

Copyright © 2024 DVG Operations GmbH

Token Based Access

TRIPsystem
Product Documentation

TRIP TOKEN BASED ACCESS

Page 2 of 9

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by DVG Operations GmbH (DVG) are exclusively
owned by DVG.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of DVG. Furthermore, the customer has the right to use licensed Software and
/ or process solutions supplied by DVG to the extent specified in his contract with DVG.

The free-to-use non-commercial version doesn’t require a prior written agreement with
DVG but such customers, organizations and/or third parties agree by using the software
and / or solution of DVG to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

TRIP TOKEN BASED ACCESS

Page 3 of 9

Table of Contents

INTRODUCTION .. 4

DEFINITIONS ... 4

CONFIGURATION .. 4

TDBS_REQUIRE_APIKEY ... 4
TDBS_TOKEN_KEY .. 5
TDBS_ACCESS_TOKEN_EXPIRATION .. 5
TDBS_REFRESH_TOKEN_EXPIRATION .. 5

APPLICATION CONSIDERATIONS .. 5

KEEP IT SECRET AND SAFE .. 5
USAGE FROM TRIPNXP AND TRIPJXP .. 6
USAGE FROM OTHER TRIP API CLIENTS ... 6

TOKEN AND KEY ADMINISTRATION ... 6

CREATING AND ROTATING THE TOKEN ENCRYPTION KEY ... 6
THE TRIPTOK UTILITY .. 6

API Key Administration ... 7
Token Administration ... 8

OTHER USES OF TRIPTOK ... 9

TRIP TOKEN BASED ACCESS

Page 4 of 9

Introduction

TRIPsystem 8.4-0 introduces support for access tokens, a common way for applications to
access an API without always having to use actual user credentials. TRIP applications can
request a token in a session where a non-SYSTEM user has successfully has logged on.

In order to better secure access to TRIPsystem, so-called API Keys can also be used in
this context. Such keys are assigned by the TRIP administrator to applications that should
be able to request and use tokens. If API keys are enabled, only application instances that
possess a valid API key can successfully request and use tokens.

Definitions

API Key An API Key is used as to grant application instances the permission
to use token-based access.

Access Token An Access Token provides access to TRIPsystem for a short time,
e.g. 30 minutes or one hour, and can be used for login instead of
username and password. Access tokens typically require a valid API
Key for both acquisition and use.

Refresh Token A Refresh Token is returned together with an access token and
grants, for the duration of its validity, the application the option to
request a new token pair. The Refresh Token has a longer expiration
time (e.g. 30 days) but is one-time use only, and usage typically also
requires a valid API key.

Token Pair A pair of one Access Token and one Refresh Token as returned to
the application on a successful token creation or refresh request.

Configuration

The following privileged TRIPsystem environment variables can be set in the tdbs.conf
configuration file to control the behavior of the token subsystem.

TDBS_REQUIRE_APIKEY

This privileged TRIPsystem environment variable is used to determine if and to which
degree API Keys are used and required. The following values are valid for this variable:

ALWAYS An API key is required for creating a new token pair, refreshing a

token pair, and for login using an access token. An API key is also
required for token administration (e.g. revocation) if requested via the
network. This value is the default if the variable is not explicitly set.

TOKENS An API key is required for creating a new token pair and for
refreshing a token pair. Login using an access token does not require
an API key.

REFRESH A valid API key is only required for refreshing a token pair.

NO API keys are not required by any token operation.

TRIP TOKEN BASED ACCESS

Page 5 of 9

TDBS_TOKEN_KEY

This privileged TRIPsystem environment variable defines the fully qualified path to the
server-side file that contains the 256-bit (32-byte) AES encryption key used to encrypt the
access and refresh tokens as returned to the calling application.

Rotating this key immediately invalidates all issued access and refresh tokens. For more
information on this topic refer to “Token and Key Administration” below.

The absence of a valid value for this variable means that token access is disabled.

TDBS_ACCESS_TOKEN_EXPIRATION

Access tokens are by default set to expire after 3600 seconds, i.e., one hour. To change
this, set this privileged TRIPsystem environment variable to an integer value representing
the expiration time as the number of seconds since the creation of the token pair.

TDBS_REFRESH_TOKEN_EXPIRATION

Refresh tokens are by default set to expire after 2592000 seconds, i.e., 30 days. To
change this, set this privileged TRIPsystem environment variable to an integer value
representing the expiration time as the number of seconds since the creation of the token
pair.

Application considerations

Keep it Secret and Safe

The access and refresh tokens as obtained by an application as a response to a token
creation or refresh call are opaque strings of about 120 byte each. It is very important that
these are kept secret and safe. If either is compromised for whatever reason, it is critically
important to contact the TRIP administrator so that they immediately can revoke the token
pair.

The same goes for the API Key. Since the API key has no expiration time, it is supposed
to be rotated by the TRIP administrator on a schedule of their choosing. This makes an
API key a semi-permanent, potentially very long-lived object. For this reason, store all
copies of an API key as securely as possible, and do not fall for the temptation to store the
key in a version management repository since such storage is the same as compromising
the security of the key.

If the application is deployed as a Docker container, the API key can for example be stored
as a Docker Secret and accessed as such. When the key is rotated by the TRIP
administrator, the application container must be configured with the new key. Refer to
Docker documentation for details on replacing a Secret.

TRIP TOKEN BASED ACCESS

Page 6 of 9

Usage from TRIPnxp and TRIPjxp

The TRIP SDKs TRIPjxp (for Java) and TRIPnxp (for Microsoft .NET) support tokens from
version 8.4-0. The following new methods for token support have been added to the
TdbSession class:

• requestAccessToken: Call this in a logged in session to acquire a new token pair.
May require a valid API key.

• refreshTokenPair: Call this to refresh a token pair when the access token has
expired. Does not require a logged in session in order to be used, but will normally
require a valid API key.

• revokeToken and revokeTokens: The application can call these methods to
revoke (delete) a previously acquired token pair.

• isTokensEnabled: Returns true if the connected TRIPsystem server supports
tokens. May be called before login.

• getApiKeyMode: Returns an indicator for which operations the connected
TRIPsystem server requires valid API keys.

Login using a token is, like with the older “login ticket” feature, done via the regular login
method. Pass a valid access token as the password. Depending on how TRIPsystem has
been configured, the login operation may also require a valid API key. The API key should
be passed as the username. If you don’t have an API key and none is required, pass an
empty string for the username.

Usage from other TRIP API clients

Except from via the server-side TRIP Toolkit C API, the only supported way to use tokens
with a TRIP application is via TRIPnxp and TRIPjxp. The older networked APIs TRIPclient
and TRIPjtk are not supported, nor is TRIPhighway.

Token and Key Administration

Creating and Rotating the Token Encryption AES Key

The token encryption key is a 32-byte (256-bit) file referred to by the TDBS_TOKEN_KEY
privileged tdbs.conf environment variable. This file must contain a cryptographically secure
random number, and can be created using the following OpenSSL command:

$ openssl rand -out /path/to/my/token/key 32

A token encryption key is mandatory unless the privileged TDBS_REQUIRE_APIKEY
tdbs.conf variable is set to NO.

Rotating the file (i.e., generating a new random key) should be done once in a while as a
security measure. Note, however, that this immediately renders all current tokens useless.
This also includes refresh tokens. Rotating this key file should therefore be done in parallel
to a blanket purge of all tokens, invalid or not.

The TRIPTOK Utility

The TRIPsystem server-side command-line utility program TRIPTOK enables the TRIP
administrator to administer API keys and tokens.

TRIP TOKEN BASED ACCESS

Page 7 of 9

API Key Administration

Unless API keys are disabled (see under section “TDBS_REQUIRE_APIKEY”), the TRIP
administrator should create one API key per application instance that should be able to
access TRIP using tokens. While it technically is possible for several application instances
to share an API key, it is not advisable. With each application instance having its own API
key it is also easier to revoke and rotate API keys for specific compromised application
instances instead.

The TRIPTOK utility can used to create, list and revoke API keys.

Creating an API Key

Creating an API key using the TRIPTOK utility involves giving it a unique name (via the -i

option) and a comment (via the -c option). The key is the roughly 140-byte string emitted

at the end of the program output. This is the only time the key is shown, so make sure to
copy it to a secure location.

For example:

$ triptok create --key -i KEYNAME -c "Key description"

**** TRIP System Utility TRIPTOK - Token Administration ****

 Version 8.3 07-Oct-2024 10:43:26

hQm1vCXmxdZgMdZBC3/XqgEABABQAEcAHh+125q+5gbsNl8cHeQzDoo+MF4oGR0Nxj

g6BpWzjG+YBMmOHKSqHMdMSaYwydBTH2c1Ar0oeWAj7IH32gKfHrSn3dxny+9UJXZZ

+rIn/fs=

Alternatively, write the key into a JSON file:

$ triptok create --key --json -o key.json -i NAME -c "Comment"

Listing API Keys

Listing available API keys is done using TRIPTOK as follows. The report includes the key
name, the key’s comment, the name of the TRIP user who created the key (normally
assigned to SYSTEM), and the date and time of creation. The key itself is not shown.

$ triptok list --key

Or, to produce the report in JSON format:

$ triptok list --key --json

If you wish to have the report written to a file, you can specify the name of the file using the
-o option. For example:

$ triptok list --key --json -o ~/apikeys.json

Revoking an API Key

Revoking a key by its name can be done using TRIPTOK as follows:

$ triptok revoke --key -i KEYNAME

TRIP TOKEN BASED ACCESS

Page 8 of 9

Token Administration

While tokens are created, refreshed and used from applications, the TRIP administrator
can use the TRIPTOK utility to list currently issued tokens, purge expired tokens and
revoke compromised tokens.

The TRIP administrator should:

• Run purge regularly to remove fully expired token pairs.

• Keep their eyes open for users with an excessive number of tokens. This may be
an indication of a misconfigured application, or of compromised security (e.g.
leaked user credentials and API keys).

Listing Tokens

You can list tokens per user or (if you have access to the SYSTEM user) for all users. In
addition, user manager users can list the tokens of the users they own. Unprivileged users
can only list their own users. For any kind of token listing, TRIPTOK requires the
username (-u) and password (-p) for a TRIP user to log in as. To list a specific user’s

tokens, specify the name of the user using the -a option. The report can optionally be

requested in JSON format using the --json option, and/or printed to a file using the -o

option.

As a user with UM (user manager) privileges, list the tokens for user TRIPUSER
(password is prompted for if not given on the command line):

$ triptok list --token -u TRIPADM -a TRIPUSER

As with most of the other TRIPTOK commands, the list command also supports JSON
output:

$ triptok list --token --json -u TRIPADM -a TRIPUSER

Purging Tokens

The purge operation is primarily intended as a way to remove fully expired token pairs. A
fully expired token pair is for which both the access token and the refresh token has
expired. The purge operation can also be used to remove tokens that are not fully expired
using the -m option, for which the following values are supported:

all Revoke all token pairs, expired or not

access Purge all token pairs whose access token has expired

refresh Purge all fully expired token pairs (default)

created Revoke tokens created in a particular date interval (options -b and -e)

For some modes, the purge operation also supports a date range, using the -b and -e

options. If a date range is given, it is assumed to be in UTC and formatted in ISO8601.
The created mode requires a date range, and is optional for the modes access and
refresh. The all mode does not take a date range, as it is purpose is to revoke everything.

TRIP TOKEN BASED ACCESS

Page 9 of 9

To purge all fully expired tokens, with output of a list of removed tokens in JSON format:

$ triptok purge --token -m refresh --json -u TRIPADM

Revoking Tokens

The purpose of the token revoke operation is to remove a specific token pair based on its
access or revoke token string, or all tokens for a named user.

To revoke all tokens for user TRIPUSER:

$ triptok revoke --token --json -u TRIPADM -a TRIPUSER

To revoke a specific token, specify the token with the -t option (token string here

truncated for convenience):

$ triptok revoke --token -u TRIPADM -t "pw0xTlDsryWV4kxzu"

Other uses of TRIPTOK

The TRIPTOK utility can also for test purposes be used to acquire and refresh tokens.
Note that such creation of tokens is not intended for production use due to the sensitive
nature of tokens and the risk involved in having a token string logged in the history of the
command shell.

	Introduction
	Definitions
	Configuration
	TDBS_REQUIRE_APIKEY
	TDBS_TOKEN_KEY
	TDBS_ACCESS_TOKEN_EXPIRATION
	TDBS_REFRESH_TOKEN_EXPIRATION

	Application considerations
	Keep it Secret and Safe
	Usage from TRIPnxp and TRIPjxp
	Usage from other TRIP API clients

	Token and Key Administration
	Creating and Rotating the Token Encryption AES Key
	The TRIPTOK Utility
	API Key Administration
	Creating an API Key
	Listing API Keys
	Revoking an API Key

	Token Administration
	Listing Tokens
	Purging Tokens
	Revoking Tokens

	Other uses of TRIPTOK

