agree by using the
software and / or solution of infinIT to be strongly obliged to keep all rights to this
software, documentation and logotypes of the TRIP product family absolutely
uninfringed and protected.

TRIPXML USER’S GUIDE V3.1

Copyright © 2018 infinIT Services GmbH

Table of Contents

INTRODUCTION ... 5

ABOUT THIS DOCUMENT.. 5
DEFINING XML .. 5
WHY USE XML? .. 5

Usage: Information Exchange ... 5
Usage: Long Time Storage .. 5
Usage: Reuse .. 5
Usage: Structured Methods ... 6
Usage: Smart Information .. 6
Conclusion ... 6

INSTALLATION .. 7

REQUIREMENTS ... 7
CONTENT OF THE DISTRIBUTION PACKAGE ... 7
WINDOWS INSTALLATION PROCEDURE .. 8
UNIX INSTALLATION PROCEDURE .. 8

Unpack ... 8
Run Installation Script .. 8
Library Path ... 9
SDK Usage .. 9

TRIPXML FEATURES... 10

REQUIREMENTS ... 10
DESIGN ... 10

Overview .. 10
Storage Structure ... 11

XLINK AND XINCLUDE SUPPORT .. 12
QUERYING ... 12
APPLICATION PROGRAMMING ... 12

HOW-TO .. 14

INSTALL THE XALICE SAMPLE .. 14
CREATE AN XML DATABASE ... 14

Via TRIPclassic .. 14
Via TRIPmanager .. 15

CREATING A UNICODE XML DATABASE ... 15
MIGRATING AN XML DATABASE TO UNICODE ... 15
CREATE A LINK DATABASE ... 16
QUERY THE DATABASE ... 16

Using CCL ... 16
Using XPath ... 17

USE THE TRIPXML C API CALLS .. 17
USE THE TOOLKIT API CALLS ... 17

TdbImport .. 17
Blob-oriented import ... 18
File-oriented import .. 18
Stream-oriented import .. 18
Validation ... 19

TdbExport .. 19
Blob-oriented export ... 19
File-oriented export .. 20
Stream-oriented export .. 20

SERVER-SIDE API CALLS ... 20
TRIPxml C API ... 20

CLIENT-SIDE API CALLS ... 20
XML and TRIPcom .. 20

TRIPXML USER’S GUIDE V3.1

page 4

TRIP Java Toolkit .. 20
TRIPjxp and TRIPnxp .. 20

USING THE XML TOOLS ... 21
TXPUTS ... 21
TXGETS... 21

TXGET Usage Examples ... 23
UPDLINKS ... 23
TXLINKER ... 24
MKLINKDB .. 25

APPLICATIONS .. 26

SERVER-SIDE APPLICATIONS ... 26
XPI APPLICATIONS ... 26
NETWORKED APPLICATIONS USING TRIPCLIENT .. 26
NETWORKED APPLICATIONS USING TRIPJTK ... 26
CGI-STYLE APPLICATIONS .. 26

APPENDIX A - API REFERENCE .. 27

THE FILTER_DATA STRUCTURE.. 27

APPENDIX B - ENCODINGS .. 29

SUPPORTED ENCODINGS .. 29
BEST PRACTICES ... 29

APPENDIX C - TRIPRCS SETTINGS ... 31

APPENDIX D - SUPPORTED XPATH SYNTAX .. 32

DEFINITIONS .. 32
Node .. 32
Node Set .. 32
Location Step ... 32

AXIS TYPES ... 33
FUNCTIONS .. 33
PREDICATE USAGE .. 34

The existence of an attribute ... 34
Attribute value check ... 34
Exact text node contents ... 34
Truncated text node contents .. 34
Truncated attribute text node contents .. 35
Comparison Operators .. 35
Node position ... 35
Multiple predicates in a single location step .. 35

ADDITIONAL EXAMPLES .. 36
Expression over Axis "child" .. 36
Expression with axis "attribute" in predicate .. 36
Expression with axis "parent" .. 36
Expression with multiple axes in a predicate ... 36
Expression with axis "descendant" and multi-axis predicate ... 36
Expression with axes "ancestor-or-self", "parent" and "descendant" 36

TRIPXML USER’S GUIDE V3.1

page 5

Introduction

About this document
This manual describes the version 3.1 of TRIPxml. Descriptions of APIs and
examples for their use is found with respective SDK product (TRIPjxp, TRIPnxp, etc).

Defining XML
XML, or Extensible Markup Language, is not a fixed format like HTML. While HTML
is limited to a fixed set of tags that the author can use, XML users can create their
own markup (or use markup created by others) that actually relate to their content.
As such it is a meta language – a language that describes languages.

XML is a subset of a language called SGML – Structured Generalized Markup
Language – that has been modified for use on the internet. All the difficult and
complex parts of SGML has been excluded while the flexibility remains.

Instead of going further into technicalities about XML, let’s regard a few areas where
introduction of XML will be of help.

Why Use XML?

Usage: Information Exchange
Exchange of information between different computers and systems is not always a
simple problem. In some cases, this is near impossible, and manual recreation of the
information is required. In other cases, conversion programs can do the job. XML
helps us define interchange formats between different systems and applications.

Usage: Long Time Storage
Interchange of information between systems and applications are difficult without use
of standards like XML, but even to move data between different versions of the same
application can sometimes be difficult. Many companies therefore try to find solutions
in which they can store information and guarantee the readability and usage for long
time, say thirty years. They need a highly flexible standard to represent information
that will not be obsolete in a few years’ time. The standard they have been looking for
is XML.

Usage: Reuse
Technical development is moving along at a high speed in all areas - not just in
information technology. An ever-greater complexity put high demands on the
technical documentation, which is critical for product understanding and usage.

SGML, the predecessor of XML, has primarily been used in areas where it is very
costly to produce advanced technical documentation.

Reuse does not just mean reuse of existing text. It also means that we should be
able to publish information in different media with a minimum of work. A good
example here is an organization who wants to distribute information on paper, optical
media, intranet and internet simultaneously. In order to do this, separation of fact
from presentation and layout is required.

Reuse is also strongly associated with information retrieval, because you have to find
the information in order to reuse it. In order for information to be reused, it has to be
marked up so we know what it informs of. Decomposition into smaller components so
that parts can be used in different context is also a great idea.

TRIPXML USER’S GUIDE V3.1

page 6

Usage: Structured Methods
Having the authors of expensive information concentrate on the fact and not the
layout is more cost effective.

XML provides templates for structure and layout. In order to validate documents, i.e.
certain parts must exist and be structured in a certain fashion, rules for structure can
be built into the templates.

Usage: Smart Information
Information can be presented in a more or less intelligent manner. If we choose to
label a paper document as a ”stupid” information carrier, we can label an advanced
multimedia presentation as an ”intelligent” information carrier.

A requirement for more advanced applications is that the information to be processed
is described in a way that a computer program can use. XML coded information is
highly suitable for use in multimedia presentations or electronic manuals.

Conclusion
It appears that XML is a standard for describing and representing information that
promises not to go obsolete before we know it. XML allows us to write concentrating
on the fact, totally separated from the layout, in such a way that a computer program
can use it. That, in turn, requires efficient storage of the information. Efficient and
easy-to-use search and retrieval routines are also a necessity.

TRIPXML USER’S GUIDE V3.1

page 7

Installation

Requirements
In order to install this product, you need an existing installation of TRIPsystem
version 7.1 or later. This release supports the following platforms:

• 32-bit versions of Windows 7, Server 2008

• 64-bit versions of Windows 7, 10, Server 2012 and Server 2016

• 32 and 64-bit versions of Linux for Intel x86 with minimum GLIBC 2.12 and
GLIBCXX 3.4.13.

• Solaris SPARC

You also need something with which to create applications. The most complete API
for TRIPxml is found with TRIPjxp and TRIPnxp version 2.1 and later, but you can
also use the server-side TRIP toolkit, TRIPjxp and TRIPnxp. The older SDK products
TRIPclient and TRIPjtk can also be used, although they are not recommended for
new development projects.

Content of the distribution package
There is one distribution kit per supported platform. The following directory structure
is created for Linux, Solaris, AIX and HP-UX.

v310 Top directory for this installation.

v310/bin Server-side tools and upgrade scripts.

v310/lib Libraries for TRIPxml core functionality

v310/include Headers for the TRIPxml C API (to be used with the
TRIPsystem toolkit).

v310/samples/xmlget Sample TRIP toolkit source for a CGI based XML
extraction utility.

v310/samples/xmlput Sample TRIP toolkit source for an XML storage utility

v310/samples/xalice A simple TRIPxml-version of the book “Alice in
Wonderland”.

The following directory structure applies to Windows installations:

v310 Top directory for this installation.

v310/bin Libraries and tools for TRIPxml functionality.

v310/lib Lib-files for the client-side TRIPxml C API

v310/include Headers for the client-side TRIPxml C API

v310/samples/xmlget Sample TRIP toolkit source for a XML extraction utility

v310/samples/xmlput Sample TRIP toolkit source for an XML storage utility

v310/samples/xalice A simple TRIPxml-version of the book “Alice in
Wonderland”.

Note that the TRIPxml documentation can be found as a separate download from
infinIT Services GmbH. Also note that components of TRIPxml that are specific to the
Windows platform are only available through the Windows installer.

TRIPXML USER’S GUIDE V3.1

page 8

TRIPxml no longer ships components dependent on TRIPclient. If you have been
using the TCXML component, you will find its classes integrated into TRIPcom in
TRIPclient from version 2.5-0.

Windows Installation Procedure
You are strongly recommended to uninstall previous versions of TRIPxml and
TRIPxml Client Tools before installing the new version of TRIPxml. Not doing this
may cause conflicts later if TRIPclient is installed or upgraded on the same machine.

The following steps are performed by the installer:

1. Copies the files to a location you specify.

2. Adds the bin directory to the system PATH.

3. Modifies the TRIPsystem configuration file (see steps 1, 2 and 3 in the Unix
installation procedure script description for details).

Users of the TCXML component will have to upgrade TRIPclient to at least version
2.5-0, since this component has been integrated into TRIPcom and is no longer
delivered as part of TRIPxml.

IMPORTANT: When upgrading to TRIPclient 2.5-0 or later on a machine that also
has TRIPxml installed, make sure that the TRIPxml version is 3.0 or later before
upgrading TRIPclient.

Unix Installation Procedure

Unpack
Unpack the archive containing the TRIPxml distribution for your platform to the
location where you want the files to be located.

Run Installation Script
Go to the v310/bin directory and execute the script install.sh. The script does the
following:

1. Modifies your tdbs.conf file to have the TDBS_XMLSHR setting under the
NonPrivileged section point to the fully qualified path of the xmlfilters shared
library provided in the lib directory. It will look something like this:
TDBS_XMLSHR=/opt/trip/xml/v310/lib/xmlfilters.so.

2. Adds TDBS_XMLSHR to the TDBS_ASELIBS setting under the the
NonPrivileged section in the tdbs.conf file. The TDBS_ASELIBS setting
specifies all logical symbols that point to libraries containing ASE routines and
filters. If the TDBS_USRSHR setting (the standard ASE logical symbol) is
used, the value may after editing look like this:
TDBS_ASELIBS=TDBS_XMLSHR, TDBS_USRSHR

3. Adds the following new settings to the tdbs.conf file: XML_LOG,
XML_LINK_DB, XML_LINKS, XML_STRICT_VALIDATION, XML_SCHEMA
and XML_STRICT_SCHEMA.

4. Changes the user and group ownership of the installed files according to your
input to the promptings of the script.

5. Creates links to ICU and Xerces support libraries under /usr/local/trip/xml/lib

TRIPXML USER’S GUIDE V3.1

page 9

Library Path
The TRIPxml shared library depends on quite a few other libraries. If one of them is
missing or otherwise cannot be found or loaded, TRIPxml will not work. If your
TRIPxml installation does not work, you may want to run the ‘ldd’ command on the
xmlfilters shared library file (named xmlfilters.so) and see if there are any broken
library dependencies. If there are, you may have to adjust the system shared library
path to include the appropriate directories.

Directories that may cause trouble are /usr/local/lib in which the Standard C++ library
usually is located on Solaris and Linux and the support library directory for ICU and
Xerces (/usr/local/trip/xml/lib).

SDK Usage
If you want to use TRIPxml from a client application, you will need to make sure that
all libraries that the xmlfilters shared library depend upon (as discussed in the Library
Path section above) are available to tripnetd (alternatively xinetd or inetd). Although
the TRIPxml binaries are linked with an RPATH setting that should make sure that all
required libraries can be found, security considerations on operating system level
may prohibit the use of such settings.

TRIPXML USER’S GUIDE V3.1

page 10

TRIPxml Features

Requirements
What kind of features do we want from a TRIP-based system that can store XML
data as well as offer an easy-to-use interface for search and retrieval? Assuming that
we deal with XML documents and not relational or object-oriented data in XML-
format, the following points comes to mind:

• Ability to represent an XML-structure, complete with elements and attributes.

• It should be easy to create a TRIP query to find XML documents and sections
within the documents.

• The TRIP query should be easy to compose, using only structure of the
stored XML data.

• Ability to present the information in different ways depending on the user’s
interest.

• Optional storage of related DTD and stylesheet files.

Design

Overview
Although TRIPxml have been through some fairly major internal changes since its
first version, the basic design remains. Built around the Xerces XML parser from
Apache Software Foundation, it allows using TRIP as an XML database with XML-
based storage, search and retrieval.

Among the possibilities offered by TRIPxml are:

• Programmatic access from both server (TRIP toolkit) and client (TRIPjxp,
TRIPnxp, TRIPclient and TRIPjtk).

• Support for the XLink and XInclude protocols.

• Storage of any file, in XML format or otherwise.

• Seamless integration with TRIPview freetext-search enables non-XML
documents.

• Use XPath as query language across the entire document set

Office

Documents

Images
Security

Metadata

Storage

XML

search
&

publish

TRIPXML USER’S GUIDE V3.1

page 11

Storage Structure
An XML document is basically structured like a tree, which is why the XML data will
be represented as a tree. In order to make retrieval of documents efficient, the
document will be stored as it is as well as in parts. Storing the parts enables more
intelligent searching than otherwise would be possible.

The table below shows the minimal TRIP database design for any database that will
store XML data. Each record in the database stores one XML document, both as a
”blob” and in a tree-structure.

Field Name Field
Number

Part
Field

Field Type Description

D_XMLDOC 1 No STRING The entire XML document as a
BLOB

D_META 2 No TEXT Document metatags

D_DOCTYPE 3 No TEXT Document doctype tag

D_DOCSIZE 4 No INTEGER Size (in bytes) of XML document
stored in D_XMLDOC

D_DOCNAME 5 No PHRASE Filename of XML document

D_URLBASE 6 No PHRASE URL to document on the web,
excluding the document name
itself.

D_URLALIAS 7 No PHRASE Alias for the URL

N_ID 8 No INTEGER Tree node identity

N_PARENT 9 No INTEGER Parent node identity

N_SEQPATH 10 No PHRASE Path to node using node
sequence numbers.

N_PATH 11 No PHRASE Complete path to node

N_SEQNO 12 No INTEGER Sequence number of the node

N_NAME 13 No PHRASE Node name

N_TYPE 14 No PHRASE Node type (element, attribute,
text, ...)

N_NSPACE 15 No PHRASE Node namespace

N_MIME 16 Yes PHRASE What data is stored, e.g.
image/jpeg

N_ENCODING 17 Yes PHRASE Type or representation of the
data, e.g. base64

N_CVALUE 18 Yes STRING Node value (non-text)

N_TVALUE 19 Yes 1*TEXT Node value (text only)

N_NVALUE 20 Yes NUMBER Node value (numeric)

N_DVALUE 21 Yes DATE Node value (date)

D_PROPNAME 22 No PHRASE Property name field

D_PROPVAL 23 No PHRASE Property value field

DAV_NONXMLBL
OB

24 No STRING Field for storage of non-XML files.

D_DOCTEXT 25 No TEXT Field for storage of text extract of
non-XML files.

D_ID 26 No PHRASE Document/record identity field

N_RESERVED 50 No PHRASE Max field number reserved for
XML

TRIPXML USER’S GUIDE V3.1

page 12

XLink and XInclude support
The XLink protocol is an XML-based technique to create links between information
on the web. XInclude is a small XML protocol that allows one XML file to include
another. For more information on these protocols, see the World Wide Web
Consortium’s web site www.w3.org.

TRIPxml supports these two protocols by maintaining a link database. Information
about outgoing links for each XML document is kept. For more info, see the section
“Create a Link Database” below.

Querying
Querying an XML document is like querying a tree. The following points describe the
possibilities of queries against a TRIPxml database.

• Search for specific XML elements

• Search for information in specific XML elements

• Perform freetext search on entire document content

• Boolean logic in search conditions (and, or, not)

• Searching for words NEAR each other, ie the search words should be in the
same sentence or paragraph.

• Use CCL or XPath

TRIPxml always returns the entire XML document as an answer, and not just the
element sets that matched the query. There will be ways to search for and retrieve
parts of XML documents. An XPath-oriented querying style will be introduced in a
future release of TRIPxml.

The following points summarise retrieval:

• Retrieval of entire documents

• Retrieval of fragments of documents found by a search. These fragments do
not necessarily have to be the same parts that matched the query.

• Possibility to, no matter how the result was presented, retrieve the entire
documents or specified parts thereof.

• Possibility to get the words in the text that matched the query condition
marked for highlighting.

For more information about search and retrieval of XML documents, please refer to
the section ”Query the database” in the ”Howto” chapter.

Application Programming
TRIPxml comes with API routines for programmatic access to the XML functionality
in TRIP. Features:

• Search using XPath expressions or a simplified, abbreviated form of CCL that
enables the use of element names as field names.

• Import routines to store an XML document into TRIP, with optional validation
according to DTD or XML schema.

TRIPXML USER’S GUIDE V3.1

page 13

• Retrieval routines for both entire XML documents as well as parts of the
documents and related DTDs and stylesheets stored in the database.

• Access from TRIPsystem, TRIPnxp, TRIPjxp, TRIPclient, TRIPjtk and
TRIPhighway.

TRIPXML USER’S GUIDE V3.1

page 14

How-To

Install the XALICE sample
The xalice sample database is a simple XML version of the book ”Alice In
Wonderland” by Lewis Carroll. The data is divided into several xml files, with 1-2
chapters each. The purpose of the sample is to provide a data set so that you can try
out the features of TRIPxml; importing, exporting, and searching. Samples for access
from TRIPclient are provided with the distribution of TRIPclient version 2.0-1 or later.

The samples/xalice directory contains the xalice sample database for TRIPxml. Make
that directory current and run the TRIP classic program. Issue the following call:

IMPO BAS=XALICE.* FILE=XALICE.DEF

Then exit TRIP classic. You have now created your first TRIPxml database! Note that
this is not the standard way to create an XML database (see section “Create an XML
database” below for details). To fill it with the provided sample data, a few extracts
from the book Alice in Wonderland by Lewis Carroll. You can use the TRIPxml tool
txput (see below) from the command line:

txput –i –d xalice –u myuser –p mypassword wonderland*.xml

Note the wildcard! This will import the six XML documents that together make up the
book. The “-i" option tells the program to index the database as well. If you do not
specify the “-i" option, you will have to index it manually (by issuing the command
“index xalice” from the command prompt). You have now imported your first XML
documents into trip!

Create an XML database

Via TRIPclassic
XML databases can be created using TRIPclassic.

TRIPXML USER’S GUIDE V3.1

page 15

Select Databases from the Administration menu. In the database menu, select
create/modify database from the DB Design menu. Enter the name of the database
to be created. Press ’6’ on the numeric keypad (or ’Ctrl-K’ followed by ’6’) to bring up
the special database options dialog. Set the XML database to ’Y’. Press ENTER (or
’Ctrl-E’) to confirm, then finally press ENTER (or ’Ctrl-E’) again to save the new
database.

Via TRIPmanager
XML databases can also be created using TRIPmanager. Right-click the “Databases“
node to bring up the context menu. Select the “New Database…” option and click
next. On the “general properties” page of the wizard, check the option “Database
should be XML enabled”.

When you get the question “Do you want to specify the field collection for this new
database / thesaurus?” you should only answer “yes” if you wish to customize the
default XML database design. If you do customize it, please do not change the
definition for any of the pre-defined fields since this may render the database
unusable by TRIPxml.

Creating a Unicode XML database
TRIPxml databases created with TRIPsystem 6.2-5 or later are Unicode-enabled by
default. It is not recommended to change this setting.

Migrating an XML database to Unicode
Older versions of TRIPxml used whatever character set TRIPsystem was set up to
use, even if the imported XML data happended to be in Latin-1 or gb2312.
Unfortunately, this means that the only reliable way to get old XML data converted to
a Unicode database without risk for corruption, is to re-import the XML documents
into a new Unicode TRIPxml database.

TRIPXML USER’S GUIDE V3.1

page 16

Create a Link Database
TRIPxml comes with link support disabled by default. To enable link support, add
“XML_LINKS=1” to your TRIPrcs file under the nonprivileged section. A default link
database XML_LINK_DB is provided with TRIPsystem. If you wish use another link
database, you will have to create it. Specify the name of the link database to use in
the TRIPrcs file; add “XML_LINK_DB=mylinkdb” under the nonprivileged section. To
create the link database itself, use the mklinkdb utility.

Remember to give all TRIPxml users proper access rights to the link database. What
is proper for a particular user depends on what he/she is supposed to be doing. For
import, the link database must be readavble and writable. Otherwise it is sufficient to
only have it readable. Remember that you must also set the access rights for the
default link database.

If you have enabled link support, all XML documents that are imported gets an
associated link information record. This record contains information about all links
that emanate from the document, even if the actual link specification is in another
XML document. The actual data for the link information record is gathered by a
separate utility called txlinker, which preferably is set to be run by a timed job like
cron on Unix platforms.

If you have an XML database in which there are documents that does not have link
information records, you can use the updlinks utility to add link information to the
database. Also, if there are records that have been removed, this utility can remove
the orphaned link information records from the link database.

See the sections on txlinker, updlinks, and mklinkdb for more information about how
to maintain a link database.

Query the Database

Using CCL
A TRIPxml database can be queried using CCL like any other TRIP database. There
is one big difference, however. The difference is that with a TRIPxml database, you
can pose a query using the element names of the stored XML documents! Note that
if there is an element and a field with the same name in a TRIPxml database, the
element will always be used.

When querying XALICE, you can use the following from TRIPclassic:

FIND CHAPTER=height

which will search for XML documents that have an element ”CHAPTER”, that
contains – directly or in a sub element – the text ”height”.

The XALICE sample database has a special default output format named
”XMLOUT1”. This output format uses a special ASE named ”xmldata” that comes
with TRIPxml. This ASE is used to extract specific values from an XML document in
a TRIPxml database, and can also be used from TRIPhighway. No corresponding
API call exist at the moment, however.

In addition to using tag names in search conditions, as described above, you can use
part of the path, like this:

TRIPXML USER’S GUIDE V3.1

page 17

FIND BOOK/CHAPTER=height

When you pose queries like this using TRIP classic, you’ll notice that TRIP expands
the XML-oriented query to an ordinary CCL query.

Using XPath
From TRIPxml version 3.0, it is possible to use XPath to query a TRIPxml database.
This is possible via the classes TdbSearch, TdbCclCommand and TdbRecordSet in
TRIPjxp and TRIPnxp version 2.1 and later. Please refer to the "TRIPjxp & TRIPnxp
Programmer's Guide" document for detailed information.

The XPath syntax supported is a subset of XPath 1.0 as specified by the W3C. See
the appendix for a description of supported XPath syntax.

Use the TRIPxml C API Calls
There are eight special APIs for import into and export from TRIPxml databases, and
two for XPath-based functionality. Please refer to the HTML help file TXCAPI.CHM
for API reference and usage examples.

Use the Toolkit API Calls
The two API calls in the TRIP toolkit that pertain to TRIPxml are TdbImport and
TdbExport. These uses so-called filters. A filter is - for TRIPxml – a routine that does
the actual job of exporting or importing data. Filters are functions compiled into
shared libraries (extension .dll on Windows and .so, .o, or .sl on Unix) that are
callable from inside TRIP.

Both TdbImport and TdbExport use a structure called filter_data. This structure is
used to pass information to and from the filter routine, including options and return
data. For a detailed description of this structure, see ”Appendix A - API Reference”.

Although there is nothing wrong with using TdbImport and TdbExport, the regular
TRIPxml C API calls (see above) should be used whenever possible when creating
server-side TRIP Toolkit applications. The reason for this is that TdbImport and
TdbExport are low-level functions and require a lot more care in usage than their
ordinary counterparts.

TdbImport
The TdbImport function is used to call TRIPxml to import XML documents.

Prototype

int TdbImport (filter_data* data);

Applicable values for the tdb_options member:

NAME VALUE DESCRIPTION

IEOPT_FILENAME 1 The buffer member contains file name

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*)

IEOPT_MEMORY 4 The buffer member points to memory area

Applicable mask values for the filter_options member:

NAME VALUE DESCRIPTION

FOXML_NEWREC 1 Create a new record.

FOXML_REPLACE 2 The opposite of FOXML_NEWREC. Is implicitly
set if FOXML_NEWREC is not set. The
record_control and cursor fields are mandatory

TRIPXML USER’S GUIDE V3.1

page 18

NAME VALUE DESCRIPTION

in combination with this option.

FOXML_VALIDATE 4 Specifies that the caller wishes to validate the
XML document before it is imported.

FOXML_NOBLOB 64 Specifies that the caller does not wish to store a
copy of the document in the D_XMLDOC field.

FOXML_STREAM 256 Specifies that the caller wishes to perform
stream-oriented I/O.

For TRIPxml, URL information may be stored by using the filter_arguments
parameter in the filter_data structure. Since this structure is generic, i.e. not specific
to TRIPxml, each particular TRIP module using these functions may define different
syntactical and semantical rules for the filter_arguments parameter.

Anyhow, for TRIPxml, several filter arguments may be specified. The terminating
character for an argument line is a newline character. The line thus follows this
syntax:

name = value ’\n’

So, defining the URL http://www.myweb.com/mysite/index.html, the line will look like
this:

URL=http://www.myweb.com/mysite/index.html

Please note that in the database, the URL is actually stored in two parts. The
filename itself (e.g. index.html) is stored in the field D_DOCNAME, and the other part
of the URL (e.g. http://www.myweb.com/mysite) is stored in the field D_URLBASE.

Blob-oriented import

Blob-oriented import is actually a special variant of block-oriented import. The caller
provides all the data required in memory pointed to by buffer in one go. The
buffer_length specify the size of the entire blob (XML document), and blockno must
be set to 0. The option for this is IEOPT_MEMORY.

File-oriented import

File-oriented import comes in two flavors. One in which a file name is specified in a
character string pointed to by buffer, and one in which a file pointer is provided in
buffer. In case a file pointer is provided, neither the TdbImport function, nor the filter
function must close the file. The options are IEOPT_FILENAME and
IEOPT_FILEPTR, respectively.

Stream-oriented import

Stream-oriented import is preferrably used when importing large files into a TRIPxml
database from a web site or a client application (based on TRIPjtk or TRIPclient).
This is also the only way validation of system-local DTDs or schemas can take place
when the DTD is not available on the server machine.

To use streamed import, add FOXML_STREAM to the filter_options member of
filter_data. It is important also to assign either IEOPT_FILENAME or
IEOPT_MEMORY to the tdb_options member of filter_data. You must also add a
FILEURL parameter to the filter_arguments string, specifying the URL from which
you want TRIPxml to load the XML file, e.g. “FILEURL=http://mybox:1234/data.xml”.

Remember that the best way to program stream oriented import is to use the
functions in the regular TRIPxml C API for a much easier programming interface.
Please refer to the compressed HTML online help file TXCAPI.CHM for more details.

TRIPXML USER’S GUIDE V3.1

page 19

Validation

If you want to validate an XML document when you are importing it, add
FOXML_VALIDATE to the filter_options member of filter_data. If XML_SCHEMA is
present and set to 1 in the server-side TRIPrcs file, then XML schemas can be
validated. Otherwise, only DTDs are validated.

Note that if you are performing a blob-oriented import of an XML document referrring
to a DTD using a relative path and the DTD file has not been imported into the
TRIPxml database, you will get a validation error.

TdbExport
The TdbExport function is used to call TRIPxml to export XML documents, with or
without hit markup.

Prototype

int TdbExport (filter_data* data);

Applicable values for the tdb_options member:

NAME VALUE DESCRIPTION

IEOPT_FILENAME 1 The buffer member contains file name

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*)

IEOPT_MEMORY 4 The buffer member points to memory area

EXPORT_ALLOC 32 Declares that export filter should allocate
memory for data (the buffer member is changed
to point to newly allocated memory). Used in
combination with IEOPT_MEMORY.

EXPORT_FILEAPP 256 Declares that export filter should append XML
document to a file. Used in combination with
either IEOPT_FILENAME or IEOPT_FILEPTR.

Applicable mask values for the filter_options member:

NAME VALUE DESCRIPTION

FOXML_GETBYID 8 Retrieve document by URL or record name (ID).
Specify URL by adding the URL parameter to
the filter_arguments member. Specify ID by
adding the ID to the filter_arguments member.

FOXML_REMAKE 16 Recreate the xml document from its parts. Do
not use data stored in the D_XMLDOC field.

FOXML_HILIGHT 32 Insert hit-markup in the extracted xml document,
so that the displaying application can highlight
the hits. The option FOXML_REMAKE must
also be set.

FOXML_STREAM 256 Specifies that the caller wishes to perform
stream-oriented I/O.

Blob-oriented export

Blob-oriented export means that the caller wants all the required data returned in
buffer in one go. The buffer_length specifies the size of the entire blob, and blockno
must be set to 0. The option for this is IEOPT_MEMORY.

Blob-oriented export also comes in another flavor, and that is that the filter routine
allocates a large-enough buffer to contain the requested data. If this is the case, the
filter routine will set buffer to allocated memory containing the data and buffer_length
to the size of the buffer. The option for this is IEOPT_MEMORY | EXPORT_ALLOC.

TRIPXML USER’S GUIDE V3.1

page 20

File-oriented export

File-oriented export comes in two basic flavours. One in which a file name is
specified in a character string pointed to by buffer, and one in which a file pointer is
provided in buffer. The options are IEOPT_FILENAME and IEOPT_FILEPTR,
respectively. If combined with the EXPORT_MKFILE option, the file name (or pointer)
is created by the filter routine and returned in buffer. It will in this case not be
neccessary (or required) to provide anything in buffer by the caller.

For both types of file-oriented export applies that either EXPORT_FILEAPP or
EXPORT_FILETRUNC must be used. No default action exists.

Stream-oriented export

Stream-oriented export is preferrably used when exporting large files from a TRIPxml
database to a client application (based on TRIPjtk or TRIPclient). To use streamed
import, add FOXML_STREAM to the filter_options member of filter_data. It is
important also to assign either IEOPT_FILENAME or IEOPT_MEMORY to the
tdb_options member of filter_data. You must also add a FILEURL parameter to the
filter_arguments string, specifying the URL to which you want TRIPxml to upload the
XML file with a HTTP POST message, e.g. “FILEURL=http://mybox:1234/data.xml”.

Remember that the best way to program stream oriented export is to use the
functions in the regular TRIPxml C API for a much easier programming interface.
Please refer to the compressed HTML online help file TXCAPI.CHM for more details.

Server-Side API calls

TRIPxml C API
For C or C++ based server applications, the recommended method to access
TRIPxml is to use the TRIPxml C API. Please refer to the HTML help file
TXCAPI.CHM for API reference and usage examples.

Client-Side API calls

XML and TRIPcom
From version 2.0-1 of TRIPclient, the interface to the Record object in includes the
XML-specific methods CopyFromXMLFile and CopyToXMLFile.

The TCXML add-on component for TRIPclient is from version 3.0 of TRIPxml no
longer distributed. Its classes has been added to TRIPcom in TRIPclient version 2.5-
0. These classes provide additional support for XML import and export to TRIPclient-
based applications.

Please refer to TRIPclient documentation for details.

TRIP Java Toolkit
TRIPjtk supports programmatic access of TRIPxml through its classes XMLRecord
and XMLLink. Version 1.0 of TRIPjtk supports TRIPxml up to version 2.0, and version
1.1 of TRIPjtk supports TRIPxml up to version 2.1.

TRIPjxp and TRIPnxp
TRIPjxp and TRIPnxp from version 2.1 provide the most complete APIs for
development of TRIPxml applications. Please refer to the TRIPjxp and TRIPnxp
documentation for details.

TRIPXML USER’S GUIDE V3.1

page 21

Using the XML Tools

TXPUTS
This is a server-side command line tool that is used to import an XML document into
a TRIPxml database.

txputs command line options

Options:

 -d <database> Name of database (mandatory)

 -u <username> Name of user to access database as.

 -p <password> Password for user.

 -r <url> Store URL information.

 -e <record id> Replace (update) named record.

 -s <portno> Stream load via specified TCP port.
 Pass 0 for dynamic.

 -m <importmode> 1=File, 2=Url (default: 1)

 -b Do not store original document as blob.

 -v Validate XML document.

 -x Store non-xml files
 (using TRIPview if installed).

 -l <loglevel> Log level. 0=off, 1=errors, 2=warnings,
 3=debug

 -i Index the the database after successful
 modification.

The txputs tool will always use Unicode sessions with TRIPsystem 6.0 and later.

To import an XML document into TRIP with subsequent indexing, issue this call:

txputs –i –l 2 –d mydatabase –u myuser –p mypassword myfile.xml

You can also use wildcard characters in the filename, so that you can import several
XML documents at once:

txputs –i –l 2 –d mydatabase –u myuser –p mypassword *.xml

If you want to store your DTD (or any other file) in the database as well, you type the
following:

txputs –i –l 2 –x –d mydatabase –u myuser –p mypassword myfile.dtd

Note that you cannot mix non-XML files and XML files when importing. If the “-x”
option is specified, all files will be treated as non-XML, even if they actually happen to
be XML. Another important thing to remember is that if TRIPview is installed on the
server, it will automatically be used to extract the text from non-XML files, making
them searchable. So, if TRIPview is not installed, all non-XML files stored in a
TRIPxml database will not be searchable by content.

TXGETS
This is a command line tool that extracts stored XML data from a TRIP database,
thus reconstructing the original XML file.

TRIPXML USER’S GUIDE V3.1

page 22

TXGETS has a CGI-style command line interface that is adapted for use from a web
server. It is also possible to be run it manually from the command prompt – either by
defining the QUERY_STRING environment variable with the query data, or putting
the query data as input argument to the program in a quoted string.

Highlighting of hits in search results are possible if you tell TXGET to work from an
existing search in an existing SIF file. The highlighting works by inserting tags
belonging to a separate namespace "http://www.tieto.com/trip/xml". The tags do not
have content, so they will not disturb the displaying of the XML information using
style sheets that does not take the highlighting tags into account. The TRIPHLBEGIN
tag is used to mark the start of a highlighted section, and the TRIPHLEND tag is
used to mark the end of such a section.

A highlight-section may look like this:

We <TRIPHLBEGIN
xmlns="http://www.tieto.com/trip/xml"/>promise<TRIPHLEND
xmlns=" http://www.tieto.com/trip/xml"/> that

This could be formatted, using a stylesheet adapted to the highlighting tags as:

We promise that

in which the <TRIPHLBEGIN> element is replaced by and <TRIPHLEND> by
 (assuming that output is to be HTML).

Parameter
Name

Full Name of
Parameter

Explanation

DB Database The name of the TRIPxml database

SEARCH Search number The number of the search to use as data set. The use
of this parameter will cause txget to ignore the DB
parameter and ask for reopening of an existing SIF
file - either specified by name or belonging to a
database user (see below).

The results produced using this parameter will have
the hit locations automatically marked up.

SIF SIF file name Use this parameter to specify the unqualified name of
the SIF file to use if it is not conforming to the
"username.SIF" naming.

Note that the SIF file is assumed to be located in the
directory identified by the TDBS_SIF parameter, or in
the temp directory if TDBS_SIF is unspecified.

RID Record id The RID of the requested record or the (ordinal)
number of the record in a search set.

MODE Reconstruction
mode

Set this to 1 for reconstruction of the XML document
from its parts. Set to 0 or do not use if the XML
document blob (from the D_XMLDOC field) is to be
returned.

TYP Content type Content type is highly recommended when sending
the document via a web server. The TYP parameter is
a numeric code. These types are defined so far:

1. text/html
2. application/msword
3. application/pdf
4. text/plain

FNO Field number Field number for the blob field. The XML blob is
stored in field 1 (preset number for the D_XMLDOC
field). If blobs are stored in other formats, other

TRIPXML USER’S GUIDE V3.1

page 23

numbers may be used. This parameter is ignored
when MODE is 1.

USR User name The name of the database user to connect to the local
TRIP server as. Defaults to “system”.

PAS Password The password of the named database user. Defaults
to “z”.

HOST Host name This parameter only applies to the version of txget
which is compiled for TRIPclient. Name of computer
where TRIP server is running. Defaults to “localhost”.

LOG Log level Enable logging to stderr. Log levels are:
0 - fatal errors
1 - errors (default)
2 - errors and warnings
3 - debug

PORT Port number Enables streaming I/O. Pass the number of any free
TCP port, or 0 (zero) for dynamic port allocation.

UTF Unicode mode Toggles use of Unicode databases. Pass non-zero to
enable, and 0 (zero) to disable. Default is 0.

HIGHLIGHT Hit Markup If a search number has been specified and this
parameter has been assigned a non-zero numeric
value, then hit markup will be applied to the returned
document.

TXGET Usage Examples

Value of QUERY_STRING or first argument Explanation

”DB=XALICE&RID=1&FNO=1” Extract the XML blob stored in the first
field of the first record in the XALICE
database.

”HOST=frodo&DB=XALICE&RID=1&FNO=1” Same as above, but used from a pc
with TRIPclient installed, sending the
request to the host frodo.

”SEARCH=2&RID1&MODE=1” Extract the reconstructed XML
document from the first record i the
second search set using existing
default SIF file.

”SEARCH=2&SIF=xml123.sif&RID=1&MODE=1” Extract the reconstructed XML
document from the first record in the
second search set using SIF file
xml123.sif.

“DB=XALICE&RID=1&MODE=1&PORT=0&LOG=3” Extract the reconstructed XML
document from the first record in the
database with streaming I/O and
dynamic port allocation. Logging is set
to the highest level.

When running txgets as a CGI program, the URL might then be:

http://www.myserver.com/txget?DB=XALICE&RID=1&FNO=1

for producing an XML document from the database XALICE, extracting the stored
XML blob from field number 1.

UPDLINKS
The updlinks utility is used to bring an out-of-synch link database up to date. You can
use it to enable link support on an existing link database, or to remove references to
removed XML documents, or to create link records for XML documents that have
been imported while the link support has been temporarily disabled.

TRIPXML USER’S GUIDE V3.1

page 24

updlinks command line options

USAGE: updlinks <command> [options]

Commands are:

 m <dbname> Refresh link database entries for
 named XML database.

 c Clean up link database.

Options are:

 -h Show usage help (this text).

 -i Ignore XML_NOLINKS/XML_LINKS setting.

 -u <usr> User name.

 -p <pwd> Password.

 -b <dbname> Use this database as link database.

To create link database entires for a database which previously has none, ignoring
XML_LINKS setting, and using MYLINKDB as link database.

updlinks m –i –b mylinkdb

Please note that you must run txlinker (see below) to actually get any data in your
link database entries!

TXLINKER
The txlinker utility processes link information in new or modified TRIPxml records.
When links are found, the corresponding link database record for the TRIPxml record
from which the link emanates is updated with the link information. If the target
document does not exist as imported into any one XML database the link information
is still created, referring to the URL on which the file supposedly is to be found.

The txlinker matches the URLs in the link specification with the value in the field
D_URLALIAS. So if link support is enabled, documents should be imported with a
specified URL.

Execution of txlinker is required to get link data into the link database. The import
filter (which is called by txput) does not do that due to performance considerations. If
link support is always enabled, you really want to configure execution of txlinker as a
timed job using cron or something equivalent.

TRIPXML USER’S GUIDE V3.1

page 25

txlinker command line options

USAGE: txlinker -u username -p password [options]

Options are:

 -h Show usage help (this text).

 -v Verbose.

 -i Ignore XML_NOLINKS/XML_LINKS setting.

 -b <dbname> Use this database as link database.

To update link information for all XML databases into the default link database,
simply execute txlinker without any arguments.

MKLINKDB
The mklinkdb utility is used to create a link database.

USAGE: mklinkdb username password databasename

TRIPXML USER’S GUIDE V3.1

page 26

Applications

Server-side applications
Server-side applications can be written using the TRIPxml C API with the TRIP toolkit
(a C application programming interface to TRIP) that is delivered with TRIPsystem.

See the xmlput sample for an idea of how to create a server side application using
the TRIP toolkit API function TdbImport.

In the compressed HTML online help file TXCAPI.CHM, usage examples for the
TRIPxml C API can be found.

XPI Applications
The products TRIPjxp and TRIPnxp have the most complete API for the development
of TRIPxml applications. Please refer to the "TRIPnxp and TRIPjxp Programmer's
Guide" document (available with TRIPnxp and TRIPjxp) for detailed information on
how to create TRIPxml applications with these SDK products.

Networked applications using TRIPclient
The TRIPclient specific components that were available in previous versions of
TRIPxml have been discontinued.

However, the objects from the TCXML COM component have been integrated into
TRIPcom in TRIPclient from version 2.5-0. Note that these objects (TripTCXml,
TripXmlRecord, TripXmlLink and TripXmlProperty) now have different program ids
and different class ids. Existing applications that want to continue to use these
objects will therefore have to be adjusted to use the correct references to these
objects.

Networked applications using TRIPjtk
In TRIPjtk 1.1-0 and later, there are two samples for TRIPxml applications; jtxput and
jtxget. These samples demonstrate how to implement TRIPxml import and export
with Java.

CGI-style applications
A CGI application is a web application that can be used with most web servers. See
the xmlget sample for an idea of how to create a (server-side) CGI program.

TRIPXML USER’S GUIDE V3.1

page 27

Appendix A - API Reference
This appendix describes the TRIP toolkit APIs to use for low-level access of the
TRIPxml functionality. The recommended way is to use the TRIPxml functionality
integrated into TRIPnxp and TRIPjxp version 2.1 and later. The TRIPxml C API can
also be used for server-side TRIP Toolkit applications. The TRIPxml C API, TRIPnxp
and TRIPjxp are documented separately.

The filter_data structure
This is the structure used by the API functions TdbImport and TdbExport:

Data Type Member Name In/Out Description/Usage

TdbHandle record_control In/Out The record control of the record into
which an XML document is to be
imported, or the record that contains an
XML document that is to be exported. If
the filter created a record control, it is
returned in this member.

TdbHandle cursor In/Out For imports; a record cursor. For exports;
a cursor to the D_XMLDOC field. Is
optional for exports. If the filter created a
cursor, it is returned in this member.

TdbHandle filter_address In/Out Contains a handle to the called API
routine on return. This handle may be
used on subsequent calls to boost
performance. Not fully implemented in
this version!

char filter_name[32] In The name of the filter to call. For
TRIPxml, the name of the import filter is
“tripxmlput”, and the export filter name is
“tripxmlget”.

char filter_lib_env[32] In The name of the logical symbol in the
TRIPrcs file that specifies the fully
qualified path to the TRIPxml shared
library.

void* buffer In/Out Field with many uses, dependent on
what the tdb_options member say is
contained herein. May be allocated
memory, placeholder for allocated
memory, name of file, or file pointer.

int buffer_length In/Out Length of buffer.

char* filter_arguments In Filter-specific string of arguments. Set to
NULL or empty string if no arguments
are passed.

int arg_length In Length in bytes of the content of the
filter_arguments member, including the
terminating NULL-character.

int filter_options In Filter-specific options.

int tdb_options In Import/export specific options.

int blockno In Block number (only for block-oriented i/o
– see below). Set to 0 for final block, 1
for first in a sequence of several, etc.

int errorcode Out Filter-specific error code (may also be
informational or warning).

TRIPXML USER’S GUIDE V3.1

page 28

Data Type Member Name In/Out Description/Usage

char errortext[256] Out Textual, filter-specific, error message.

Valid values for the filter_options member

Filter Option Name Value Description

FOXML_NEWREC 1 TdbImport: Create a new record.

FOXML_REPLACE 2 TdbImport: The opposite of FOXML_NEWREC.
Is implicitly set if FOXML_NEWREC is not set.
The record_control and cursor fields are
mandatory in combination with this option.

FOXML_VALIDATE 4 TdbImport: Tells the XML parser to validate the
XML record if any internal/external DTD subset
have been seen.

FOXML_GETBYID 8 TdbExport: Retrieve document by URL or record
name (ID). Specify URL by adding the URL
parameter to the filter_arguments member.
Specify ID by adding the ID to the
filter_arguments member.

FOXML_REMAKE 16 TdbExport: Recreate the xml document from its
parts. Do not use data stored in the D_XMLDOC
field.

FOXML_HILIGHT 32 TdbExport: Insert hit-markup in the extracted
xml document, so that the displaying application
can highlight the hits. The option
FOXML_REMAKE must also be set.

FOXML_NOBLOB 64 TdbImport: Do not store the original document.

FOXML_STREAM 256 Specifies that the caller wishes to perform
stream-oriented I/O.

Valid values for the tdb_options member

Tdb Option Name Value Description

IEOPT_FILENAME 1 The buffer member contains file name.

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*).

IEOPT_MEMORY 4 The buffer member points to memory area.

EXPORT_ALLOC 32 TdbExport: Declares that export filter should
allocate memory for data (the buffer member is
changed to point to newly allocated memory).
Used in combination with IEOPT_MEMORY.

EXPORT_FILEAPP 256 TdbExport: Declares that export filter should
append XML document to a file. Used in
combination with either IEOPT_FILENAME or
IEOPT_FILEPTR.

TRIPXML USER’S GUIDE V3.1

page 29

Appendix B - Encodings

Supported Encodings
TRIPxml supports, via version 4.2 of the ICU library (International Components for
Unicode), all major encodings including:

• ASCII

• UTF-8

• UTF-16 (Big/Small Endian)

• UCS4 (Big/Small Endian)

• EBCDIC code pages

• GB2312 and BIG5

• IBM037 and IBM1140 encodings

• ISO-8859-1 (aka Latin1)

• Windows-1252

For a more complete list of encodings, see the ICU homepage http://icu-project.org
or IANA’s list of character set names at http://www.iana.org/assignments/character-
sets.

Best Practices
The best choice in most cases is either utf-8 or utf-16. Advantages of these
encodings include:

• The best portability. These encodings are more widely supported by XML
processors than any others, meaning that your documents will have the best
possible chance of being read correctly, no matter where they end up.

• Full international character support. Both utf-8 and utf-16 cover the full
Unicode character set, which includes all of the characters from all major
national, international and industry character sets.

• Efficient. Utf-8 has the smaller storage requirements for documents that are
primarily composed of of characters from the Latin alphabet. Utf-16 is more
efficient for encoding Asian languages. But both encodings cover all
languages without loss.

The only drawback of utf-8 or utf-16 is that they are not necessarily the native text file
format for operating systems, meaning that common text file editors and viewers may
not be possible to use directly.

A second choice of encoding would be any of the others listed in the table above.
This works best when the xml encoding is the same as the default system encoding
on the machine where the XML document is being prepared, because the document
will then display correctly as a plain text file. For systems in countries speaking
Western European languages, the encoding will usually be iso-8859-1.

TRIPXML USER’S GUIDE V3.1

page 30

A word of caution for Windows users: The default character set on Windows systems
is windows-1252, not iso-8859-1. While Xerces C++ does recognize this Windows
encoding, it is a poor choice for portable XML data because it is not widely
recognized by other XML processing tools. If you are using a Windows-based editing
tool to generate XML, check which character set it generates, and make sure that the
resulting XML specifies the correct name in the encoding="..." declaration.

TRIPXML USER’S GUIDE V3.1

page 31

Appendix C - TRIPrcs Settings
The following TRIPrcs settings under the nonprivileged section are specific to
TRIPxml. All settings that have a valid value set of 0 and 1 are boolean – i.e. 0=off,
1=on.

Setting Valid
Values

Default
Value

Description

TDBS_XMLSHR special special The value of this setting is
the fully qualified path to
the xmlfilters library.

TDBS_ASELIBS special special The value of this setting is
a comma-delimited list of
the names of all settings
referring to ASE or filter
libraries.

In order for TRIPxml to
work, this list must include
TDBS_XMLSHR.

XML_LINKS 0, 1 0 Link support

XML_LINK_DB special special Link database name if
other than XML_LINK_DB

XML_NAMESPACES 0, 1 0 Namespace support.

XML_SCHEMA 0, 1 0 Schema support

XML_STRICT_SCHEMA 0, 1 0 Strict schema validation

XML_STRICT_VALIDATION 0, 1 1 If documents are imported
with validation, the strict
validation means that the
parser will load any
external references
required to validate the
document such as DTD
files, etc.

XML_NOENTITYRESOLVER 0, 1 0 The entity resolver is used
to redirect requests for
DTDs and schemas to the
proper location. E.g. if a
DTD has been imported
into a TRIPxml database,
the entity resolver will
export the DTD from
there.

Turning on this setting
means that an entity
resolver will not be
created. This will break
any import where
validation is enabled and
a DTD or XML schema
file needs to be loaded!

TRIPXML USER’S GUIDE V3.1

page 32

Appendix D - Supported XPath Syntax

This appendix is an overview of the part of the XPath 1.0 syntax supported by
TRIPxml. Refer to the W3C (http://www.w3.org/TR/xpath/) for a complete description
of XPath 1.0.

Definitions

Node
A node is a node in the tree structure that makes up an XML document. There are
several types of nodes, e.g. element, attribute and text;

<element attribute="">text</element>

In a TRIPxml database, every node is stored in a tuple (associated subfields across
more than one field), with an optional associated text value in a part record with the
same number as the tuple (subfield) number.

Node Set
A node set is what an XPath expression evaluates to. A node is usually an element,
an attribute or text. Every node in a node set "knows" from which position in the
document it comes, and can therefore be used as context for further XPath
expressions.

In TRIP terminology, a node in a node set is a reference to a specific tuple, or
subfield, in a record in a TRIPxml database.

Location Step
Every location step is an XPath expression in itself, and as such it has a context. A
context is the XML node(s) relative to which the expression is to be evaluated. A bit
like "../../somedir" in a file system is relative to the current directory.

A location step consists of the three parts axis, node test and predicate in the form
axis::nodetest[predicate].

1. An axis determines the direction of the selection that the expression is to go,
relative to context.The most common axis type is "child". The child axis says
that the expression matches nodes that has the context node (or nodes) as
direct parents.

2. A node test makes a selection of nodes from the specified axis. A node test
can be the name of an element, a node type, a wildcard, etc.

3. A predicate is a filter of sorts. It further limits the set of nodes that matches
the location path expression. This filtering can be made in many different
ways. A common one is to specify specific attributes and values of specific
attributes. Only the nodes that matches the condition of the predicate will be
included in the final node set for the current location step.

For example, in the expression:

child::para[position()=1]

child is the axis, para is the node test and [position()=1] is the predicate. In plain
English, this means "select the first para element that is child to one of the nodes in
the context node set".

http://www.w3.org/TR/xpath/)

TRIPXML USER’S GUIDE V3.1

page 33

Axis Types
Axis Description

child Selects of nodes that are direct children to nodes in the
context node set.

attribute Selection of nodes that are attributes to (element) nodes in
the context node set.

descendant Selects nodes that have any of the nodes in the context node
set as parent or ancestor. In other words, this selects the sub
trees where the nodes in the context node set are roots.

ancestor Selects nodes that are parents or ancestors to the nodes in
the context node set.

ancestor-or-self Selects nodes that are part of the context node set, or are
parents or ancestors to nodes in the context node set.

descendant-or-self Selects nodes that are part of the context node set, or have a
node in the context node set as parent or ancestor.

self Selects all nodes from the context node set.

following-sibling Selects nodes that have the same parent as any of the nodes
in the context node set, and are located after the context
node in question.

preceding-sibling Selects nodes that have the same parent as any of the nodes
in the context node set, and are located before the context
node in question.

parent Selects nodes that are parents to nodes in the context node
set.

following Selects all nodes that follows the nodes in the context node
set.

preceding Selects all nodes that precedes the nodes in the context
node set.

Functions
The following functions are supported for use in predicates:

Function Description

position() Evaluates to the position of a context node. Must be used
as an lvalue in a comparison. For example:

//child::para[position()=1]

which also can be written as:

//child[1]

last() Evaluates to the last node in the context node set. Must
be used as an rvalue in a comparison with position(). For
example:

//child::para[position() = last() - 1]

Which selects the second-to-last node from the context
node set.

TRIPXML USER’S GUIDE V3.1

page 34

Function Description

contains(nodeset,value) Selects nodes that have TEXT contents (as descendant
nodes) that contains the specified value. For example:

//sect1[contains(para,'welcome')]

This expression selects sect1 elements that have para
children that contains TEXT nodes in which the word
"welcome" can be found.

Predicate Usage

The existence of an attribute
TRIPxml supports the following predicate syntax for checking if an attribute exists.
These expressions are equivalent:

[@ID]

[attribute::ID]

Applied to a location step, this limits the selected nodes to those that have the
specified attribute ("ID" in this example).

Attribute value check
The most common predicate is probably the one that checks the value of an attribute.
These expressions are equivalent:

[@lang="EN"]

[attribute::lang="EN"]

Applied to a location step, this limits the selected nodes to those that have the
specified attribute with the specified value.

Exact text node contents
Whether or not to use an attribute or a text node under an element to represent a
particular value is in many cases not a clear-cut choice. The equivalent of doing an
attribute value check for the text content of an element is this:

[. = "Enterprise"]

[text() = "Enterprise"]

Applied to a location step, this limits the selected nodes to those that have exactly
the specified value as their text contents. No truncation is performed.

Truncated text node contents
The only XPath function supported by TRIPxml that can perform a truncated search
is the contains() function. If there is a text node that contains "they welcomed us to
their party", then we can use this predicate expression:

[contains(.,"welcome")]

[contains(text(),"welcome")]

Applied to a location step, this limits the selected nodes to those that have exactly
the specified value as their text contents. No truncation is performed.

TRIPXML USER’S GUIDE V3.1

page 35

Truncated attribute text node contents
A variant on the truncated text node contents, we replace the first argument of the
contains function with an expression that evaluates to an attribute.

[contains(@name,"TRIP")]

[contains(attribute::name,"TRIP")]

Applied to a location step, this limits the selected nodes to those that have an
attribute "name" whose value contains "TRIP". So we would for instance be able to
find "TRIPxml" this way.

Comparison Operators
All the six normal comparison operators are supported; =, !=, >, <, >=, and <=.

Note that comparison is always text based. This means that a non-equi comparison
with numerical data may not yield the expected results.

Node position
Perhaps more useful in fragment retrieval than in querying, limiting the node set by
node position is also possible with TRIPxml. The functions position() and last() can
be used here, as well as the abbreviated form of just using a number

Selecting a node at a specific position from the context node set, the following
expressions are equivalent:

[position()=1]

[1]

Selecting a range of nodes:

[position() < 10]

Selecting the last node in the set:

[position() = last()]

[last()]

Verifying that the context node set has a certain size (here exactly 2 nodes):

[last()=2]

Selecting nodes at the end of the set, e.g. the last two ones:

[position() >= last() - 1]

Multiple predicates in a single location step
The keywords "and" and "or" can be used within a predicate. Multiple predicates can
be listed one after the other within the same location step, in which case there is an
implicit "and" operation between each predicate.

This combination exemplifies both variants:

[@type="S" or contains(.,"TRIP")][position()<10]

This would select the first nine elements that either have an attribute "type" having
the value "S" or contains the text "TRIP".

TRIPXML USER’S GUIDE V3.1

page 36

Additional Examples

Expression over Axis "child"
The following expressions are equivalent:

/child::doc/child::sect1

/doc/sect1

Expression with axis "attribute" in predicate
The following expressions are equivalent:

/child::doc/child::sect1/child::title[attribute::ID="chhist"]

/doc/sect1/title[@ID="chhist"]

Expression with axis "parent"
The following expressions are equivalent:

/descendant-or-self::node()/attribute::ID/parent::*

//@ID/..

Expression with multiple axes in a predicate
This selects the "para" elements that are located somewhere under a "sect1" element
whose direct child element "title" has an attribute "ID" with the value "chhist".

//para[ancestor::sect1/title/@ID="chhist"]

Expression with axis "descendant" and multi-axis predicate
Here we want the "para" elements located somewhere under a "sect1" element
whose direct child element "title" has an attribute "ID" with the value "chhist".

//sect1[title/@ID="chhist"]/descendant::para

Expression with axes "ancestor-or-self", "parent" and "descendant"
This expression selects the "sect1" elements under which there is an element "title"
whose attribute "ID" contains the text "hist". Furthermore, we want to make sure that
there are "para" elements under the selected "sect1" elements, and that these "para"
elements or one of their ancestors have an attribute "lang" with the value "EN".

//para/ancestor-or-self::node()[@lang="EN"]/
descendant::title[contains(@ID,"hist")]/parent::sect1

Note: this is all a single, long line. The line break is for clarity only.

	Introduction
	About this document
	Defining XML
	Why Use XML?
	Usage: Information Exchange
	Usage: Long Time Storage
	Usage: Reuse
	Usage: Structured Methods
	Usage: Smart Information
	Conclusion

	Installation
	Requirements
	Content of the distribution package
	Windows Installation Procedure
	Unix Installation Procedure
	Unpack
	Run Installation Script
	Library Path
	SDK Usage

	TRIPxml Features
	Requirements
	Design
	Overview
	Storage Structure

	XLink and XInclude support
	Querying
	Application Programming

	How-To
	Install the XALICE sample
	Create an XML database
	Via TRIPclassic
	Via TRIPmanager

	Creating a Unicode XML database
	Migrating an XML database to Unicode
	Create a Link Database
	Query the Database
	Using CCL
	Using XPath

	Use the TRIPxml C API Calls
	Use the Toolkit API Calls
	TdbImport
	Blob-oriented import
	File-oriented import
	Stream-oriented import
	Validation

	TdbExport
	Blob-oriented export
	File-oriented export
	Stream-oriented export

	Server-Side API calls
	TRIPxml C API

	Client-Side API calls
	XML and TRIPcom
	TRIP Java Toolkit
	TRIPjxp and TRIPnxp

	Using the XML Tools
	TXPUTS
	TXGETS
	TXGET Usage Examples

	UPDLINKS
	TXLINKER
	MKLINKDB

	Applications
	Server-side applications
	XPI Applications
	Networked applications using TRIPclient
	Networked applications using TRIPjtk
	CGI-style applications

	Appendix A - API Reference
	The filter_data structure

	Appendix B - Encodings
	Supported Encodings
	Best Practices

	Appendix C - TRIPrcs Settings
	Appendix D - Supported XPath Syntax
	Definitions
	Node
	Node Set
	Location Step

	Axis Types
	Functions
	Predicate Usage
	The existence of an attribute
	Attribute value check
	Exact text node contents
	Truncated text node contents
	Truncated attribute text node contents
	Comparison Operators
	Node position
	Multiple predicates in a single location step

	Additional Examples
	Expression over Axis "child"
	Expression with axis "attribute" in predicate
	Expression with axis "parent"
	Expression with multiple axes in a predicate
	Expression with axis "descendant" and multi-axis predicate
	Expression with axes "ancestor-or-self", "parent" and "descendant"

