digital
Vision
group

TRIP on Docker

TRIP

Product Documentation

Copyright © 2024 DVG Operations GmbH Rev. 2024-11-08

digital
vision
TRIP oN DOCKER group

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by DVG Operations GmbH (DVG) are exclusively
owned by DVG.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of DVG. Furthermore, the customer has the right to use licensed Software and
/ or process solutions supplied by DVG to the extent specified in his contract with DVG.

The free-to-use non-commercial version doesn’t require a prior written agreement with
DVG but such customers, organizations and/or third parties agree by using the software
and / or solution of DVG to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

Page 2 of 23

digital
vision
TRIP oN DOCKER group

Table of Contents

[aLd g o 1T T3 1o] o B PP PP PP PP PPPPPPPPPPPPNt 5
ADOUL TS DOCUMENT.....ciiiitiiiie ittt ettt ekt s et e s e b bt e e e b b e e e e nb e e e e nbreeeennnnas 5
ADOUL TRIP 0N DOCKET ...ttt 5

Installation and CONfIGUIALIONciiiiiiiiiiiie e e e e e e e e e s s s e e e e e e s e s nnnernees 6
Obtaining the DOCKET IMAGE ...vveiieeiiiiiiiieiiee e e s e s e e e e e e s s s e e e e e e e s annnnrrneeeaeeeas 6
(070] a1 c= 1o T=T @ @] a1 T [¥1 =14 o] o | SRR 6

(70]] 2= 1 =T QLU T =T TP OU PP PPPPP P 6
DALA VOIUME ...ttt ettt e skt e skttt e s bttt e s bbbt e e s st et e e snbn e e e s nnneee s 6
LICENSE INSLAIATIONeeeitiie sttt st et b bt st e e ss e sbe e e nbn e e snbeeennneas 7
TOKEN ENCIYPHON KBY ..ttt ettt ettt e et e e e e sttt e e e sab e e e e snbe e e e e anbee e e e antbeeeennees 8
CONTROL Database MigratiOn...........couueieiiiiiieiiiiiee sttt st e e e 9
Optional SSH DABMONoouiiiiiiiiiiiii e 10
Post-Deployment TRIP CONfIQUIALIONcciiiiiiiiiiieiee s s 10

D=\ VoY LU T o L T =Y (o SRR 12
Data Volume DireCtory TrEE SIUCIUIEc.iiiiuerieieee e e e e eciireee e e e e e s e e e e e e e e s s stn e e e e e e e s s s ennnraeaeaaeaeas 12
Creating the VOIUIME ...ttt e st e e s bbb e e e s sabe e e e s anneeee s 12
NOtes 0N FileS N the VOIUMEeiiiiii ettt ee e 13

ACCESS PEIMMISSIONSeeiiiiitiiieeitieee ettt e ettt e et e e sttt e e sttt e sk et e s b et e s st e et e s b e et e e nenn e e e s nnnneee s 13
COoNFIQUIALION FIESeiiiiiiiiee et e st e e e e e e s bbb e e e e e e e e e annbreneeas 13
[ToT =T T PP PPPUPPT 13
[o I 1 =T O PP P PP 13
USEI DALADASES......eeiiiiiiieiiiei ettt 13
The CONTROL DAtAD@SEceviiiiiiiiiiiiiiie ittt e e e nae 14
LOQG File MAINTENANCEcoi ittt ettt et e e e st b e e e sba e e e e sbbeeeesbreeeeanes 14

MIGPating t0 DOCKET ..ottt ettt e e bbbt e e s st b et e s sabbe e e s annaeee s 15
Step 1: Create a Volume and start the CONAINET............coooiiiiiiiiice e 15
S (=] oI Ao [= W 71 () N 1Tt = g = S 15
Step 3: Migrate the CONTROL dat@baseocuuuuiiiiieiiiiiiiieee e 15
Step 4: Adapt CONFIQUIALIONeiiii ittt e e e e e e e e e e e e aneeeeeeas 16

Set up storage locations on the data VOIUMEcooveeiiiiiiiiiiec e 16

(oo TS0 (o] ar=Todoto ¥ a1 1o I (o [=1 o 1 1SR 16

L0 1 g [T 1] o PR EPP TR PR 17
Page 3 of 23

digital
vision
TRIP oN DOCKER group

Step 5: Adapt user databases to the 4096-byte bIOCK SIZeccooviiiiiiiiiiiiiii e, 17
Database CONENTS (BAF)uuiiiiiiei i e s e e e e s s s e e e e e e s s s nanbeae e e e e e e s e s snnrreneees 17
DAtADASE INUEXES ...eeiiiieiiiie ittt ettt sttt e s st e e s s bt e e e anb bt e e anbbee e e e nbeeeeennbeeaeennees 18

USING SEIVEI-SIAE TOOIS . eiiiiiiiiiii ittt e e s bttt e s bt e e e s aabre e e s snnneee s 19
EXTENAING TN IMAGE. ..o ettt e bbb e e s st e e e s aabr e e e s annneee s 20

THE DOCKEITIE ...ttt e et e e e e e e s e ab bt e e e e e e e e s anbbbeeeeeeeeeennnrnneeeas 20
Initialization scripts and the entry POINTooiiiiiiii e 20
Background processes and controlled startup and shutdowncccccceeeviiiiiiiieee e, 20

Example: ADding @an ASE LIDIAIYooueiii ittt et e e et e e sbree e ane 21
DOCKEITIIE EXAMPIE .ttt ettt et e s et e e e e nb e e e e e 21
Initialization SCrPt EXAMPIEoiiiiiiiieeiieee et 21

Page 4 of 23

digital
vision
TRIP oN DOCKER group

Introduction

About this Document

This document describes the deployment, administration and use of TRIP in a Docker container
environment.

This document does not go into details about Docker itself. Please refer to information on Docker
available on the internet and on the Docker website for this purpose.

About TRIP on Docker

Docker is a software for running containers, light-weight virtual runtime environments that run in the
context of an existing operating system, emulating the OS rather than the underlying hardware.
Docker, along with orchestration tools such as Kubernetes, is a popular example of this type of
technology.

The Linux version of the TRIP platform can be deployed as a Docker image. The current images
contain TRIPsystem and TRIPcof and are available as based on the following Linux distributions:

¢ RedHat Enterprise Linux 9 (Universal Base Image)

Page 5 of 23

digital
vision
TRIP oN DOCKER group

Installation and Configuration

Obtaining the Docker Image

The Docker image for TRIP is available in a Docker registry operated by DVG Operations GmbH
(DVG). Send a request to DVG in order to get information about the address and an account for it.

The below examples as well as other examples in this document uses a fake address to exemplify
the operations. Replace this (registry.example.com:5050/trip/) with the address DVG has
provided to you.

After having received an access token from DVG, use it to login to the registry with Docker. Specify
only the host and port parts of the registry’s address here:

docker login registry.example.com:5050

When you have successfully authenticated your Docker client, you can retrieve a TRIP image. To
pull the RHEL9-based image that contains the backend server software for TRIP 8.4:

docker pull registry.example.com:5050/trip/tripserver-rhel8:8.4

The latest version is always tagged as “: 1atest”. Images are also tagged with the version number
in the following variations:

e Majoronly (e.g. “:8”)

e Major and minor (e.g. “:8.4")

e Major, minor and service (e.g. “:8.4.2")

e Major, minor, service and patch (e.g. “:8.4.2.1")

Container Configuration

Container user

In standard Docker, the TRIP processes are set up to run as the user ‘trip’ with uid 1001 in the
container. This user is predefined by the image and the container itself is started as that user. The
root user is not used at all in the container.

This default does not apply to orchestration software such as OpenShift that create a random uid
for the container user. This means that when deploying, extending or using the TRIP container, you
must not rely on a specific pre-defined user or user id.

In either case, the primary group of the container user is the group with ID 0. This must not be
overridden.

Data Volume

Docker containers are for all intents and purposes stateless. This means that any data that must
persist across container restarts and reinitializations must reside elsewhere. The Docker solution for
this involves a so-called Volume.

A Docker volume is a directory pre-declared in the Docker image being used. When a container
based on the image is initialized and started, a mapping must be supplied for what external area
should be used for that storage.

For more information on volumes, refer to the “Data Volume Directory” chapter later in this
document.

Page 6 of 23

digital
vision
TRIP oN DOCKER group

License Installation

In order to use TRIP in Docker you will need a site license. Request one from your TRIP distributor.
An additional license fee may be charged if you do not already have a site license for TRIP.

Automated License Installation using a Docker Secret

The recommended way to install a license is to pass it to the container as a Docker secret. This
also allows for automation of license installation, but requires that you are deploying your TRIP
container in an environment that support Docker secrets. This is supported by all the common
container orchestration environments as well as by Docker Swarm, but not when using a
standalone Docker installation.

TRIP licenses represented as Docker secrets must reside inthe /etc/tripsystem/license
directory in the container. You can name the license files as you wish, but they must always end
with the “. 11ic” suffix.

Example of deploying TRIP with automated license installation using Docker Swarm:
Create the secret containing the license
docker secret create trip-license /path/to/license/trip.lic
Deploy the container

docker service create —--name trip \
--workdir /opt/trip/sys/current/bin \
--mount source=trip-data, target=/var/lib/trip \
--secret source=trip-license,target=/etc/tripsystem/license/trip.lic \
-p 23567:23567 \
-u 1001:0 \
-e TZ=Europe/Berlin \
registry.example.com:5050/trip/tripserver-rhel8:8.3

Note that although the above example is just for the Docker Swarm, the same thing can be
accomplished by in other container orchestration environments, although syntactically different.
Refer to the documentation for your container environment for more information about how to use
secrets.

Automatically Updating a License using a Docker Secret

If you have a installed a license automatically using a Docker secret, you may sooner or later wish
to update the license without having to recreate the container.

The exact steps involved in doing this varies depending on which orchestration environment you
are using, but in general they are:

1. Create a new secret for the new license, giving it a different ID than the old one.
2. Assign the new secret to the container
3. Remove the old secret from the container

Depending on your environment, steps 2 and 3 may have to be done at the same time or in the
reverse order.

Example for updating a license in a Docker Swarm deployed TRIP container:
Create the new secret containing the license
docker secret create license-new /path/to/new/license/trip.lic
Update the container (causes it to restart)

docker service update \
--secret-rm trip-license \

Page 7 of 23

digital
vision
TRIP oN DOCKER group

--secret-add source=license-new, target=/etc/tripsystem/license/new.lic \
mytripservice

Manual License Installation with TRIPmanager

If you are unable to use a Docker secret to install a TRIP license into the container, you can choose
to install the license manually instead. Manual license installation into a container is only supported
via TRIPmanager, which ensures that the license data is properly persisted on the data volume with
file access privileges set correctly.

Manually installed licenses are persisted on the data volume in the 11ic directory, with the fully
qualified path in the container being /var/l1ib/trip/lic.

License Installation Caveats and Notes

Automated and manual license installation are mutually exclusive. If you have started your
container using an automated approach to install the license, you must continue to use the same
automated approach for any license updates you need to make in the container. The reverse also
applies; if the initial license has been supplied manually, later use of one of an automated approach
with the same container is not supported.

Do NOT be tempted to utilize other means to upload the license file (e.g., to use the “docker cp”
command). This is not supported. Doing so anyway will very likely cause the file ownership and
access permissions not to be properly assigned (owned by the user that the container starts as and
assigned to group 0, with file permissions set to rw-rw-r). While the license will be readable to TRIP,
you will encounter problems removing or updating the license later on.

Note that the TRIP license is valid for a specific minor version (e.g., 8.2, 8.3, 9.0 etc). If you move
from TRIP 8.2 to 8.3, your old licenses will no longer be valid. In this case, remove the old licenses
from the container and request new ones from your TRIP distributor.

If you previously have used the manual approach to install the license and wish to start using the
automated one based on secrets, you should remove the persisted license file from the data
volume manually before recreating the container with the new image and a license secret
configured. This can for example be done by starting a shell in the container as the user the
container is running as.

Token Encryption Key

Containers that will be used with the access token functionality need to be initialized with a 256-bit
AES encryption key. Without a such a key, the access token functions will be disabled.

Prepare this key by creating a 256-bit (32-byte) file filled with cryptographically random data. For
example, to create a “tokenkey” file using OpenSSL:

openssl rand -out tokenkey 32

Key Deployment as a Docker Secret

The best way to make this key available to the container is to use a Docker Secret. Do this in the
same was as described for licenses above. In Docker Swarm, the command would be similar to
this:

docker secret create trip-tokenkey /path/to/tokenkey
This will make the key available as /run/secrets/trip-tokenkey in the container.

Rotating the key is a security measure that sometimes is warranted. How often this should be done
depends on the security practices of your organization.

Page 8 of 23

digital
vision
TRIP oN DOCKER group

For example, after a new key file has been created, the command would be similar to this if you are
using Docker Swarm:

docker secret create trip-tokenkey-new /path/to/new/trip-tokenkey-new

docker service update \
--secret-rm trip-tokenkey \
--secret-add trip-tokenkey-new \
mytripservice

Note that it is important that you create a new file for this and not overwriting the old one.

For further details about Docker Secrets, please refer to the official Docker documentation available
on the docs.docker.com website.

Key Deployment as a Mounted File

Deploying the token encryption key as a file mount is less secure, but can be useful in some
circumstances (e.g. a local development environment with less sensitive data).

For example, using the Docker run command, there would be a “--mount" option similar to this:

--mount type=bind, source=/path/to/trip-tokenkey, \
target=/run/secrets/trip-tokenkey, readonly

One small advantage with with this variant is that key rotation is a bit simpler. It just involves
stopping the container, updating the token key file on the host, then restarting the container.

Purge Tokens After Token Key Update

Rotating the token encryption key will immediately invalidate all existing tokens, so a rotation of
this key should be followed up by a full purge of all tokens.

Rotating the token encryption key is one way to deal with a suspected token leak, although it means
that all users need to acquire new tokens, not just the users directly affected by the leak. If you
know which user or users are affected by a token leak, a better option might therefore be to revoke
their keys only (refer to the TRIPsystem Token Access document for more information).

Configuring TRIP with the Token Encryption Key

In order for TRIP to be able to use the token encryption key you have made available for it requires
the tdbs. conf file to specify the container-internal path to the key file in the TDBS_TOKEN_KEY
privileged variable. A convenient way to do this during container startup is to specify the key path as
an environment variable.

For example, with Docker run, there would be an -e option similar to this:
-e TDBS TOKEN KEY=/run/secrets/trip-tokenkey

This will edit the container’s tdbs. conf file as needed during container startup.

CONTROL Database Migration

MODCON is always run when the container starts. This ensures that upgrading the image to a
newer version is a transparent operation that does not require any additional adjustments to the
environment.

However, please be aware that downgrading is NOT SUPPORTED! This is because the CONTROL
database design changes that MODCON may introduce can be such that any attempt to use a
newer CONTROL database with an older TRIPsystem is likely to fail due to the newer changes
being seen as data corruption by older TRIPsystem versions. This “corruption” may not be
immediately apparent, tough.

Page 9 of 23

digital
vision
TRIP oN DOCKER group

The MODCON tool will from version 8.4-0 of TRIPsystem and its Docker image perform a check if it
can reliably run (i.e. the version is the same as before or newer). If it can’t, the container startup will
abort, logging an error message “Unsupported CONTROL database migration path”. Previous
versions of TRIPsystem and the Docker image did not have this check, which could have led to a
corrupt CONTROL database if a downgrade was attempted, despite it not being supported.

Optional SSH Daemon

The TRIP Docker image comes with an OpenSSH server installed. It is not activated by default. To
activate it, specify the environment variable USE_SSHD=1 as input (to “docker run” or to your
deployment configuration) when creating the container.

There is no password-based login, so in order to actually access the container using ssh, you need
to copy file /etc/ssh/id_rsa from the container to you client machine. If you are deploying a
container under standard Docker, you can use the following command:

docker cp CONTAINERNAME:/etc/ssh/id rsa container-key

Which will put the key in the local file “container-key” (replacing “CONTAINERNAME” with the
actual name of your container).

If your container is running under SPSC OpenShift at DVG Operations GmbH, you will get a copy of
the key from them should your agreement allow for ssh access.

Before proceeding, you also need to ensure that only the calling user has read permissions to the
key file. For example, if you are using an SSH client on Linux or UNIX:

chmod 600 container-key

Depending on the port that the deployed container exposes the ssh service as (the default port is in
this case 22222), you will use an SSH command similar to following in order to access the
container:

ssh —-i container-key -p 22222 trip@mycontainer.address.example.com

Post-Deployment TRIP Configuration

If you wish to edit the one of the TRIP configuration files (e.g. tdbs.conf), log in to the container. If
you are already logged on to the Docker host, you can issue a command like this (replacing
“CONTAINERNAME” with the actual name of your container):

docker exec -it -u trip CONTAINERNAME /bin/bash

You can also use SSH to access the container (see section “Optional SSH Daemon” above for
more details).

To edit the tdbs.conf file using the vi editor in the container:
vi /var/lib/trip/conf/sys/tdbs.conf

Note that running TRIP processes will not be affected by a configuration change. Only sessions and
processes started after the change has been introduced will be affected.

If you are making a change that will affect the daemon processes (e.qg. tripd or tripnetd), you can
stop them from within the console:

tripd -k O

kill -TERM ‘ps a | grep tripnetd | grep -v grep | awk '{print $1}'"

Page 10 of 23

digital
vision
TRIP oN DOCKER group

This will cause the supervisord to restart the daemons. Note that if you wish to keep existing
sessions alive during the tripnetd restart, you should use use “kill -9”instead of “kill -TERM’

to force the tripnetd restart. Using -TERM will cause all sessions (tbserver and TRIPclassic) to be
shut down as well.

Page 11 of 23

digital
vision
TRIP oN DOCKER group

Data Volume Directory

When used in a Docker container, TRIP is set up to use a separate directory tree to hold all
information that are regarded as persistent data. This is normally databases, configuration files and
licenses.

This directory tree is set up as a Docker Volume by the TRIP Docker image, and is available to the
container as:

/var/lib/trip

When you start your TRIP container, this directory must be mapped to a Docker volume (see
section Data Volume in the chapter Installation and Configuration in this document).

IMPORTANT: Use a different volume with each container. Not doing so may cause runtime errors
such as file access privilege problems that in some cases may cause container to stop working or
not start at all. Each container must have its own unigue volume assigned to it. The only
circumstance in which a volume can be reused for other TRIP containers (e.g., after upgrading to a
newer version of the TRIP Docker image) is if no other containers are using it or are registered for
its use.

Data Volume Directory Tree Structure

The structure of the storage volume directory should be as follows:

/var/lib/trip
|
| -— conft
| | -— sys // TRIPsystem configuration (tdbs.conf, etc)
| |-- cof // TRIPcof configuration files
|
|-- ctl // Location for TDBS CTL
|-- db // Location for TDBS BASES
|-- lic // TRIP license directory
|-- log // Log file directory

Creating the Volume

While there are several ways to store data persistently with a Docker container, the one supported
by TRIP is named volumes. To create a named volume, use the following Docker command:

docker volume create trip-volume

Note that the above command creates a volume that resides on the Docker host. While that may
work for test installations and some small-scale production environments, such volumes are less
suitable for larger scale production environments. Drivers for other types of volumes exist. Please
consult with the Docker documentation and with your cloud / infrastructure provider for available
options and how to configure them for Docker. Whatever type of volume driver you end up using,
keep in mind that TRIP is very 1/O intensive and that the volume therefore must have excellent
access, read and write times.

Page 12 of 23

digital
vision
TRIP oN DOCKER group

Notes on Files in the Volume

Access Permissions

TRIP will normally manage the access permissions for the files and directories in the data volume.
However, should you need manipulate the contents of manually from within the container or from
elsewhere, please note the following.

Maintaining proper file ownership and access permissions is critical. Make sure the access
permissions for all directories and files in the volume are set up so that all users in the container
that need to read and/or write files here can do so. These operating system users will be the users
that all server-side TRIP processes will be running as. When running the container under Docker
itself (as opposed to under orchestration software such as OpenShift), this is normally the user “trip”
(uid 1001 and gid 0). When running under orchestration software such as OpenShift the user ID is
normally different and assigned when deploying the container.

The degree to which access permissions should be considered may depend on the kind of volume
driver you are using, but generally speaking all files stored in the volume should be writable by both
user and group.

Configuration Files

TRIPsystem will read the tdbs. conf file from the conf/sys directory of the data volume, and
TRIPcof will read its configuration files from the conf/cof directory of the data volume. When
using TRIP under Docker, no other configuration file locations are supported.

Licenses

When running TRIP in a Docker container, it will read license files installed manually using
TRIPmanager from the 1ic directory of the data volume (automatically installed licenses are not
stored on the data volume). License files must have the “. 11 c” suffix.

Use TRIPmanager to set the license manually after the container has been created, or use a
Docker secret to provide a license in an automated fashion during container creation. Refer to
section “License Installation” in this document for more information.

NOTE: Manually copying the license file into the TRIP container is not supported and is very likely
to result in problems with file ownership and access permissions.

Log Files

The TRIP Docker image configures the 1o0g directory of the data volume to be the location where
log files for the TRIP software are written. TRIPsystem log files are written to the 1og/sys directory
and TRIPcof log files are written to the 1og/cof directory.

If you are using accounting (debit) logging, you should configure the TDBS_ACCDIR logical name
in tdbs.conf instead of relying on the default location under TDBS_SYS. Put the accounting logs
somewhere under the 1og directory in the data volume (e.g. Log/acc).

User Databases

The db directory in the data volume is configured by the TRIP Docker image to be where user
databases are located by default. This location is set up in the tdbs.conf file under the logical name
TDBS_BASES.

Page 13 of 23

digital
) vision
TRIP oN DOCKER group

You may choose another directory for your databases if you so choose, but remember to always
use a logical name for the database file location and not specify them by a fully qualified path.

The CONTROL Database

The ct1 directory of the data volume is dedicated to the TRIPsystem CONTROL database files.
Aside from actions involving migrating to and from a Docker deployment of TRIP, you will normally
not have to touch these files.

Log File Maintenance

The TRIP container comes with logmaint, a background process for automatic log file removal. It
removes old log files from tbserver, Toolkit API, Kernel and XPI, as well as session index files (SIF)
and tripd batch job logs for PRINT, UPDATE, INDEX, LOAD and LOADIX tasks.

Files associated with existing sessions are not removed even if they should meet the criteria for
removal.

The following settings in the tdbs.conf configuration file control the behavior of this tool:

Logical Name Default Description

TDBS_LOGPRUNE_INTERVAL 60 The interval in minutes between scans for
log files to remove.

TDBS_LOGPRUNE_MAX_LOGS 100 The max number of log files of each type to

retain unless they are older than the
configured max age.
TDBS LOGPRUNE MAXAGE 30 The max number of days to retain log files
TDBS_LOGPRUNE_MAXAGE_BATCH 7 The max number of days to retain logs for
successful batch logs. The maximum age
for batch job logs containing errors is
defined by TDBS LOGPRUNE_MAXAGE

For more information on these settings, please refer to the “TRIPsystem Environment” document in
the TRIPsystem documentation set.

Page 14 of 23

digital
vision
TRIP oN DOCKER group

Migrating to Docker

Migrating a TRIP installation on a physical or virtual machine to a Docker container based one
involves a few steps that should be done with some care. This chapter describes what you need to
consider in such a circumstance.

Create a volume and associate the volume with a container and start the container
Add a (site) license

Migrate control database

Adapt configuration

Adapt user databases to 4k block size

agrLONE

Step 1: Create a Volume and start the container

If you don’t already have a Docker volume you wish to use, create a new one. Refer to the previous
chapters in this document and to Docker documentation for details.

When a volume is available, associate it with the Docker container you are about to deploy and
start the container. Refer to the documentation for Docker and (if relevant) your orchestration
software for details about how to do this.

Step 2: Add a (site) license

TRIP on Docker requires a site license in order to work. Request one from your TRIP distributor and
install it on the container as described in the “Installation and Configuration” chapter of this
document.

Note that if you wish to install the license in an automated fashion, this step is actually done as part
of step 1.

Step 3: Migrate the CONTROL database

Copy the CONTROL database files (BAF, BIF and VIF) from the TRIP installation you are migrating
from to the container. Place them in the /var/lib/trip/ctl directory. Take care when doing
this since this may result in bad file ownership and access permissions, resulting in problems in
accessing or even removing the files — especially if you are using the common “docker cp”
command. Consider enabling the SSH server when deploying the container so that you can use the
scp command to copy the files.

Verify that the P_CONTROL.BAF, P_CONTROL.BIF and P_CONTROL.VIF files are present in the
/var/lib/trip/ctl directory. If they are not, copy them from the TRIPsystem’s ‘sys’ directory,
which normally is /opt/trip/sys/current/sys. Do NOT use P_CONTROL files from any
other version of TRIP than the one that is running in the container. Doing so anyway will result in an
incomplete migration.

When the CONTROL database files to migrate are in place, log in to the container and execute the
migrate control script which you can find in the sbin directory of the TRIPsystem installation
(replacing “CONTAINERNAME” with the actual name of your container):

docker exec -it CONTAINERNAME /bin/bash
cd /opt/trip/sys/current/sbin
./migrate control

exit

Page 15 of 23

digital
vision
TRIP oN DOCKER group

Alternatively, instead of logging in to the container and running migrate control manually, you
can just restart the container after having copied your existing CONTROL database files into it. The
control databases will then automatically be migrated.

The procedure will create backup copies of the old CONTROL database files. The backup files are
located in the same directory, but has a timestamp appended to the file suffix. At most 10 old
backups are kept. If ten old backup copies already exist when the procedure starts, the oldest one
will be deleted.

Step 4: Adapt configuration

Do NOT copy your existing tdbs.conf file to the Docker installation. Doing so may render it
inoperable. Instead, introduce changes to the tdbs.conf in your Docker container as described
below.

Set up storage locations on the data volume

If you have databases whose file locations for BAF, BIF, VIF and (optionally) LOG are set to a fully
qualified path or that use a storage location logical name different than TDBS_BASES, these must
be changed to use a logical name set up in the tdbs.conf file.

Note that no configuration action is required for those of your databases that use TDBS_BASES as
storage location, i.e. has TDBS_BASES as part of the file name, like this:

TDBS BASES:MYDATABASE.BAF
TDBS BASES:MYDATABASE.BIF

TDBS BASES:MYDATABASE.VIF

For those of your databases that use another storage location that you have defined in your
tdbs.conf, and for databases that use a fully qualified path to the database files, you will have to do
one of the following:

e Update the tdbs.conf file in the Docker container with a logical name for your storage
location. Set its path to a directory in the Volume (i.e. somewhere under /var/lib/trip),
or

e Modify the database design to use TDBS_BASES as storage location instead.

When done, copy the database files to the relevant volume directory in container (e.g. to
/var/lib/trip/db for databases that use TDBS BASES). Consider enabling the SSH server
when deploying the container so that you can use the scp command to copy the files.

Logs for accounting (debit)

If you are using accounting (debit) logging, you should define the TDBS_ACCDIR logical name in
the privileged section of the tdbs.conf configuration file to a path that points to a directory on the
data volume. Do not use the default location (TDBS_SYS) since changes to files therein will not
persist.

Create the directory and assign the group ownership to gid 0, give the group write permissions
(rwxrwxr-x), then introduce the change to tdbs.conf. For example:

[Privileged]
TDBS ACCDIR=/var/lib/trip/log/acc

You should also set TDBS_ACCFLG to control the naming and contents of the log.

Page 16 of 23

digital
vision
TRIP oN DOCKER group

Other settings

In addition to locations for databases the accounting log, there are several other kinds logical
names that you may be using that can be added to the tdbs.conf configuration file in your Docker
container. For example:

e LDAP authentication
e Login tickets
e Eventlogging

Step 5: Adapt user databases to the 4096-byte block size

The Docker image is preconfigured to use the TDBS_BLOCK_SIZE configuration setting with a
value of 4096. This reduces the number of disk I/O requests TRIP has to perform when accessing
data and indexes. However, in order to benefit from this setting, your databases and indexes must
be adapted.

If you do not adapt your databases to the 4096-byte block size, the databases can still be used in
the container, but will not be as performant due to increased disk I/O.

NOTE: once you have adapted a database to the 4096-byte block size, its files cannot safely be
used with older versions of TRIP than 8.1.

Database contents (BAF)

While adapting the BAF file to the 4096-byte block size is optional, it is strongly recommended
especially for large databases. To do this, you have two options. Either:

1. Run PACKIT on the database on a system with TDBS_BLOCK_SIZE set to 4096,
or

2. Perform a TFORM export of all the database contents on the source system, then run
loadix to import the data into your target Docker-based TRIP installation.

If you choose to run PACKIT, you can either do this in the Docker container (see section on using
server-side tools, below), or outside the container using a non-container installation of TRIPsystem
version 8.1 or later with the TDBS_BLOCK_SIZE logical name set to 4096. Place the resulting BAF
file in its storage location directory in the data volume (e.g. in the “db” directory of the data volume if
you are using the TDBS_BASES as storage location for the database).

If you choose to perform a TFORM export, copy the TFORM file to the data volume so that your
TRIP container can access it. Then run the 1oadix tool (see section on using server-side tools,
below) to import the data. IMPORTANT: Make sure that the BAF file for the database does not exist
before running 1oadix, or the resulting database may not be configured for a 4096-byte block size
after all.

When done, you can verify that the database is indeed using the 4096-byte block size by running
the tracer tool on the database in the Docker container. For example:

xx TRIP System Utility BAF TRACER - Examine BAF structures **
Version 8.1-0:1 21-Apr-2021 07:44:48

Username : TRIPDBA
Password
Database : MYDATABASE

Blocksize : 4096

Page 17 of 23

digital
vision
TRIP oN DOCKER group

[Rlecord, [Bllock, All re[Clords, A[L]l blocks, Quit? [Q] : Q

Elapsed: 00:00:07

Database indexes

To adapt the database indexes (BIF and VIF) to the 4096-byte block size, you must completely re-
index your databases. This must be done with the BIF and VIF files completely absent. If they are
present, move them to a backup location or delete them before starting the re-index run!

Before running this step, make sure the BAF file is present in the data volume. Consider to first
adapt it to the 4096-byte block size as described above.

With the index files for the database fully absent, issue the following call in the docker container
(replacing MYDATABASE with the name of your database):

index --reindex -d MYDATABASE

When done, you can verify that the indexes are indeed using the 4096-byte block size by running
the exif tool on the database in the Docker container. For example:

% TRIP System Utility EXIF - BIF/VIF examination *
Version 8.1-0:1 21-Apr-2021 07:49:09

BIF or VIF file name : TDBS BASES:MYDATABASE.BIF

Block size : 4096
Entry width : 15

Page 18 of 23

digital
vision
TRIP oN DOCKER group

Using server-side tools

TRIP comes with several server-side command line tools that are both useful and necessary when
operating a TRIP installation.

The easiest way to utilize those tools is to first log in to the Docker container:

docker exec -it CONTAINERNAME -u trip /bin/bash

You can also use SSH to access the container (see section “Optional SSH Daemon” above for
more details).

This will land you in a bash shell as the user trip. From here you have access to all the regular
tools such as load, index, packit, trip, etc.

Alternatively, you can run the tool you wish to run directly instead of going via the bash shell. Note
that you will have to specify the fully qualified path to the tool. For example (the line break is for
formatting purposes in this document only):

docker exec -it CONTAINERNAME -u trip
/opt/trip/sys/v824/bin/index -d MYDB

Some tools (e.g. the vi editor) may be sensitive to the configured dimensions of the console window
and can behave erratically if those dimensions are not properly set. To make sure these are
behaving properly you should define the COLUMNS and LINES variables such that they fit the
dimensions of the terminal you are using. For example, when used from a Linux host:

docker exec -it CONTAINERNAME -u trip \
-e COLUMNS=""tput cols'" -e LINES=" tput lines "™ \
/bin/bash

Page 19 of 23

digital
vision
TRIP oN DOCKER group

Extending the Image

A common way to add custom behavior and functionality to a Docker container is to extend the
image it is based on, effectively creating a new image. This section describes what to keep in mind
when doing that with the TRIP Docker image.

NOTE: Consult with your TRIP distributor before taking any such customized image into production
use, as modifications to the TRIP operating environment may affect your support and warranty.

The Dockerfile

Initialization scripts and the entry point

If you have special needs for your custom image that cannot be realized in the Dockerfile alone,
you may be tempted to create a custom entry point. If you do that, you will disrupt the TRIP
installation in the container and thereby render it inoperable. So, don’t do that!

Instead of overriding the entry point, you should add customization initialization scripts to the folder
“/etc/trip-extended-image.d” when declaring your image using your Dockerfile. These
scripts will be executed near the end of the normal entry point, but before the entry point execs into
the supervisord process that monitors the TRIP background processes (tripd, tripnetd, etc).

The scripts you place in the “/etc/trip-extended-image.d” folder must have the suffix “.sh”
and be marked as executable. If you have multiple scripts (or if the TRIP image has been extended
through multiple steps), you are invited to name them so that their execution order is predictable.
Do this by adding a two-digit number at the front of the script name (e.g. 10-first.sh, 20-second.sh,
etc).

For example, in your Dockerfile:

RUN mkdir -p /etc/trip-extended-image.d
ADD my-entrypoint.sh /etc/trip-extended-image.d
RUN chmod +x /etc/trip-extended-image.d/my-entrypoint.sh

Signal success by having the script return 0 on exit. Any other exit value will signal to the entry point
that the script has failed, which will also cause the container startup to fail.

Note that scripts you place in “/etc/trip-extended-image.d” must not require root privileges.
Any actions that require root access must be done in the Dockerfile.

Background processes and controlled startup and shutdown

If you have background processes that at some point manipulates persistent state, you are strongly
recommended to integrate such programs in a way so that their shutdown is controlled, rather than
just being killed abruptly when the container is stopped. Leaving such processes to be killed at
container stop may cause corruption to the persistent state that you are keeping.

The TRIP Docker image utilizes supervisord to control the startup and shutdown of such processes.
The Dockerfile for your extended Docker image can instruct supervisord to include your services by
placing “.conf” files containing supervisord-formatted “program”-sections in the directory
“/etc/supervisor-ext.d”.

For example, by placing the configuration for your service in “my_service.conf’, you could have the
following statement in your Dockerfile:

ADD my service.conf /etc/supervisor-ext.d

Page 20 of 23

digital
vision
TRIP oN DOCKER group

While the term “background process” is used here, the process you start must actually run as a
console application, and not in the background by turning itself into a daemon. If the program is not
running in the foreground, supervisord will not be able to properly monitor it. Your service must run
as a normal console program in a terminal shell without putting itself into the background.

Themy service.conf file is in this example expected to be a valid program section for the
supervisord.conf file. For example:

[program:myservice]
command=/opt/ext/myservice/bin/myservice
redirect_stderr=true
directory=/var/lib/trip

autostart=true

autorestart=true

numprocs=1

startsecs=3

stopsignal=TERM
stdout_logfile=/var/lib/trip/log/myservice.log
stdout_logfile_maxbytes=50MB
stdout_logfile_backups=10
stdout_loglevel=info

Example: Adding an ASE library

A simple way to add an ASE library without building a new image is to copy the ASE library to the
data volume and edit the tdbs.conf file. While this may be OK for simple libraries that are unlikely to
be affected by upgrading the software, there are other reasons as to why this kind of approach is
less suitable. To that end, this section describes how to create an extended image that contains an
ASE library with its associated files and how to configure the TRIP installation to suit.

Dockerfile Example

FROM registry.example.com:5050/trip/tripserver-rhel8:8.2
LABEL Description="TRIP NoSQL server with custom ASE library”
USER ©
RUN mkdir -p /opt/example/aselib && \

mkdir -p /etc/trip-extended-image.d
ADD myase.so /opt/example/aselib
ADD myase-init.sh /etc/trip-extended-image.d
RUN chown -R 1001:0 /opt/example/aselib && \

chmod +x /opt/example/aselib/*.so && \

chmod +x /etc/trip-extended-image.d/myase-init.sh
USER 1001

Initialization Script Example

The initialization script (referred to in the example Dockerfile as myase-init.sh) runs when the TRIP
container starts up. In this example, the script must modify the TRIPsystem tdbs.conf file to insert a
logical name to the SO library of the ASE, and to modify the value of the TDBS_ASELIBS list. This

cannot be done in the Dockerfile since any necessary tdbs.conf adjustments (including creating it
on first startup) that is performed by TRIP itself is done at container start.

Page 21 of 23

digital
vision
TRIP oN DOCKER group

#!/bin/bash
add_to_tdbs_aselibs()

{
if ["$2" = ""]; then
echo $1
else
echo $1 | grep $2 2> /dev/null 1> /dev/null
if [$? -eq ©]; then
echo $1
else
if ["" = "$1"]; then
echo $2
else
echo $2,%1
fi
fi
fi
}

TMPCONF="mktemp"
cat /var/lib/trip/conf/sys/tdbs.conf | while read -r LINE; do
TRIMLINE="$(echo "$LINE" | sed -e 's/~[[:space:]]*//' -e 's/[[:space:]]1*$//')"

if ["$TRIMLINE" = ""]; then
echo "$LINE" >> $TMPCONF
continue

fi

if ["$TRIMLINE" = \#*]; then
echo "$LINE" >> $TMPCONF
continue
fi
SYM_NAME="echo "$TRIMLINE" | cut -d= -f1°
SYM_VALUE="echo "$TRIMLINE" | cut -d= -f2- | sed -e 's/~[[:space:]]*//"
if ["$SYM_NAME" = "MYASE_PATH"]; then
echo "MYASE_PATH=/opt/example/aselib/myase.so” >> $TMPCONF
continue
fi
if ["$SYM_NAME" = "TDBS_ASELIBS"]; then
ASELIBS="add_to_tdbs_aselibs $SYM_VALUE MYASE_PATH®
echo "TDBS_ASELIBS=$ASELIBS" >> $TMPCONF
continue
fi
echo "$LINE" >> $TMPCONF
done
grep -q "“MYASE_PATH $TMPCONF 2> /dev/null
if [$? -ne @]; then
echo "MYASE_PATH=/opt/example/aselib/myase.so" >> $TMPCONF
fi
grep -q ~ TDBS_ASELIBS $TMPCONF 2> /dev/null
if [$? -ne @]; then
echo "TDBS_ASELIBS=MYASE_PATH" >> $TMPCONF

Page 22 of 23

digital
vision
TRIP oN DOCKER group

fi
cp /var/lib/trip/conf/sys/tdbs.conf /var/lib/trip/conf/sys/tdbs.conf.myase
mv $TMPCONF /var/lib/trip/conf/sys/tdbs.conf

Page 23 of 23

	Introduction
	About this Document
	About TRIP on Docker

	Installation and Configuration
	Obtaining the Docker Image
	Container Configuration
	Container user
	Data Volume
	License Installation
	Automated License Installation using a Docker Secret
	Automatically Updating a License using a Docker Secret
	Manual License Installation with TRIPmanager
	License Installation Caveats and Notes

	Token Encryption Key
	Key Deployment as a Docker Secret
	Key Deployment as a Mounted File
	Purge Tokens After Token Key Update
	Configuring TRIP with the Token Encryption Key

	CONTROL Database Migration
	Optional SSH Daemon

	Post-Deployment TRIP Configuration

	Data Volume Directory
	Data Volume Directory Tree Structure
	Creating the Volume
	Notes on Files in the Volume
	Access Permissions
	Configuration Files
	Licenses
	Log Files
	User Databases
	The CONTROL Database

	Log File Maintenance

	Migrating to Docker
	Step 1: Create a Volume and start the container
	Step 2: Add a (site) license
	Step 3: Migrate the CONTROL database
	Step 4: Adapt configuration
	Set up storage locations on the data volume
	Logs for accounting (debit)
	Other settings

	Step 5: Adapt user databases to the 4096-byte block size
	Database contents (BAF)
	Database indexes

	Using server-side tools
	Extending the Image
	The Dockerfile
	Initialization scripts and the entry point
	Background processes and controlled startup and shutdown

	Example: Adding an ASE library
	Dockerfile Example
	Initialization Script Example

