
Copyright © 2022 Smaser AG

JSON and XML Databases
TRIPsystem version 8.2

JSON AND XML DATABASE

Page 2 of 29

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and

software (altogether “Software”) supplied by Smaser AG (Smaser) are exclusively owned by

Smaser.

The transfer of this Software, solutions or parts thereof requires the prior written agreement

of Smaser. Furthermore, the customer has the right to use licensed Software and / or

process solutions supplied by Smaser to the extent specified in his contract with Smaser.

The free-to-use non-commercial version doesn’t require a prior written agreement with

Smaser but such customers, organizations and/or third parties agree by using the software

and / or solution of Smaser to be strongly obliged to keep all rights to this software,

documentation and logotypes of the TRIP product family absolutely uninfringed and

protected.

JSON AND XML DATABASES

Page 3 of 29

Table of Contents

Introduction .. 5

About this Document .. 5
XML ... 5
JSON ... 5

Installation and Upgrade .. 6

Features .. 7

Overview ... 7
Design ... 7

Overview ... 7

Storage Structure .. 8

XLink and XInclude support (removed) .. 9
Querying and Search Results .. 9
Application Programming .. 9

How-To ... 10

Create a JSON/XML database .. 10
Via TRIPclassic .. 10
Via TRIPmanager ... 10
Using jxtool .. 10

JSON/XML Database Character Set .. 10
Migrating Non-Unicode XML Databases ... 10

Query the Database ... 10
Using CCL .. 10
Using XPath ... 11

Use the Toolkit API Calls .. 11
JSON/XML C API Functions ... 11
Backward-Compatibility Functions ... 11
TdbImport ... 12
TdbExport ... 13

Client-Side API calls .. 14
TRIPjxp and TRIPnxp .. 14
TRIPclient (TRIPcom) .. 14
TRIP Java Toolkit... 15

Appendix A - API Reference ... 16

The filter_data structure ... 16

Appendix B - Encodings ... 18

Supported Encodings for XML Documents .. 18
Supported Encodings for JSON Documents .. 19

Appendix C – Settings for tdbs.conf ... 20

Appendix D - Supported XPath Syntax ... 21

Definitions .. 21
Node .. 21
Node Set ... 21
Location Step ... 21

Axis Types .. 22
Functions ... 22
Predicate Usage .. 23

The existence of an attribute .. 23
Attribute value check .. 23

JSON AND XML DATABASES

Page 4 of 29

Exact text node contents .. 23
Truncated text node contents .. 23
Truncated attribute text node contents .. 24
Comparison Operators ... 24
Node position ... 24
Multiple predicates in a single location step .. 25

Additional Examples ... 25
Expression over Axis "child" ... 25
Expression with axis "attribute" in predicate ... 25
Expression with axis "parent" ... 25
Expression with multiple axes in a predicate ... 25
Expression with axis "descendant" and multi-axis predicate .. 25
Expression with axes "ancestor-or-self", "parent" and "descendant" 26

Appendix E – The jxtool .. 27

Introduction .. 27
Purpose and Use Cases ... 27
Command Line Interface .. 27

Administration ... 28
Importing and Exporting XML and JSON documents ... 28
Bulk Import ... 28
XPath Based Querying .. 29

JSON AND XML DATABASES

Page 5 of 29

Introduction

About this Document

This document describes the JSON and XML database functionality as it is available in TRIPsystem
8.2. Descriptions of APIs and examples for their use is found with respective SDK product (TRIPjxp,
TRIPnxp, etc).

XML database functionality in TRIP versions older than 8.0 were available in the separately installed
TRIPxml product. This functionality has since TRIP version 8.0 been integrated into TRIPsystem,
although still requiring it to be enabled in the license.

XML

XML has traditionally been used as a data interchange format between different systems and
applications. XML, being a flexible way to represent information, has also seen use as format for long
term data storage, which is represented by TRIP and other XML database managers.

JSON

JSON, even more so than XML, is a format for data interchange and message passing. It has since its
inception also largely replaced XML in structured storage as is evident from its status as defacto
standard format for NoSQL document stores. From version 8.0 of TRIP, storage of JSON documents
is also supported.

JSON AND XML DATABASES

Page 6 of 29

Installation and Upgrade

The JSON and XML functionality is part of the TRIPsystem installation, and does not require a
separate installation step.

When upgrading from a pre-8.0 version of TRIP where TRIPxml is in use, that version of TRIPxml will
no longer be used, even if re-installed. Old TRIPxml installations can be removed after a successful
upgrade to TRIP 8.0 or later.

NOTE: Upgrading a TRIP installation where a TRIPxml version 1.x is in use is not supported. You
should in such cases first upgrade to TRIPxml version 2 or 3 (on a TRIPsystem 6.x or 7.x installation)
and migrate your XML databases as per the TRIPxml documentation. When you have verified that
your XML databases are working with the new version of TRIPxml, you can proceed to upgrade
TRIPsystem.

JSON AND XML DATABASES

Page 7 of 29

Features

Overview

The focus of XML and JSON in TRIP is the storage of documents with a fair amount of textual data.
The following points illustrate the related essential core features:

• Ability to represent and store XML and JSON documents with their complete structure.

• One single TRIP database design supports all kinds of XML and JSON documents, plus any
kind of unstructured document or file.

• Support TRIP queries to find XML and JSON documents and sections within the documents.

• TRIP queries against a JSON/XML database can utilize the structure of the stored data.

• Optional storage of related DTD or schema for validation and stylesheet files for rendering of
XML documents

Design

Overview

Although this feature set has been through some fairly major internal changes since its first version,
the basic design remains. It allows using TRIP as a hybrid XML and JSON database with storage,
search and retrieval while also supporting unstructured data such as office documents and images.

Oher JSON and XML features include:

• Programmatic access from both server (TRIP toolkit) and client (TRIPjxp, TRIPnxp, TRIPclient
and TRIPjtk).

• Storage of any XML, JSON or other kind of file.

• Seamless integration with TRIPcof full text search enables stored unstructured documents
(e.g. office files) to be searchable.

• Use XPath as query language across the entire document set of JSON and XML documents.

JSON AND XML DATABASES

Page 8 of 29

Storage Structure

JSON and XML documents are basically structured like trees, which is also how their data is
represented in TRIP.

The storage structure for JSON/XML databases is slightly different in TRIP 8 than in previous releases
of the add-on product TRIPxml. JSON/XML databases created in this version of TRIP are therefore
not backward compatible with older versions of TRIP that use TRIPxml, although old database
versions from TRIPxml 2.x and 3.x can also be used with TRIP 8 (albeit without support for JSON
documents).

The table below shows the minimal TRIP database design for any database that will store XML and
JSON data. Each record in the database stores one document. The main differences in the current
design compared to previous versions are highlighted.

XML documents can optionally also be stored as binary copies in the D_XMLDOC field. The reason
for this redundancy was to improve retrieval performance for very large documents, although it is less
of a concern in the current version.

Field Name Field
Number

Part
Field

Field Type Description

D_XMLDOC 1 No STRING Binary copy (XML only)

D_META 2 No TEXT Document metatags

D_DOCTYPE 3 No TEXT Document doctype tag

D_DOCSIZE 4 No INTEGER Size (in bytes) of XML document
stored in D_XMLDOC

D_DOCNAME 5 No PHRASE File name of the document

D_URLBASE 6 No PHRASE URL to document on the web,
excluding the document name
itself.

D_URLALIAS 7 No PHRASE Alias for the URL

N_ID 8 No INTEGER Tree node identity

N_PARENT 9 No INTEGER Parent node identity

N_SEQPATH 10 No PHRASE Path to node using node
sequence numbers.

N_PATH 11 No PHRASE Complete path to node

N_SEQNO 12 No INTEGER Sequence number of the node

N_NAME 13 No PHRASE Node name

N_TYPE 14 No PHRASE Node type (element, attribute,
text, ...)

N_NSPACE 15 No PHRASE Node namespace

N_MIME 16 No PHRASE What data is stored in the node,
e.g. image/jpeg

N_ENCODING 17 No PHRASE Type or representation of the
node data, e.g. base64

N_CVALUE 18 Yes STRING Node value (binary)

N_TVALUE 19 No 1*TEXT Node value (text only)

N_NVALUE 20 No NUMBER Node value (numeric)

N_DVALUE 21 No DATE Node value (date)

D_PROPNAME 22 No PHRASE Property name field

D_PROPVAL 23 No PHRASE Property value field

DAV_NONXMLBLOB 24 No STRING Field for storage of non-XML files.

D_DOCTEXT 25 No TEXT Field for storage of text extract of
non-XML files.

D_ID 26 No PHRASE Document/record identity field

N_JSONTYPE 27 No PHRASE JSON node type

N_RESERVED 50 No PHRASE Max reserved field number

JSON AND XML DATABASES

Page 9 of 29

XLink and XInclude support (removed)

The XLink protocol is an XML-based technique to create links between information on the web.
XInclude is a small XML protocol that allows one XML file to include another. For more information on
these protocols, see the World Wide Web Consortium’s web site www.w3.org.

The XML functionality as available in the older add-on product TRIPxml supported these two protocols
by maintaining a link database. This behavior is not available in the JSON/XML functionality as
integrated with TRIPsystem. Please contact your TRIP distributor if you are interested in using this
functionality or have an older TRIPxml installation using XLink and/or XInclude that you wish to
upgrade.

Querying and Search Results

Querying an XML or JSON document is like querying a tree. The following points describe the
possibilities of queries against a JSON/XML database.

• Search for specific XML elements / JSON object members

• Search for information in specific XML elements

• Perform full text search on entire document content

• Boolean logic in search conditions (and, or, not)

• Use CCL or XPath

A search results from a JSON/XML database is a regular TRIP search set. When retrieving a
document from such a set, the default is to return the entire document to the application. A single XML
document containing selected fragments from each document in the search result is another
possibility.

XPath is supported as query language for both XML and JSON documents. Using XPath instead of
CCL makes querying XML and JSON data using their own structures more efficient than is possible by
just using CCL. For more information on XPath in TRIP, refer to Appendix D - Supported XPath
Syntax.

The following points summarize retrieval:

• Retrieval of entire documents

• Retrieval of fragments of documents found by a search. These fragments do not necessarily
have to be the same parts that matched the query.

• Possibility to, no matter how the document was originally stored, retrieve the entire document
as either JSON or XML.

• Possibility to get the words in the text that matched the query condition marked for highlighting
(for XML output only).

For more information about search and retrieval of XML documents, please refer to the section ”Query
the database” in the ”Howto” chapter.

Application Programming

The API routines for programmatic access to JSON/XML functionality in TRIP have the following
features:

• Search using XPath expressions or a simplified, abbreviated form of CCL that enables the use
of element and member names as field names.

• Import routines to store an XML document into TRIP, with optional validation according to
DTD or XML schema.

• Import routines to store a JSON document into TRIP.

• Retrieval routines for both entire XML documents as well as parts of the documents and
related DTDs and stylesheets stored in the database.

• Access from TRIPsystem, TRIPnxp and TRIPjxp.

• Limited access from TRIPhighway and from the older SDKs TRIPclient and TRIPjtk.

JSON AND XML DATABASES

Page 10 of 29

How-To

Create a JSON/XML database

Via TRIPclassic

XML databases can be created using TRIPclassic.

Select Databases from the Administration menu. In the database menu, select create/modify database
from the DB Design menu. Enter the name of the database to be created. Press ’6’ on the numeric
keypad (or ’Ctrl-K’ followed by ’6’) to bring up the special database options dialog. Set the XML
database to ’Y’. Press ENTER (or ’Ctrl-E’) to confirm, then finally press ENTER (or ’Ctrl-E’) again to
save the new database.

Via TRIPmanager

JSON/XML databases can also be created using TRIPmanager. Right-click the “Databases“ node to
bring up the context menu. Select the “New Database…” option and click next. On the “general
properties” page of the wizard, check the option “Database should be XML enabled”.

When you get the question “Do you want to specify the field collection for this new database /
thesaurus?” you should only answer “yes” if you wish to customize the default JSON/XML database
design. If you do customize it, please do not change the definition for any of the pre-defined fields
since this may render the database unusable.

Using jxtool

The jxtool command line program (documented in Appendix E) provides a server-side command line
interface for basic administration of JSON/XML databases, including their creation. Use the --create
option to create a database named via the -d option.

JSON/XML Database Character Set

JSON/XML databases are Unicode-enabled by default. It is not recommended to change this setting.

Migrating Non-Unicode XML Databases

Older versions of the TRIPxml add-on used whatever character set TRIPsystem was set up to use,
even if the imported XML data happened to be in Latin-1 or gb2312. Unfortunately, this means that the
only reliable way to get old XML data converted to a Unicode database without risk for corruption, is to
re-import the XML documents into a new Unicode JSON/XML database.

Query the Database

Using CCL

A JSON/XML database can be queried using CCL like any other TRIP database. There is one big
difference, however. The difference is that with a JSON/XML database, you can pose a query using
the element names of the stored documents. Note that if there is an element and a field with the same
name in a JSON/XML database, the element will always be used.

JSON AND XML DATABASES

Page 11 of 29

For example, a database containing documents that use the CHAPTER element can be queried like
this:

FIND CHAPTER=height

which will search for documents that have an element ”CHAPTER”, that contains – directly or in a sub
element – the text ”height”.

In addition to using tag names in search conditions, as described above, you can use part of the path,
like this:

FIND BOOK/CHAPTER=height

When you pose queries like this using CCL, you’ll notice that TRIP expands the XML-oriented query to
an ordinary CCL query.

Using XPath

The recommended way to query JSON/XML databases is to use XPath. This is possible via the
classes TdbSearch, TdbCclCommand and TdbRecordSet in TRIPjxp and TRIPnxp version 2.1 and
later. Please refer to the "TRIPjxp & TRIPnxp Programmer's Guide" document for detailed information.

The XPath syntax supported is a subset of XPath 1.0 as specified by the W3C. See the appendix for a
description of supported XPath syntax.

Use the Toolkit API Calls

JSON/XML C API Functions

The TRIPtoolkit contains eight special APIs for the interaction of JSON/XML databases:

• TdbPutXmlBuffer

• TdbPutJsonBuffer

• TdbPutXmlFile

• TdbPutJsonFile

• TdbGetXmlBuffer

• TdbGetJsonBuffer

• TdbExecuteXPath

• TdbGetXmlFragments

Please refer to the TRIPtoolkit Reference manual for API reference and usage examples.

Backward-Compatibility Functions

The TRIPtoolkit API functions TdbImport and TdbExport were used to programmatically interact with
TRIPxml from C/C++ prior to the release of TRIPsystem 8.0. Both of these functions use a structure
called filter_data. This structure is used for all parameters, including input options and return data. For
a detailed description of this structure, see ”Appendix A - API Reference”.

Although there is nothing wrong with continued use of TdbImport and TdbExport, the regular C API
calls (see above) should be used whenever possible when creating server-side TRIP Toolkit
applications. The reason for this is that TdbImport and TdbExport are low-level functions and require a
lot more care in usage than their ordinary counterparts.

JSON AND XML DATABASES

Page 12 of 29

TdbImport

The TdbImport function is used to import XML and JSON documents.
Prototype

int TdbImport (filter_data* data);

Applicable values for the tdb_options member:

NAME VALUE DESCRIPTION

IEOPT_FILENAME 1 The buffer member contains file name

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*)

IEOPT_MEMORY 4 The buffer member points to memory area

Applicable mask values for the filter_options member:

NAME VALUE DESCRIPTION

FOXML_NEWREC 1 Create a new record.

FOXML_REPLACE 2 The opposite of FOXML_NEWREC. Is implicitly
set if FOXML_NEWREC is not set. The
record_control and cursor fields are mandatory
in combination with this option.

FOXML_VALIDATE 4 Specifies that the caller wishes to validate the
XML document before it is imported.

FOXML_NOBLOB 64 Specifies that the caller does not wish to store a
copy of the document in the D_XMLDOC field.

FOXML_STREAM 256 Specifies that the caller wishes to perform
stream-oriented I/O.

URL information may be stored by using the filter_arguments parameter in the filter_data structure.
Since this structure is generic, i.e. not specific to JSON/XML, each particular TRIP module using these
functions may define different syntactical and semantical rules for the filter_arguments parameter.

There are defines several filter arguments defined for use with JSON/XML. The terminating character
for an argument line is a newline character. The line thus follows this syntax:

name = value ’\n’

So, defining the URL http://www.myweb.com/mysite/index.html, the line will look like this:
URL=http://www.myweb.com/mysite/index.html

Please note that in the database, the URL is actually stored in two parts. The filename itself (e.g.
index.html) is stored in the field D_DOCNAME, and the other part of the URL (e.g.
http://www.myweb.com/mysite) is stored in the field D_URLBASE.

Memory buffer import

Memory buffer import means that the caller provides all the data required in a memory area pointed to
by ‘buffer’ in one go. The ‘buffer_length’ specify the size of the entire document, and ‘blockno’ must be
set to 0. The option for this is IEOPT_MEMORY.

File-oriented import

File-oriented import comes in two flavors. One in which a file name is specified in a character string
pointed to by buffer, and one in which a file pointer is provided in buffer. In case a file pointer is
provided, neither the TdbImport function, nor the filter function must close the file. The options are
IEOPT_FILENAME and IEOPT_FILEPTR, respectively.

JSON AND XML DATABASES

Page 13 of 29

NOTE: The IEOPT_FILEPTR is only supported on Linux/Unix. Attempting to use this import option on
Windows may cause the application to turn unstable or crash.

Stream-oriented import

Stream-oriented import can be used when importing large files into a JSON/XML database from a web
site or a client application (based on TRIPjtk or TRIPclient). This is also the only way XML validation of
system-local DTDs or schemas can be done when the DTD or schema is not available on the TRIP
server machine.

To use streamed import, add FOXML_STREAM to the filter_options member of filter_data. It is
important also to assign either IEOPT_FILENAME or IEOPT_MEMORY to the tdb_options member of
filter_data. You must also add a FILEURL parameter to the filter_arguments string, specifying the URL
from which you want TRIP to load the XML file, e.g. “FILEURL=http://mybox:1234/data.xml”.

Validation

If you want to validate an XML document when you are importing it, add FOXML_VALIDATE to the
filter_options member of filter_data. If XML_SCHEMA is present and set to 1 in the server-side
TRIPrcs file, then XML schemas can be validated. Otherwise, only DTDs are validated.

Note that if you are performing a blob-oriented import of an XML document referrring to a DTD using a
relative path and the DTD file has not been imported into the XML database, you will get a validation
error.

TdbExport

The TdbExport function is used to export JSON and XML documents, with optional hit markup for XML
documents.

Prototype

int TdbExport (filter_data* data);

Applicable values for the tdb_options member:

NAME VALUE DESCRIPTION

IEOPT_FILENAME 1 The buffer member contains file name

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*)

IEOPT_MEMORY 4 The buffer member points to memory area

EXPORT_ALLOC 32 Allocate memory for exported data (the buffer
member is changed to point to newly allocated
memory). Used with IEOPT_MEMORY.

EXPORT_FILEAPP 256 Declares that export filter should append XML
document to a file. Used in combination with either
IEOPT_FILENAME or IEOPT_FILEPTR.

Applicable mask values for the filter_options member:

NAME VALUE DESCRIPTION

FOXML_GETBYID 8 Retrieve document by URL or record name (ID).
Specify URL by adding the URL parameter to the
filter_arguments member. Specify ID by adding the
ID to the filter_arguments member.

FOXML_REMAKE 16 Recreate the xml document from its parts. Do not
use data stored in the D_XMLDOC field.

FOXML_HILIGHT 32 Insert hit-markup in the extracted xml document, so
the displaying application can highlight the hits. The
option FOXML_REMAKE must also be set.

FOXML_STREAM 256 Specifies that the caller wishes to perform stream-
oriented I/O.

JSON AND XML DATABASES

Page 14 of 29

Memory buffer export

Memory buffer oriented export returns all the required data to the caller in memory via the ‘buffer’ field
in one go. The ‘buffer_length’ field specifies the size of the entire blob, and the ‘blockno’ must be set to
0. The option for this is IEOPT_MEMORY.

This type of export also comes in another flavor, and that is that the filter routine allocates a large-
enough buffer to contain the requested data. If this is the case, the filter routine will set buffer to
allocated memory containing the data and buffer_length to the size of the buffer. The option for this is
IEOPT_MEMORY | EXPORT_ALLOC.

NOTE: If EXPORT_ALLOC is used on Windows, the buffer returned in the ‘buffer’ field must be
deallocated using the HeapFree() Win32 API function on the heap returned by the GetProcessHeap()
Win32 API function. Using the regular free() function to release this memory will on Windows cause a
crash or put the application into an unstable state.

File-oriented export

File-oriented export comes in two basic flavors. One in which a file name is specified in a character
string pointed to by buffer, and one in which a file pointer is provided in buffer. The options are
IEOPT_FILENAME and IEOPT_FILEPTR, respectively. If combined with the EXPORT_MKFILE
option, the file name (or pointer) is created by the filter routine and returned in buffer. It will in this case
not be necessary (or required) to provide anything in buffer by the caller.

For both types of file-oriented export applies that either EXPORT_FILEAPP or EXPORT_FILETRUNC
must be used. No default action exists.

NOTE: The IEOPT_FILEPTR is only supported on Linux/Unix. Attempting to use this export option on
Windows may cause the application to turn unstable or crash.

Stream-oriented export

Stream-oriented export is preferably used when exporting large files from a JSON/XML database to a
client application (based on TRIPjtk or TRIPclient).

To use streamed import, add FOXML_STREAM to the filter_options member of filter_data. It is
important also to assign either IEOPT_FILENAME or IEOPT_MEMORY to the tdb_options member of
filter_data. You must also add a FILEURL parameter to the filter_arguments string, specifying the URL
to which you want TRIPxml to upload the XML file with a HTTP POST message, e.g.
“FILEURL=http://mybox:1234/data.xml”.

Client-Side API calls

TRIPjxp and TRIPnxp

TRIPjxp and TRIPnxp version 8.0 provide the most complete APIs for development of TRIPxml
applications. Please refer to the TRIPjxp and TRIPnxp documentation for details.

TRIPclient (TRIPcom)

Users of the TRIPclient SDK can from version 2.5-0 use COM objects specific to import and export of
XML documents. In addition, the Record object has since version 2.0-1 the XML-specific methods
CopyFromXMLFile and CopyToXMLFile.

Please refer to TRIPclient documentation for details.

JSON AND XML DATABASES

Page 15 of 29

TRIP Java Toolkit

TRIPjtk supports programmatic access of TRIPxml through its classes XMLRecord and XMLLink.
Version 1.0 of TRIPjtk supports TRIPxml up to version 2.0, and version 1.1 and later of TRIPjtk
supports TRIPxml up to version 3.1.

JSON AND XML DATABASES

Page 16 of 29

Appendix A - API Reference

This appendix describes the TRIP toolkit APIs to use for low-level access of the JSON/XML
functionality. The recommended way is to use the functionality integrated into TRIPnxp and TRIPjxp
version 2.1 and later. TRIPnxp and TRIPjxp are documented separately.

The filter_data structure

This is the structure used by the API functions TdbImport and TdbExport:

Data Type Member Name In/Out Description/Usage

TdbHandle record_control In/Out The record control of the record into
which an XML document is to be
imported, or the record that contains an
XML document that is to be exported. If
the filter created a record control, it is
returned in this member.

TdbHandle cursor In/Out For imports; a record cursor. For
exports; a cursor to the D_XMLDOC
field. Is optional for exports. If the filter
created a cursor, it is returned in this
member.

TdbHandle filter_address In/Out Contains a handle to the called API
routine on return. This handle may be
used on subsequent calls to boost
performance. Not fully implemented in
this version!

char filter_name[32] In The name of the filter to call. For XML,
the name of the import filter is
“tripxmlput”, and the export filter name
is “tripxmlget”.

char filter_lib_env[32] In Not used with JSON/XML.

void* buffer In/Out Field with many uses, dependent on
what the tdb_options member say is
contained herein. May be allocated
memory, placeholder for allocated
memory, name of file, or file pointer.

int buffer_length In/Out Length of buffer.

char* filter_arguments In Filter-specific string of arguments. Set
to NULL or empty string if no arguments
are passed.

int arg_length In Length in bytes of the content of the
filter_arguments member, including the
terminating NULL-character.

int filter_options In Filter-specific options.

int tdb_options In Import/export specific options.

int blockno In Block number (only for block-oriented
i/o – see below). Set to 0 for final block,
1 for first in a sequence of several, etc.

int errorcode Out Filter-specific error code (may also be
informational or warning).

char errortext[256] Out Textual, filter-specific, error message.

JSON AND XML DATABASES

Page 17 of 29

Valid values for the filter_options member

Filter Option Name Value Description

FOXML_NEWREC 1 TdbImport: Create a new record.

FOXML_REPLACE 2 TdbImport: The opposite of FOXML_NEWREC.
Is implicitly set if FOXML_NEWREC is not set.
The record_control and cursor fields are
mandatory in combination with this option.

FOXML_VALIDATE 4 TdbImport: Tells the XML parser to validate the
XML record if any internal/external DTD subset
have been seen.

FOXML_GETBYID 8 TdbExport: Retrieve document by URL or record
name (ID). Specify URL by adding the URL
parameter to the filter_arguments member.
Specify ID by adding the ID to the
filter_arguments member.

FOXML_REMAKE 16 TdbExport: Recreate the xml document from its
parts. Do not use data stored in the D_XMLDOC
field.

FOXML_HILIGHT 32 TdbExport: Insert hit-markup in the extracted
xml document, so that the displaying application
can highlight the hits. The option
FOXML_REMAKE must also be set.

FOXML_NOBLOB 64 TdbImport: Do not store the original document.

FOXML_STREAM 256 Specifies that the caller wishes to perform
stream-oriented I/O.

Valid values for the tdb_options member

Tdb Option Name Value Description

IEOPT_FILENAME 1 The buffer member contains file name.

IEOPT_FILEPTR 2 The buffer member contains file pointer (FILE*).

IEOPT_MEMORY 4 The buffer member points to memory area.

EXPORT_ALLOC 32 TdbExport: Declares that export filter should
allocate memory for data (the buffer member is
changed to point to newly allocated memory).
Used in combination with IEOPT_MEMORY.

EXPORT_FILEAPP 256 TdbExport: Declares that export filter should
append XML document to a file. Used in
combination with either IEOPT_FILENAME or
IEOPT_FILEPTR.

JSON AND XML DATABASES

Page 18 of 29

Appendix B - Encodings

Supported Encodings for XML Documents

Via the integration to the ICU library, most major encodings are supported for XML documents
including:

• ASCII

• UTF-8

• UTF-16 (Big/Small Endian)

• UCS4 (Big/Small Endian)

• EBCDIC code pages

• GB2312 and BIG5

• IBM037 and IBM1140 encodings

• ISO-8859-1 (aka Latin1)

• Windows-1252

For a more complete list of encodings, see the ICU homepage http://icu-project.org or IANA’s list of
character set names at http://www.iana.org/assignments/character-sets.

Even though the integration with the ICU library provides many alternatives to choose from, the best
choice in most cases is either UTF-8 or UTF-16. Advantages of these encodings include:

• The best portability. These encodings are more widely supported by XML processors than any
others, meaning that your documents will have the best possible chance of being read
correctly, no matter where they end up.

• Full international character support. Both utf-8 and utf-16 cover the full Unicode character set,
which includes all of the characters from all major national, international and industry
character sets.

• Efficient. Utf-8 has the smaller storage requirements for documents that are primarily
composed of of characters from the Latin alphabet. Utf-16 is more efficient for encoding Asian
languages. But both encodings cover all languages without loss.

A second choice of encoding would be any of the others listed above. This works best when the xml
encoding is the same as the default system encoding on the machine where the XML document is
being prepared, because the document will then display correctly as a plain text file. For systems in
countries speaking Western European languages, the encoding will usually be iso-8859-1.

A word of caution for Windows users: The default character set on Windows systems is windows-
1252, not iso-8859-1. While this Windows encoding is recognized, it is a poor choice for portable XML
data because it is not as widely recognized by XML processing tools. If you are using a Windows-

JSON AND XML DATABASES

Page 19 of 29

based editing tool to generate XML, check which character set it generates, and make sure that the
resulting XML specifies the correct name in the encoding="..." declaration.

Supported Encodings for JSON Documents

JSON documents must be encoded in UTF-8. The usage of any other character set is not supported.

JSON AND XML DATABASES

Page 20 of 29

Appendix C – Settings for tdbs.conf

The following tdbs.conf settings under the nonprivileged section are specific to the JSON/XML
functionality. All settings that have a valid value set of 0 and 1 are boolean – i.e. 0=off, 1=on.

Setting Valid
Values

Default
Value

Description

XML_LINKS 0, 1 0 Link support

XML_LINK_DB special special Link database name if
other than
XML_LINK_DB

XML_NAMESPACES 0, 1 1 Namespace support.

XML_SCHEMA 0, 1 0 Schema support

XML_STRICT_SCHEMA 0, 1 0 Strict schema validation

XML_STRICT_VALIDATION 0, 1 1 If documents are
imported with validation,
the strict validation
means that the parser
will load any external
references required to
validate the document
such as DTD files, etc.

XML_NOENTITYRESOLVER 0, 1 0 The entity resolver is
used to redirect requests
for DTDs and schemas
to the proper location.
E.g. if a DTD has been
imported into an XML
database, the entity
resolver will export the
DTD from there.

Turning on this setting
means that an entity
resolver will not be
created. This will break
any import where
validation is enabled and
a DTD or XML schema
file needs to be loaded!

JSON AND XML DATABASES

Page 21 of 29

Appendix D - Supported XPath Syntax

This appendix is an overview of the part of the XPath 1.0 syntax supported by TRIPsystem for queries
against JSON/XML databases. Refer to the W3C (http://www.w3.org/TR/xpath/) for a complete
description of XPath 1.0.

Definitions

Node

A node is a node in the tree structure that makes up an XML document. There are several types of
nodes, e.g. element, attribute and text;

<element attribute="">text</element>

In a JSON/XML database, every node is stored in a tuple (associated subfields across more than one
field), with an optional associated text value in a part record with the same number as the tuple
(subfield) number.

Node Set

A node set is what an XPath expression evaluates to. A node is usually an element, an attribute or
text. Every node in a node set "knows" from which position in the document it comes, and can
therefore be used as context for further XPath expressions.

In TRIP terminology, a node in a node set is a reference to a specific tuple, or subfield, in a record in a
JSON/XML database.

Location Step

Every location step is an XPath expression in itself, and as such it has a context. A context is the XML
node(s) relative to which the expression is to be evaluated. A bit like "../../somedir" in a file system is
relative to the current directory.

A location step consists of the three parts axis, node test and predicate in the form
axis::nodetest[predicate].

1. An axis determines the direction of the selection that the expression is to go, relative to
context.The most common axis type is "child". The child axis says that the expression
matches nodes that has the context node (or nodes) as direct parents.

2. A node test makes a selection of nodes from the specified axis. A node test can be the name
of an element, a node type, a wildcard, etc.

3. A predicate is a filter of sorts. It further limits the set of nodes that matches the location path
expression. This filtering can be made in many different ways. A common one is to specify
specific attributes and values of specific attributes. Only the nodes that matches the condition
of the predicate will be included in the final node set for the current location step.

For example, in the expression:
child::para[position()=1]

child is the axis, para is the node test and [position()=1] is the predicate. In plain English, this means
"select the first para element that is child to one of the nodes in the context node set".

http://www.w3.org/TR/xpath/)

JSON AND XML DATABASES

Page 22 of 29

Axis Types
Axis Description

child Selects of nodes that are direct children to nodes in the
context node set.

attribute Selection of nodes that are attributes to (element) nodes in
the context node set.

descendant Selects nodes that have any of the nodes in the context node
set as parent or ancestor. In other words, this selects the sub
trees where the nodes in the context node set are roots.

ancestor Selects nodes that are parents or ancestors to the nodes in
the context node set.

ancestor-or-self Selects nodes that are part of the context node set, or are
parents or ancestors to nodes in the context node set.

descendant-or-self Selects nodes that are part of the context node set, or have a
node in the context node set as parent or ancestor.

self Selects all nodes from the context node set.

following-sibling Selects nodes that have the same parent as any of the nodes
in the context node set, and are located after the context
node in question.

preceding-sibling Selects nodes that have the same parent as any of the nodes
in the context node set, and are located before the context
node in question.

parent Selects nodes that are parents to nodes in the context node
set.

following Selects all nodes that follows the nodes in the context node
set.

preceding Selects all nodes that precedes the nodes in the context
node set.

Functions

The following functions are supported for use in predicates:

Function Description

position() Evaluates to the position of a context node. Must be used as
an lvalue in a comparison. For example:

//child::para[position()=1]

which also can be written as:

//child[1]

last() Evaluates to the last node in the context node set. Must be
used as an rvalue in a comparison with position(). For
example:

//child::para[position() = last() - 1]

Which selects the second-to-last node from the context node
set.

JSON AND XML DATABASES

Page 23 of 29

Predicate Usage

The existence of an attribute

TRIPsystem supports the following predicate syntax for checking if an attribute exists. These
expressions are equivalent:

[@ID]

[attribute::ID]

Applied to a location step, this limits the selected nodes to those that have the specified attribute ("ID"
in this example).

Attribute value check

The most common predicate is probably the one that checks the value of an attribute. These
expressions are equivalent:

[@lang="EN"]

[attribute::lang="EN"]

Applied to a location step, this limits the selected nodes to those that have the specified attribute with
the specified value.

Exact text node contents

Whether or not to use an attribute or a text node under an element to represent a particular value is in
many cases not a clear-cut choice. The equivalent of doing an attribute value check for the text
content of an element is this:

[. = "Enterprise"]

[text() = "Enterprise"]

Applied to a location step, this limits the selected nodes to those that have exactly the specified value
as their text contents. No truncation is performed.

Truncated text node contents

The only XPath function supported by TRIPsystem that can perform a truncated search is the
contains() function. If there is a text node that contains "they welcomed us to their party", then we can
use this predicate expression:

Function Description

contains(nodeset,value) Selects nodes that have TEXT contents (as descendant
nodes) that contains the specified value. For example:

//sect1[contains(para,'welcome')]

This expression selects sect1 elements that have para
children that contains TEXT nodes in which the word
"welcome" can be found.

JSON AND XML DATABASES

Page 24 of 29

[contains(.,"welcome")]

[contains(text(),"welcome")]

Applied to a location step, this limits the selected nodes to those that have exactly the specified value
as their text contents. No truncation is performed.

Truncated attribute text node contents

A variant on the truncated text node contents, we replace the first argument of the contains function
with an expression that evaluates to an attribute.

[contains(@name,"TRIP")]

[contains(attribute::name,"TRIP")]

Applied to a location step, this limits the selected nodes to those that have an attribute "name" whose
value contains "TRIP". So, we would for instance be able to find "TRIPjxp" this way.

Comparison Operators

All the six normal comparison operators are supported; =, !=, >, <, >=, and <=.

Note that comparison is always text based. This means that a non-equi comparison with numerical
data may not yield the expected results.

Node position

Perhaps more useful in fragment retrieval than in querying, limiting the node set by node position is
also possible with TRIPsystem. The functions position() and last() can be used here, as well as the
abbreviated form of just using a number

Selecting a node at a specific position from the context node set, the following expressions are
equivalent:

[position()=1]

[1]

Selecting a range of nodes:

[position() < 10]

Selecting The last node in the set:

[position() = last()]

[last()]

Verifying that the context node set has a certain size (here exactly 2 nodes):

[last()=2]

Selecting nodes at the end of the set, e.g. the last two ones:

JSON AND XML DATABASES

Page 25 of 29

 [position() >= last() - 1]

Multiple predicates in a single location step

The keywords "and" and "or" can be used within a predicate. Multiple predicates can be listed one
after the other within the same location step, in which case there is an implicit "and" operation between
each predicate.

This combination exemplifies both variants:
[@type="S" or contains(.,"TRIP")][position()<10]

This would select the first nine elements that either have an attribute "type" having the value "S" or
contains the text "TRIP".

Additional Examples

Expression over Axis "child"

The following expressions are equivalent:

/child::doc/child::sect1

/doc/sect1

Expression with axis "attribute" in predicate

The following expressions are equivalent:

/child::doc/child::sect1/child::title[attribute::ID="chhist"]

/doc/sect1/title[@ID="chhist"]

Expression with axis "parent"

The following expressions are equivalent:

/descendant-or-self::node()/attribute::ID/parent::*

//@ID/..

Expression with multiple axes in a predicate

This selects the "para" elements that are located somewhere under a "sect1" element whose direct
child element "title" has an attribute "ID" with the value "chhist":

//para[ancestor::sect1/title/@ID="chhist"]

Expression with axis "descendant" and multi-axis predicate

Here we want the "para" elements located somewhere under a "sect1" element whose direct child
element "title" has an attribute "ID" with the value "chhist":

JSON AND XML DATABASES

Page 26 of 29

//sect1[title/@ID="chhist"]/descendant::para

Expression with axes "ancestor-or-self", "parent" and "descendant"

This expression selects the "sect1" elements under which there is an element "title" whose attribute
"ID" contains the text "hist". Furthermore, we want to make sure that there are "para" elements under
the selected "sect1" elements, and that these "para" elements or one of their ancestors have an
attribute "lang" with the value "EN".

//para/ancestor-or-self::node()[@lang="EN"]/
descendant::title[contains(@ID,"hist")]/parent::sect1

Note: this is all a single, long line. The line break is for clarity only.

JSON AND XML DATABASES

Page 27 of 29

Appendix E – The jxtool

This appendix describes the jxtool command line program provided with TRIPsystem as a simple CLI
interface to manage and use JSON/XML databases and experiment with XPath based queries.

Introduction

Purpose and Use Cases

While TRIPclassic and TRIPmanager can be used for administering JSON/XML databases, the jxtool
allows such administrative tasks to also be done from the server-side command line. These tasks
include creation and deletion of JSON/XML databases, and the granting and revoking of access rights
to such databases to/from users and groups.

TRIP applications using JSON or XML data will normally use the APIs in TRIPjxp or TRIPnxp to store
and retrieve such data. The jxtool is an alternative for scenarios that involve server-side importing
and/or exporting of JSON and/or XML files.

The third functionality are of the jxtool is its use as a simple, exploratory XPath query interface that can
be used to query JSON/XML databases. The main intended use case for this is as an aide to develop
and try out XPath query expressions for subsequent use in in TRIPjxp or TRIPnxp based applications.

Command Line Interface

Argument Description/Usage
-u username The name of a TRIP user with which to authenticate.
-p password The password of the specified TRIP user
-d database The name of a JSON/XML database to administer or query
-g userOrGroup Grant READ access to the specified database to this named TRIP

user or group.
-G userOrGroup Grant WRITE access to the specified database to this named TRIP

user or group.
-x userOrGroup Revoke access to the specified database from this named TRIP

user or group.
-s location Storage location for the named database. Used with the argument -

-create if the default TDBS_BASES location is not desired.

-f filename Name of JSON or XML file to import or write, used with the
arguments --get and --put.

-r rid Record ID of JSON or XML record to retrieve.
-m format Document format for import and export, used with the arguments --

get and --put. Valid values are “json” or “xml”.

-i [scriptfile] XPath query script to execute. Omit the scriptfile argument value to
read from stdin.

--create Create a JSON/XML database
--drop Delete a JSON/XML database
--get Retrieve JSON or XML document, as specified using the -r rid

argument.
--put Store a JSON or XML document, as specified using the -f filename

argument.
--split-array Split an input JSON array into separate records (with --put)

--quiet Run in quiet mode; no prompts or other messages.
--echo Echo input statements to stdout. Used with the -i scriptfile

argument.

JSON AND XML DATABASES

Page 28 of 29

Administration

Create a JSON/XML database by authenticating as a user with file manager (FM) rights and specify
the name of the database to create, optionally with a storage location.

 jxtool -u username -p password -d myjsondb -s TDBS_BASES --create

Similarly, to remove a database:

 jxtool -u username -p password -d myjsondb --drop

Granting read or write access to the database can be done at the same time as the database is being
created:

 jxtool … -d myjsondb --create -G jsonupdaters -g public

Or separately, at a later stage:

 jxtool … -d myjsondb -G jsonupdaters -g public

Similarly, to revoke access from a database:

 jxtool … -d myjsondb -x public

Note that when removing a database, explicitly revoking access to it is not required since the removal
operation will take care of also removing any and all access right records associated with the
database.

Importing and Exporting XML and JSON documents

The jxtool utility can be used to perform server-side imports and exports of JSON and XML
documents, one document at a time. While not designed for bulk operation it can be used in similar
scenarios.

To import an XML document:

 jxtool … -d myjsondb --put -m xml -f mydoc1.xml

To import a JSON document:

 jxtool … -d myjsondb --put -m json -f mydoc1.json

Omitting the -m argument causes jxtool to try to determine the file format itself.

 jxtool … -d myjsondb --put -f examinethis.json

Regardless of source format, the file is stored in such a manner that the same record can be exported
as either XML or JSON. For example, assuming that the JSON or XML file to export resides in record
42:

 jxtool … -d myjsondb --get -r 42 -m xml -f retrieved.xml

 jxtool … -d myjsondb --get -r 42 -m json -f retrieved.json

Bulk Import

Importing a JSON document that at its root is an array, jxtool can via the --split-array argument

be told to import each element in this top-level array separately. A JSON document with an array
holding ten objects, will therefore result in ten records being added.

This kind of bulk import requires that the array elements are either objects or arrays themselves. If the
top-level array contains elements of other types, the import will fail with an error message saying
“unable to split JSON array containing atomic values.”

JSON AND XML DATABASES

Page 29 of 29

For example, if we have a JSON document with the following contents:

[

 {

 "id":1,

 "first_name":"Jeanette",

 "last_name":"Penddreth",

 "gender":"Female"

 },

 {

 "id":2,

 "first_name":"Giavani",

 "last_name":"Frediani",

 "gender":"Male"

 },

 {

 "id":3,

 "first_name":"Noell",

 "last_name":"Bea",

 "gender":"Female"

 },

 {

 "id":4,

 "first_name":"Willard",

 "last_name":"Valek",

 "gender":"Male"

 }

]

We can import it into four separate records using jxtool:

> jxtool … -d myjsondb --put --split-array -f bulk_example.json

Found 4/4 valid elements

Sub-document #1 imported as record #1

Sub-document #2 imported as record #2

Sub-document #3 imported as record #3

Sub-document #4 imported as record #4

XPath Based Querying

Starting jxtool with no other arguments than username, password and database name, causes it to
enter into a simple XPath query mode. The following commands are available here:

Command Description/Usage
HELP; Show list of available commands
BYE; Logout and exit the jxtool
BASE database; Open different JSON/XML database
XGET query fspc; Execute an XPath query and fetch the specified fragments
XFIND query; Execute an XPath query
[NO]EXECUTE; Toggle execution of parsed XPath statements.
[NO]HIGHLIGHT; Toggle highlighting of results

The XFIND command can be used to query JSON/XML databases. The XGET command extends the
XFIND by also allowing the retrieval of a fragment set, where the data to fetch from each found record
is defined by a second XPath statement.

	Introduction
	About this Document
	XML
	JSON

	Installation and Upgrade
	Features
	Overview
	Design
	Overview

	Storage Structure
	XLink and XInclude support (removed)
	Querying and Search Results
	Application Programming

	How-To
	Create a JSON/XML database
	Via TRIPclassic
	Via TRIPmanager
	Using jxtool

	JSON/XML Database Character Set
	Migrating Non-Unicode XML Databases

	Query the Database
	Using CCL
	Using XPath

	Use the Toolkit API Calls
	JSON/XML C API Functions
	Backward-Compatibility Functions
	TdbImport
	Memory buffer import
	File-oriented import
	Stream-oriented import
	Validation

	TdbExport
	Memory buffer export
	File-oriented export
	Stream-oriented export

	Client-Side API calls
	TRIPjxp and TRIPnxp
	TRIPclient (TRIPcom)
	TRIP Java Toolkit

	Appendix A - API Reference
	The filter_data structure

	Appendix B - Encodings
	Supported Encodings for XML Documents
	Supported Encodings for JSON Documents

	Appendix C – Settings for tdbs.conf
	Appendix D - Supported XPath Syntax
	Definitions
	Node
	Node Set
	Location Step

	Axis Types
	Functions
	Predicate Usage
	The existence of an attribute
	Attribute value check
	Exact text node contents
	Truncated text node contents
	Truncated attribute text node contents
	Comparison Operators
	Node position
	Multiple predicates in a single location step

	Additional Examples
	Expression over Axis "child"
	Expression with axis "attribute" in predicate
	Expression with axis "parent"
	Expression with multiple axes in a predicate
	Expression with axis "descendant" and multi-axis predicate
	Expression with axes "ancestor-or-self", "parent" and "descendant"

	Appendix E – The jxtool
	Introduction
	Purpose and Use Cases
	Command Line Interface

	Administration
	Importing and Exporting XML and JSON documents
	Bulk Import
	XPath Based Querying

