digital
VISIion
group

SQL Reference Manual

TRIPsystem
Product Documentation

Copyright © 2024 DVG Operations GmbH

digital
vision
SQL REFERENCE MANUAL group

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by DVG Operations GmbH (DVG) are exclusively
owned by DVG.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of DVG. Furthermore, the customer has the right to use licensed Software and
/ or process solutions supplied by DVG to the extent specified in his contract with DVG.

The free-to-use non-commercial version doesn’t require a prior written agreement with
DVG but such customers, organizations and/or third parties agree by using the software
and / or solution of DVG to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

Page 2 of 21

digital
vision
SQL REFERENCE MANUAL group

Table of Contents

ADOUL ThiS DOCUMENT ...ttt ettt e st e s s n e e sn e e e ne e e nn e e sneeennnees 5
OVEIVIBW ...tttk ettt ettt ekt e et e 1Rt e e R e e R et e aa R et e 1Rt e e aE e e e R et e naEe e e nmn e e nnn e e s n e e e nnneeenne s 6
INSTAIAtioN AN UPGIAOE....cci ittt e et e e e st e e e e sabr e e e e s bbeeeeabreeeeaae 7
SUPPOTITEA SQL SYNTAX iitiiiiiiiiiie ittt e b et e sttt e s bbbt e e s bt et e e aabbe e e e s anbbeeesannreeens 8
1070] g [o1=T o] £SO PUPTPPPRP 8
ASSUMPLIONS aNd DEPENUENCIESuveeiieeeiiiiiiiiieee e s e e e e e e e s e s e e e e e e s e st ereeeeessssnrarereeeeesaannnes 9
(D E = B Y/ 01T S PSP PPPPPPPPPPPPPPPPPPPRE 9

L@ 11 7= V{1 o SRR 9
Matching Terms and PRIASESoiiiiiiiiieiiiii ettt e 9
ViV o [or= o IV F= 1 od o] o o [PSP PO PO P PP TOPPPOTTP 10
VL= ¢ ALY, =1 (od 1] o SRR 10
NULL VBIUES ...ttt ettt etttk e e sa ettt e b e e e smb e e e sbn e e ssneesnn e e e nnreeennes 10
CloSEd RANGE QUETIESeeeiitiie ettt ettt e sttt e e st e e e sa et e e e s bt e e e an b e e e e anbreeeennnes 11
Open-ended Date RANGE QUEIIES.......oiuiiii ittt ettt 11
JOIN S L 11
SUDSEIECES ... 11

(O] =Tod XS] To [o] 0 =T o | S PP PPP TP 12
AGOregate FUNCHIONScoiiiiiiie ittt ettt e e st e e e sh b et e e e st e e e e e aabb e e e e anbbeeeeanens 13
SCAIAI FUNCHIONSiiiiiieiee ittt st s bt e e st e e e s e et e e e e e e s annneee s 13
DML SEAEEMENTS ..oeiiiiiiiiiieiiiii et e e s r e e e e s s bbb e e e e e e s s bbb e e e e e e e s 13
] 5 13

IN S E R T 15
(0] I N I TP PP P PP PPPPPPPPPPPPPPPPPPPPPRY 15

[I I TP PSP PP P P PP PPPPPPPPPPPPPPPPPRt 16
DDL SEAIEMENTSceiiiieiee i e e e e e e s e e e s e e e e s n e e e e sne e e e e snae e e e snne e e e snneeeeanne 16
CREATE TABLE. ...t e e e e e e e e e 16
DROP TABLE ...ttt ettt ettt ettt sttt ettt ettt e s st et e et e et ettt e s et e s e s e s e nesennnnnnnnne 17

R AN T s 17
REVOKE ...ttt e e e ettt e e e e oottt e e e e e s e e e e et e e e e e s s e e e e et e e e s e e e e s 18

S e Tol T LI d 0] (=TT [1 18
Metadata RETHEVAIooiiiiiiiiiii e e 18
ATAYISUDTIEIAS ..ottt e e e e et e e e e e e e e nbabaeeeaaeeeas 19

Page 3 of 21

digital
vision
SQL REFERENCE MANUAL group

L (0] 0= 1= 19

Partially SUPPOred EXPrESSIONSuuviiiiiee it e e st e e e e e e e e s s et re e e e e e e s s snrnraeaeaaeees 20

DISTINCT 4 ORDER BY ..ttt ettt ettt ettt ee et ee et eeeeeeeeesesesesestsssesssssesesessnesssnnnnnnnne 20

Numeric column reference iN GROUP BYooiiiiiiiiiiiie ittt 21

ORDER BY + GROUP BY ...ttt ettt e sttt e e e e et r e e e e e s e snnbrneeeas 21

Using DISTINCT With @gQregatesuueeieeiiiiiiiiiiiiie e sttt e e s s s e e e e e s st ae e e e e e e s e annreneees 21
Page 4 of 21

digital
vision
SQL REFERENCE MANUAL group

About this Document

This document describes the SQL functionality as it is available in TRIPsystem 8.0, and focuses on
how TRIP databases are mapped to the relational model, various limitations and other
considerations when using SQL with TRIP.

SQL functionality in TRIP versions older than 8.0 were available in the separately installed TRIPsq|
product. From TRIP version 8.0 the functionality is integrated into TRIPsystem, although still
requiring it to be enabled in the license.

The client drivers via which the SQL functionality is used are not covered by this manual. See the
separate installation packages and document sets for them:

e ODBC Driver
e JDBC Driver
e ADO.NET Data Provider

Page 5 of 21

digital
vision
SQL REFERENCE MANUAL group

Overview

The purpose of SQL in TRIP is twofold. The first is to give database programmers familiar with SQL
and programming frameworks such as ODBC and JDBC a more familiar, albeit somewhat limited,
way to access TRIP. The second is to TRIP-enable use of tools such as reporting engines.

The TRIP SQL engine is a server-side implementation and maps SQL statements to a sequence of
TRIP commands. It executes in the context of the TRIP kernel and returns result data as XML
documents.

Page 6 of 21

digital
vision
SQL REFERENCE MANUAL)

group

Installation and Upgrade

The SQL functionality is part of the TRIPsystem installation, and does not require a separate
installation step.

When upgrading from a pre-8.0 version of TRIP where TRIPsql is in use, that version of TRIPsq|l
will no longer be used, even if re-installed. Old TRIPsqg! installations can be removed after a
successful upgrade to TRIP 8.0 or later.

The following table describe the various optional settings for the tdbs.conf non-privileged section
that can be used to control the SQL engine:

Symbol in tdbs.conf Default | Description

TRIPSQL_BASES (none) Default table location. This is the name of the directory
in which TRIP databases are created by the CREATE
TABLE call.

NOTE: This has been superseded by the TDBS_BASES
symbol. The TRIPSQL_BASES symbol is supported for
backward compatibility but will only be used for new
tables if TDBS BASES is not defined.

TRIPSQL_LOG 0 SQL engine log level (0=off, 1=fatal errors, 2=errors,
3=warnings, 4=information, 5=debug). Log files are
placed in the directory pointed to by TDBS _LOG. Default
value is 0 (off).

SQL_BATCHINDEX |0 Controls if TRIP database indexing after modification
(INSERT, UPDATE or DELETE) is done in batch
(asynchronous) or in a synchronous fashion. Possible
values are O=synchronous,

1=asynchronous.

SQL_LAZYINDEX 1 Controls if TRIP database indexing is done only when
required (prior to a SELECT against a database
containing unindexed records), or every time there is a
modification via UPDATE, INSERT or DELETE. Possible
values are O=every time, 1=only when required.
SQL_SELECTTEXT 0 Determines how fields of type TEXT are returned.
Possible values are O=external, 1=inline. If external
retrieval is enabled, TEXT values need to be requested
as separate objects (CLOBS). Inline retrieval returns the
TEXT values as is, or in base64 if layout is retained.
SQL_SELECTBLOB |0 Determines how fields of type STRING are returned.
Possible values are O=external, 1=inline. If external
retrieval is enabled, STRING values need to be
requested as separate objects (BLOBS). Inline retrieval
returns the STRING values encoded in base64.

Page 7 of 21

digital
vision
SQL REFERENCE MANUAL)

group

Supported SQL Syntax

Concepts

SQL Concept ' Description

TABLE A table in TRIP SQL is a TRIP database.

ROW What goes into a row depends on the structure of the TRIP database
that is used. If a record in a TRIP database lacks part records, the entire
record is one row. For records that have part records, each TRIP record
will be seen as a collection of rows made out of the product of head and
part records. l.e. if a record has 10 part records, the SQL table will show
that record as 10 rows, where the data from the head is repeated on
each row.

COLUMN A column in TRIP SQL is a TRIP field. The value of a column is the first

subfield for fields of type INTEGER, NUMBER, PHRASE, DATE and
TIME. Values from columns of other types (i.e. types that cannot have
subfields) are returned whole.

LONG VARCHAR Fields of type TEXT and STRING, which are mapped to the types LONG
LONG VARBINARY | VARCHAR and LONG VARBINARY respectively, are treated slightly
differently when sent to the client. Since the values in such TRIP fields
can be large, they are by default requested separately by the client
drivers in order to keep the initial response time as low as possible.

There is a session property controls the behavior with regard to LONG
VARBINARY/VARCHAR data. See the Special Expressions section for

more details.
VALUELIST It is quite common for a field in a TRIP database to have more than one
(subfields) value per record.

If an application is using the ODBC driver, a plain SELECT statement
will return only the first subfield. In order to get the entire list of subfields,
the TRIP SQL extension function VALUELIST can be used to provide a
single output with all the subfields in a caller-defined delimited list.

The JDBC driver additionally exposes fields with more than one value as
an array. The easiest way for a JDBC application to obtain more than
one subfield is therefore via the Array interface.

SCHEMA Although database schemas are not supported by TRIP SQL, the
schema qualifier is allowed in table reference clauses.

The only time when schema must be used in TRIP SQL is in metadata
queries that lists tables and column definitions. See the Special
Expressions section for more details.

Page 8 of 21

digital
vision
SQL REFERENCE MANUAL group

Assumptions and Dependencies

The TRIP SQL engine supports the minimum SQL grammar, which means that the SQL engine
must be able to respond to the following statements:

Simple SELECT

INSERT, UPDATE, DELETE

Simple Expressions

Data types: CHAR, VARCHAR and LONG VARCHAR
DDL.: Create and drop table

In addition, the following features from core and extended SQL grammar are also built into the SQL

engine:
e Aggregate functions: COUNT, SET, MAX, MIN, AVG
e DDL: Grant and revoke, primary keys, referential integrity (REFERENCES)
e DML: Inner and outer joins, DISTINCT, UNION
o Data types: NUMERIC, INTEGER, LONG VARBINARY, DATE, TIME

Data Types

The following data types are supported by the SQL engine. Their corresponding mappings are
shown in the table below.

INTEGER INTEGER

NUMERIC NUMBER

VARCHAR PHRASE

DATE DATE

TIME TIME

LONG VARCHAR TEXT

LONG VARBINARY STRING

SERIAL INTEGER (record number field)
Querying

This section describes how TRIP queries maps to SQL conditions.

Matching Terms and Phrases

Simple term or phrase matching expressions are pretty straight forward. A CCL expression
sequence like

BASE ALICE
FIND SPEAKER="White Rabbit"
SHOW F=SPEAKER, PERSON, TXT

will look like this in TRIP SQL.:

SELECT SPEAKER, PERSON, TXT
FROM ALICE
WHERE SPEAKER='White Rabbit'

Page 9 of 21

digital
vision
SQL REFERENCE MANUAL group

Wildcard Matching

TRIP SQL supports '%' for matching zero or more characters, and '_' to match exactly one
character. The CCL expression:

BASE ALICE
FIND SPEAKER=#00K
SHOW F=SPEAKER

translates to:

SELECT SPEAKER
FROM ALICE
WHERE SPEAKER LIKE 'S$OOK'

Pattern Matching

There is one kind of pattern matching that always takes place. That is when one is searching for a
term in a LONG VARCHAR (TEXT) column like:

SELECT TXT
FROM ALICE
WHERE TXT='Jabberwocky'

The word "Jabberwocky" will match all TXT values that contain the word, regardless of whether the
word is the entire value or is one of many in a paragraph or sentence.

The LIKE predicate is also supported to some extent. A typical use in TRIPsql is searching for a
truncated term:

SELECT *
FROM ALICE
WHERE PERSON LIKE 'Jabber%'

NULL Values

TRIP SQL supports the IS [not] NULL predicate that can be used to test if a value is (or is not) null.
A TRIP field is regarded to be null if the field has no value. Note that a VARCHAR column may
have an empty string as its value and still not be equal to null.

Example:

SELECT *
FROM ALICE
WHERE PERSON IS NULL

Page 10 of 21

digital
vision
SQL REFERENCE MANUAL group

Closed Range Queries

The BETWEEN predicate is supported by TRIP SQL to facilitate range queries. This CCL
expression:

BASE CORR
FIND DAY=1984-03-01 TO 1984-03-28
SHOW

translates to the following SQL statement:

SELECT *
FROM CORR
WHERE DAY BETWEEN 1984-01-01 AND 1984-03-28

Open-ended Date Range Queries

The BETWEEN predicate cannot be used for open-ended range queries. This CCL expression:

BASE CORR
FIND DAY=FROM 1985-01-01
SHOW

translates to the following SQL statement (note the required use of the DATE type casting function):

SELECT *
FROM CORR
WHERE DAY >= DATE ('1985-01-01")

JOINS

Both inner and outer joins can be used with TRIP SQL to pose a query against more than one table.
This is an example of a three-way inner join against a table PERSON with the columns SSN,
NAME, MOTHER SSN and FATHER SSN.

SELECT F.NAME AS 'FATHER', M.NAME AS 'MOTHER', C.NAME AS 'CHILD'
FROM PERSON F, PERSON M, PERSON C

WHERE F.SSN = C.FATHER SSN
AND M.SSN = C.MOTHER SSN

Itis also possible to use the SQL-92 syntax for JOINs. This lists all persons who have known
fathers:

SELECT F.NAME AS 'FATHER', C.NAME AS 'CHILD'
FROM PERSON F INNER JOIN PERSON C ON F.SSN=C.FATHER SSN

Subselects

Subselects are supported by TRIP SQL. Below is a typical, albeit somewhat contrived, example of a
subselect.

Page 11 of 21

digital
vision
SQL REFERENCE MANUAL group

SELECT m,name FROM person m
WHERE m.parent id = (SELECT p.id FROM person p
WHERE p.name='Donald')

Subselects can also be used with INSERT statements, like so:

INSERT INTO donalds (id, name)
SELECT id, name FROM person WHERE name='Donald'

UPDATE statements can use subselects in place of values, if the subselect returns NULL or a
single value:

UPDATE donalds
SET name=(SELECT name FROM person WHERE ID=123)
WHERE 1d=123

Finally, a subselect can be used in the column projection list of a SELECT statement, provided it
returns NULL or a single value:

SELECT name, (SELECT name FROM countries WHERE id=123)
FROM person
WHERE name="'Donald'

Object Assignment

Assigning large quantities of data to a LONG VARCHAR (TEXT) or LONG VARBINARY (STRING)
column is a common task in TRIP applications. For this purpose, TRIP SQL offers a grammar
extension called OBJECT. The OBJECT function will usually be used in parameterized statements
from one of the client drivers. See the Java JDBC example below.

void storeBlob (Connection con, String keyvalue,
String blobcolumn, byte[] data) {

try {
String strStmt = "UPDATE MYDB SET OBJECT (?,?) WHERE MYKEY=?";
PreparedStatement stmt = con.prepareStatement (strStmt) ;

stmt->setString(1l,blobcolumn) ;
stmt->setBytes (2,data) ;
stmt->setString (3, keyvalue) ;
stmt->execute () ;

}

catch (SQLException e) {
e.printStackTrace () ;

}

For further information, refer to the syntax description for the UPDATE command.

Page 12 of 21

digital
SQL REFERENCE MANUAL) ;IrSO'SB

Aggregate Functions

Aggregate functions are used to derive a value from data in a column. These are used in the
column projection list of SELECT statements, typically qualified by the GROUP BY clause.

Function Description

AVG Average value
COUNT Number of rows
MIN Smallest value
MAX Largest value
SUM Sum of values

Scalar Functions

Scalar functions in TRIP SQL returns a single value, based on an optional input value.

Function Description

CURRENT DATE Returns the current date as a DATE value
CURRENT TIME Returns the current time as a TIME value
CURRENT_TIMESTAMP Returns the current date and time as a VARCHAR-
formatted timestamp value.

VALUELIST Transforms a set of subfield values as a single output
value. This function may only be used in the column
projection list of a SELECT statement.

DML Statements

SELECT

Syntax

select stmt :== SELECT [DISTINCT] select list FROM table list
[WHERE condition] [GROUP BY column(s)] [ORDER BY column(s)] [
UNION select stmt]

select list ::= [select list,] column ref | aggregate ref |
const ref | select stmt

column ref ::= [table.]column [AS alias]

aggregate ref ::= aggregate expr [AS alias]

aggregate expr ::= COUNT (*| [DISTINCT] column) | SUM(column) |
AVG (column) | MIN(column) | MAX(column) | valuelist ref

const ref constant value AS alias
table list ::= [table list,] (table ref | qualified join)

table ref ::= [schema.]table [alias]

Page 13 of 21

digital
vision
SQL REFERENCE MANUAL group

valuelist ref

)

VALUELIST (column ref, delimiter, vl range spec

vl range spec ::= maxListSize | startNum, endNum

condition ::= expression comparison operator expression
expression [NOT] BETWEEN expression AND expression |
expression IS [NOT] NULL |
char expr [NOT] LIKE pattern |
subselect condition
condition boolean operator condition

comparison operator ::= = | l= | ~=] > | < | >= | <=
boolean operator ::= AND | OR
expression ::= [table.]column |

text |

number
constant value ::= text|number|DATE ('date expr') |time expr|NULL
subselect condition ::= [table.]column comparison operator (
select stmt) | [table.]column [NOT] IN (select stmt)
qualified join ::= table ref [NATURAL] join type JOIN table ref

join specification

join type ::= INNER | outer join type OUTER

outer join type ::= LEFT | RIGHT

join specification ::= join condition | named columns_join

join condition ::= ON condition

named column join ::= USING (column name list)

column name list ::= [table.]column [{ , [table.]column } ...)]

SELECT Examples

This section contains a number of example SELECT statements. These statements can be input via
the client drivers.

This one shows a simple select expression that returns the number of rows in the ALICE table.

SELECT COUNT (*) As "Count"
FROM ALICE

This example shows a select expression using the VALUELIST function to retrieve a list of TRIP
subfields with a custom delimiter.

SELECT VALUELIST (PERSON, ", "), SPEAKER
FROM ALICE
WHERE TXT="jabberwocky"

Page 14 of 21

digital
vision
SQL REFERENCE MANUAL group

INSERT

Syntax

INSERT [IGNORE] INTO table [column list] value clause

value clause ::= VALUES (value list) | select stmt

INSERT Examples

A simple, typical insert statement:

INSERT INTO MYTABLE (idcol, mycol)
VALUES ("id02","abcl23")

An insert statement using a select statement to feed data into the insert while ignoring duplicate key
errors:

INSERT IGNORE INTO orphans (id, name)
SELECT id, name FROM person WHERE parent id IS NULL

UPDATE

Syntax

UPDATE table [alias]
SET column assign list|object assignment
[WHERE condition]

column_assign list ::= [column assign list,] column_ assignment
column_assignment ::= [table.]column = text|number|select stmt
object assignment ::= OBJECT (column ref, object data)

object data ::= "FILE=filename"|"DATA=text"|"DATA[BASE64]=binary"

UPDATE Examples

This example shows a simple update statement.

UPDATE mytable
SET mycol="newdata"
WHERE idcol="id01"

This example shows an update statement where a binary object is being stored into a TRIP string

field. In this case, the TRIP SQL engine is assumed to run on the same machine as the client

issuing this statement. If client and server are on different machines, use one of the "DATA"
arameters to SET OBJECT.

UPDATE mytable
SET OBJECT (picture, "FILE=c:\pics\me.jpg")
WHERE idcol="id02"

Page 15 of 21

digital
vision
SQL REFERENCE MANUAL group

NOTE: When the OBJECT function is used from the JDBC and ODBC drivers, it is important NOT
to prepend any of the three prefixes (‘FILE=', 'DATA=" or 'DATA[BASEG64]=") to the data being
uploaded, since it is being taken care of by the drivers.

DELETE

Syntax

DELETE [FROM] table [alias] [WHERE condition]

DELETE Example

This example shows a delete statement.

DELETE FROM mytable
WHERE idcol="idO1"

DDL Statements

CREATE TABLE

The create table operation actually creates a TRIP database. If a location is not explicitly specified,
the TRIP database files for the table are placed in the location specified by the TDBS_BASES
setting in tdbs.conf (or TRIPSQL_BASES if that is defined and TDBS_BASES is not).

Syntax

CREATE TABLE [IF NOT EXISTS] table (column spec list) [WITH
table options]

column_spec list ::= [column spec list,] column spec
column_spec ::= column datatype [default value] [constraint]
constraint ::= notnull | reference | primary key

default value ::= DEFAULT defaultvalue

notnull ::= NOT NULL

primary key ::= PRIMARY KEY

reference ::= REFERENCES table (column) [ref mode update]

[ref mode delete]

ref mode update ::= ON UPDATE reference option

ref mode delete ::= ON DELETE reference option

reference option ::= RESTRICT | CASCADE | SET NULL | NO ACTION |
SET DEFAULT

table options = [table options,] table option

table option = LOCATION = location | CHARACTER SET = charset

Page 16 of 21

digital
vision
SQL REFERENCE MANUAL group

Examples

This example shows a basic create table statement.

CREATE TABLE mytable (
idcol VARCHAR PRIMARY KEY,
mycol VARCHAR)

WITH LOCATION = TDBS BASES

The following example shows create table statements with a default value and a reference
dependency.

CREATE TABLE master (
ssn VARCHAR NOT NULL,
m_name VARCHAR DEFAULT 'John Doe')

CREATE TABLE slave (
s_name VARCHAR REFERENCES master (m_name)
ON DELETE RESTRICT
ON UPDATE CASCADE,
phone VARCHAR)

DROP TABLE

Syntax

DROP TABLE [IF EXISTS] table

Example

This example shows a drop table statement.

DROP TABLE mytable

GRANT

The grant operation grants table access to a user or group.

Syntax

GRANT ALL|READ PRIVILEGES [(column grant list)]
ON table
TO user|group

column_grant list ::= [column grant list,] [table.]column

Example

This example shows a grant statement.

GRANT ALL PRIVILEGES ON mytable TO public

Page 17 of 21

digital
vision
SQL REFERENCE MANUAL group

REVOKE

The revoke operation revokes table access from a user or group.

Syntax
REVOKE ALL|WRITE PRIVILEGES [(column _grant list)]
ON table

FROM user|group

Example

This example shows a revoke statement.

REVOKE ALL PRIVILEGES ON mytable FROM public

Special Expressions

Metadata Retrieval

TRIP SQL supports retrieval of metadata on tables, columns and foreign key constraints. This is
accomplished by prefixing the table names TABLES, COLUMNS and KEYREFS with the special
schema name TDBS. Please note the rather rigid syntax for these two special statements. While
the SQL parser may accept other combinations, the result can in such cases be unpredictable.

SELECT meta select list FROM TDBS.TABLES [WHERE tables column =
constant value]

SELECT meta select list FROM TDBS.COLUMNS [WHERE columns_column
constant value]

SELECT meta_select_list FROM TDBS.KEYREFS [WHERE keyrefs column
constant value]

meta select list ::= [meta select list,] column ref | const ref
tables column ::= NAME | OWNER
columns column ::= TABLENAME | COLNAME | SQLTYPE | NULLABLE |

ORDINAL | PRIMARYKEY
keyrefs column ::= FKTABLE NAME | FKCOLUMN NAME | PKTABLE NAME |

PKCOLUMN NAME | DELETE RULE | UPDATE RULE

The example below shows a statement for requesting column information on a specific table.

SELECT COLNAME, SQLTYPE
FROM TDBS.COLUMNS
WHERE TABLENAME='ALICE'

Page 18 of 21

digita
vision
SQL REFERENCE MANUAL)

group

Array/Subfields

Arrays as column values does not really occur within relational databases, since such constructs
violate the first normal form which states that no table must have any repeating groups. However,
fields with multiple values (i.e. arrays) are very common within TRIP databases where they are
known under the term "subfields". Because of this, TRIP provides an extension to the SQL column
reference that enables applications to access multivalued columns using an array index.

The following is an example an UPDATE statement that updates a multivalued column.

UPDATE MYTABLE
SET FLAGCOLOR[1]='BLUE',
FLAGCOLOR[2]="YELLOW'
WHERE COUNTRY='SWEDEN'

Retrieval of multivalued columns can be done via the JDBC Array interface, or via the VALUELIST
function.

The following is an example of a SELECT statement that retrieves the flag colors for the Swedish
flag as a comma-separated list.

SELECT VALUELIST (FLAGCOLOR,', ') As 'Flag Colors'
FROM MYTABLE
WHERE COUNTRY='SWEDEN'

If the application is using the JDBC Array interface, the above SELECT statement can be simplified
to:

SELECT FLAGCOLOR
FROM MYTABLE
WHERE COUNTRY='SWEDEN'

Properties

A syntax for assigning and getting property values is supported by TRIP. This is a TRIP SQL
specific extension to the SQL grammar.

A property is a session-specific value that controls the behavior of TRIPsgl in some manner. Each
property is also associated with a nonprivileged tdbs.conf symbol that allows for overriding the
default property value on a server-wide basis.

Property Name ‘ Value ‘ Default tdbs.conf Symbol Description
Type
BATCHINDEX Boolean FALSE SQL_BATCHINDEX Controls if TRIP
(synchronous) database indexing after

modification is done in
batch (asynchronous)
or synchronously.
LAZYINDEX Boolean TRUE SQL_LAZYINDEX Controls if TRIP

(on) database indexing is
done only when
required (true, default),
or every time there is a
modification via
UPDATE, INSERT or

DELETE.
LOGGING Boolean FALSE TRIPSQL_LOG Controls server-side
(off) logging. If enabled, log

Page 19 of 21

digital
vision
SQL REFERENCE MANUAL)

group

Property Name ‘ Value Default tdbs.conf Symbol Description

Type

files are created in the
directory specified by
the TRIPrcs symbol

TDBS LOG.
SELECTTEXT Boolean FALSE SQL_SELECTTEXT Controls if TEXT field
(separate) values are returned

inline or have to be
fetched separately.
This value should be
left as FALSE unless all

text (LONG VARCHAR)
values are small (~1K).
SELECTBLOB Boolean FALSE SQL_SELECTBLOB Controls if STRING
(separate) field values are

returned inline or have
to be fetched
separately. This value
should be left as
FALSE unless all
LONG VARBINARY
values always have to
be processed or are
small (~1K).

Syntax for property retrieval and assignment:

GET PROPERTY propertyname
SET PROPERTY propertyname=propertyvalue

propertyvalue::= text | number | boolean

Below are examples on how to retrieve and assign property values.

GET PROPERTY LOGGING

SET PROPERTY SELECTTEXT=TRUE

Partially Supported Expressions

DISTINCT + ORDER BY

The DISTINCT keyword and the ORDER BY clause cannot be used within the same SELECT
statement. The following statement is illegal:

SELECT DISTINCT NAME, EMAIL FROM CONTACTS ORDER BY EMAIL

The following statements are legal:

SELECT DISTINCT NAME, EMAIL FROM CONTACTS

SELECT NAME, EMAIL FROM CONTACTS ORDER BY EMAIL

Page 20 of 21

digital
vision
SQL REFERENCE MANUAL group

Numeric column reference in GROUP BY

The columns listed in a GROUP BY clause must name the columns; column numbers are not legal.

The following statement is illegal:

SELECT COUNT (EMAIL), NAME FROM CONTACTS GROUP BY 2

The following statement is legal:

SELECT COUNT (EMAIL), NAME FROM CONTACTS GROUP BY NAME

ORDER BY + GROUP BY

The GROUP BY clause and the ORDER BY clause cannot be used in the same statement.

The following statement is illegal:

SELECT COUNT (EMAIL), NAME FROM CONTACTS GROUP BY NAME ORDER BY 1

Using DISTINCT with aggregates

A SELECT DISTINCT statement cannot include aggregate functions.

The following statement is illegal:

SELECT DISTINCT COUNT (EMAIL), NAME FROM CONTACTS GROUP BY NAME

The following statement is legal:

SELECT COUNT (DISTINCT EMAIL), NAME FROM CONTACTS GROUP BY NAME

Page 21 of 21

	About this Document
	Overview
	Installation and Upgrade
	Supported SQL Syntax
	Concepts
	Assumptions and Dependencies
	Data Types
	Querying
	Matching Terms and Phrases
	Wildcard Matching
	Pattern Matching
	NULL Values
	Closed Range Queries
	Open-ended Date Range Queries
	JOINS
	Subselects

	Object Assignment
	Aggregate Functions
	Scalar Functions
	DML Statements
	SELECT
	Syntax
	SELECT Examples

	INSERT
	Syntax
	INSERT Examples

	UPDATE
	Syntax
	UPDATE Examples

	DELETE
	Syntax
	DELETE Example

	DDL Statements
	CREATE TABLE
	Syntax
	Examples

	DROP TABLE
	Syntax
	Example

	GRANT
	Syntax
	Example

	REVOKE
	Syntax
	Example

	Special Expressions
	Metadata Retrieval
	Array/Subfields
	Properties

	Partially Supported Expressions
	DISTINCT + ORDER BY
	Numeric column reference in GROUP BY
	ORDER BY + GROUP BY
	Using DISTINCT with aggregates

