8%% SMASER

Aktiengesellschaft

Smart IT-Service Foundry

TRIP Administration with TRIPmanager

TRIPsystem
Product Documentation

Copyright © 2020 Smaser AG

TRIP ADMINISTRATON WITH TRIPMANAGER

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by Smaser AG (Smaser) are exclusively owned
by Smaser.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of Smaser. Furthermore, the customer has the right to use licensed Software
and / or process solutions supplied by Smaser to the extent specified in his contract with
Smaser.

The free-to-use non-commercial version doesn’t require a prior written agreement with
Smaser but such customers, organizations and/or third parties agree by using the software
and / or solution of Smaser to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

Page 2 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

ADOUL THIS GUITE ..o 11
SCOPE ANA ASSUMIPLIONS. ...uuuii e eeeeeeeiiiie e e e e e e e e e e ettt s s e e e e e e e ea ittt aeeaaeeeeerraaaas 11
ENd USer LICENSE AQIEEIMENT ... 11
The TRIP Documentation LIDFaryoooevviiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 11
The Structure Of thiS GUITEoeuieiiii e e 12
Conventions Used iNthiS GUIEccooeeeiiii e 13
TRIP Naming CONVENLIONScuuiiiiiii e e e e et e e e e e e e e ae e aeees 14
IR 0T o= | I A F= T U= 14

Part 1: Database AAMINISIratioNcooiviiiiiiiiie e e e e e 15

Chapter 1: FUNAAMENTAISuiiiiiiiiiiiiiiiiieiiee e nnnnnnne 16
Navigation Within TRIPMENAGETccoiieeeeeeeeeeeeeeee s 16
TRIP SYSIEM BASICS ..evviuiiiiiiieiieeiiie et s e e e e e et e e e e e e e e e e aae e e e eaes 17

INEFOAUCTION .. e e e e e e e aeas 17
Data MOGEIScooeeeeeeeeee e 17
Data OrganiSatioNcooiiiiieie e 19
TRIP FI@I TYPES ettt nnsnnnes 20
The CONTROL DAtabhaSeccuuuuiiiieeeiiiieiiiiia e e e e ettt s s e e e e e e e eeantn s s s e e e eeeeeneennns 22
TRIP Manager PrVIIEJESoooiiiiiie e e e e e e e e 22
TRIP Database BaSICSccevviiiiiiiiiiiiiiiiiiieeeeeeeee ettt 22
RECOIAS. ... 22
L1 Lo 1 U od 11 €= PSSP 25

Chapter 2: DALAD@SESuueeiiiiiiiiiiiiieiiiiiiieeiee bbb e bbb eb bbb bbb b e e e nnnnes 27
NOLES ON File LOCALIONS.....ceiiiiiiie et e e e et a s e e e e e e e eeeaenn e e eeeaeeennnes 27
Creating the DAtabaSseiii i e 27
General Database Properti€s.........oouuiiiiiii et 28

Database NamMe ... 28
Physical File LOCAtIONS........ccooiiiiieieeeeeeeee e 29
TTANSACTION LLOQ +.ttttttttitiiiiettttiitettee ettt 29
XML Enabling the Database...............uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeenees 31
Description of the DAtabasecouuiiiiiii e 31
Saving the database deSIgNvviiiiii e e 32
Modifying Database ProPertiesouuiiieiiiii et e e e e eaaeees 33
Database Properties (1) — General...........ooooooiiiiii 33
Database Properties (2) — Files.......oooo 37
Database Properties (3) — INdeXiNgcoovviieiieieeeeeeee 39
Database Properties (4) — LINKSuuuiiiiiiiecee et e e 52
Database Properties (5) — AQVANCE............oooeiiiiiiiii e eaaens 54
L T (o I 7= 1 71 o o USSP 58
Defaults and RESIHCHIONSiiiiiiiieeeeiiee e e e e e e e e aeaene 58
The Modify Fields COolleCtion FOMMuuuuiiiiiiiiiiiiiiiiiiiiiiiiieiiieeeeeeieeeeeeeeeeeeeeeeeeeeaees 58
Saving a field deSigN ... 72
Committing field designs and changes to the database...............cccoiiiiiiiieiiinn. 72
Deleting a field deSIgnNcuuuuiiii e e e e e e e e e e e aneees 73
Saving a Database DeSIgN........cooiiiiiiiiiie e 73
Modifying @ Database DESIGN......cccooeieeeeeee e 73
Deleting a Database DeSIgNccooi oo 74
Copying @ database DESIQNccoeiiiiiiiieeeee e 74
Related CCL COMMANTAS ...oouiiiiiee e e e e e et a e e e e e e eeeeaeenaaaeeeeaeeeneee 76
Y = LU L TP TP TUPPPTTRTPPPPIN 76
05 210 PP 76
PN e 76

Page 3 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

IMPOIt AN EXP O ... 77
Database ClUSTEIS. ... 77
Creating @ CIUSTENooiiiiiieieeeeeeeee ettt 77
Modifying a Database CIUSLENcoooi i 79
DeletiNng @ CIUSTET ... 81
Related CCL COMMANTS ... 81
(O T o] (= g A I 1= T Y= LU | PSPPI 83
LT = L RS T I 4TS 10 U 83
A SIMPIE TNESBUIUS ...ttt e e s bbb ssnnnnnnnes 84
Creating @ TNESAUIUS........coo e 86
TRESAUIUS STTUCKUIE.....eeeii e e et e e e e e ettt e e e e e e e e e e eaetaa e e eeeeas 87
[T = N = 1Yo U | PSPPI 87
Thesaurus Database DESIgNuiiiii i 91
General TheSAUIUS PrOPEITIESuvvuuiiii et e et s e e e e e e e raaa s 91
Special Thesaurus FIeldsoovviiiiiiiiiiiiie e 91
= = T PSSP 91

(O T = (o (=]] £ PP 91
Description of the ThESAUIUS............uuiiiii e e e e eanees 91
Other TheSaurus ProPertiESuuuoiii i e et e e e e e aa s 91

Field Definitioncooo e 91
FlliNg THE TRESAUIUS ... 92
USING TROIMMN . 92
USING DAtA ENMIY ... 92
Related CCL COMMANTS ... 92
Y = LU L ST PP TUPPPTTRPRPPPIN 92
SOW ... 92

LAY @ T 7 = ¢ S 93
Chapter 4: System Logging FUNCHONS..........uuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieebeieeeeebeeeeeeeeeeeeeeeeneeee 94
(@ YT = PP 94
Activating System Accounting FUNCLIONS.........ccoiiiiiiiiiiiicec e 94
Assigning Field Costs fOr ACCOUNTINGuuuuiiiii e 94
Accounting function Logical NamES...........ceiiiiiiiiiiiiiiees e 94
Accounting LOg File FOMMAL...........uuuiiiiiiiiiiiiiiiiii e 96
EVENE IOGGING - 99

L@ Y= = PP 99

How to Enable EVENt LOGQINGcoouiiiiiiiieeeiieeeiee et e e e e e eanees 100
PAIAMELEIS ... ettt e et e e e e e et e e e eaa s 100
LY L= o o o T 11 1 0 LU 101

Log File Location and NamMe...........ooooiiiiiiiii 102

= L A oo] 1 0 0SSP 104
Chapter 5: TRIPclassiC Data ENtry FOIMISuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiniieiiieeeneenennnenenneneenee 105
Creating and Modifying TRIPclassic Data Entry FOrmscoooviiiiiinieeie. 106
Copying TRIPclassic Data Entry FOrMSooooiiiiiiiiiiee e 106
Deleting TRIPclassic Data ENtry FOMMScooiiiiiiiiiiie e e e 108
Chapter 6: ReportS / OULIPUL FOMMIALSuuuuuiriiiiiiiiiiiiiiiiiiiiiiiiiieieiseeeesseeeeneeeneneeneeneeeenee 109
THE REPOI....coiiiiiiiiieiieee et 109
COPYING REPOITS ... 111
(DT =] 1] o o T U= o o o £ O RUPPPRPR 111
Creating @ NEW REPOI e e e et e e e e e e eeeeannes 111
Defining LAYOUL BOXEScooiiiiieei e 114

Page 4 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

(2T Tod (o (o 10 o I =) SRS 124
FUNCHIONS ...ttt e e e e e e e e e e e e s 130
Page CONMIOLo 142
Output Formats for Database CIUSIEIScoooeiiiiieie 144
Related CCL COMMANTS ... 145
Output Format Reference GUITEeeiiieiiiieeiee e e 146
SAPPENDS ... 146
SAT _END > et e e 148
B A S .. e e 149
SCALLS—FOMMI@L. ... e e e e e e e e e e e ern e e e e e e e ennnes 150
SCALLS—TEXE SHING . ceeitiiieiiiiiiiie ettt 152
SCASE> ... 153
SCHR > et e e 155

QO L A S S et e e 156
SCURDATES ..ttt e ettt e e e e e e e ettt e e e e e e e e e e annbene e 157
SDATEFORMS ...ttt e e e e e et e e e e e e e e aanbeee s 158
1= I PP PRTRRTPPI 160
N TP P PP PP PP PP PPPPPP PPN 161

S L0 = S o T o TSP 163
SHIT L S T > et e e e e e e e e e e e e e e e e 166
o | IS PP PRPRR PPN 168
SUF-CHANGED......ceiiiii ettt e e e e et a e e e e e e aanbene s 169

U B P T Y > ettt e e e e et e e e e e e 171
SIF-NONEMPTY > Lot e e e e e e e e e 172
SIF-UNCHANGEDS ...ttt e e e e 173
SINDENT > Lttt e e e e ettt e e e e e e e e r e e e e e e e e e 175

S I 1N PPPRPRR TP 177
N[PP PPRPRRP 180

S N[] RO PPRPTRPP 181
SNOORIGS ...ttt e et e e e e e e e e e e e e 182
SNUMPEORM L.ttt e e e e e e e e e e 184
O C S et e e e et a e e e e 186
SONCES ..ottt e e e e e oottt e e e e e e e e bbbt e e e e e e e e e e nnreee e 187
CORIG ..ottt e et e et a e e e e e nane s 188
SPAGENOD> ...ttt e e e et e e e e e e naaae s 190

P AR T S et a e e 191
SRIDS ettt e et a e e e e 192
QRIS > et e e 193
SRINAMES ...ttt e e e e e r e e e e e e e e 194
SSORTHFIELDSS ...ttt ettt e e e e e e st e e e e e e e e e annneeeees 195
SSUBRIDS ...ttt e e e e e e ettt e e e e e e e e bbbt e e e e e e e nraae s 196
SSUBSTRINGS ...ttt e e e e e e e e e e e e annene s 197
STEXEVANIADIES> ..o 198
STRACKES .. ettt e e ettt e e e e e r e e e e e e e e 199
STIMEFORMS ...ttt ettt e e e e e e e st e e e e e e e e e e anneeaees 200
VAT (] I PP PPPRRRPP 201
Chapter 7: SEArCH FOMMS. uiiiiiiiiiiiiiiiiiiiiiiieieibiebbbe bbb bbb eeebebeeeenennnnnes 202
Creating and Modifying TRIPclassic Search FOrmMS............cccooiiiiiiiiiiii e, 203
Copying TRIPclassiC Search FOIMSoooiiiiiii e 203
Deleting TRIPclIassiC Search FOMMSiiii i e e 204
Part 3: BatCh UPdAtecooovviiiiiiiiiiiiiieeeeeeee e 205

Page 5 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Chapter 8: GIobal UpAatingoiiiieiiiiiiiiies e e et e e e e e e e e e e e aeaanes 206
COMMANT OVEIVIEW.......ccoeeieee e 206
Updating Using Record NUMDEIS ..o 207
Updating Using a Search RESUIt ... 210
Global Updating of Part RECOIS.........coooiiieeieieeeeeeeeee 214
Copying With Global Updateuuiiiiiieiiecee i 214
(O YIS T=T 0151111V, PP 215
B L= 0T T 1= S 216
ErTOr CNECKING .. 216
Chapter 9: Loading, Indexing and ReIiNAEXINGuuuuummmmmmmmmmmmiiiiiiiiiiiiiiiieiieeneeennnns 217
8o LGOS 217
[IoT=To Jr=Tolo I I T=To /1 1 oo =) QTR 218
ChecKing the RESUILSccuuiiiii e e e e e e e e e raaaas 219
[o] g 0T [11 o [P PO URSPPPPPRR 219
Reindexing @ Databasecccooiiiieeeeee e 219
When BatCh JODS Fallcooveiiiiiie e e e 220
On UNIX and WIiNAOWS SYSTEIMSccovviiiiiiiiiiiiiiiiiiiiieeeeeeeeee ettt 220

ON UNIX SYSIEMS ONIY ..vviiieccciceeee e e e e e e et e e e e e eeaenes 220
Part 4: Database SECUILY.........cuuiiiiii e e e e e e e e e e e e e r e aeaaas 221
Chapter 10: USEr PriVIIEES.uuuiii ittt s e e e e e e aat e e e e e e e e aannes 222
TRIP’s internal ACCeSS PriVIlEges.........coovviiiiiiiiiiiiiiii 222
The TRIP SYStemM MaNAGETuuuiieiiiiiiiiiiiiiiiiiiiiiieiaeeeieaeiebsaeeeeesneeeeeeseeseeeeeeeeeeeaenes 222
The TRIP ‘Superman’ Logical Nameuuuuumiiiiiiiiiiiiiiiiiiiiiiiiiieeiiiieeeeeeeeeeenes 222
TRIP File and USEr MaNaAgErSceiieeeiiiieiiiiie s e eee ettt e e e e e ettt s e e e e e s aennnaaas 222
THE TRIP USEI GIOUP ..uuiiieeiieeetiiee ettt s e et e e e e e e e e e e e a e e e e e e e e e eeeneaaanaas 222
The Individual or ENd USEer in TRIPuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeiinineeeeennnneneneennnnnnne 223
Creating @ NeW TRIP USEIccoo i 224
Deleting @ TRIP USEI . ..o 225
USEI PIOPEITIES ... 227
User Properties (1) — GENEIAluuuiiiiieeiiieecce et e e e aanans 228
User Properties (2) — ProCERAUIESuiii it e e a e e e eanans 230
User Properties (3) — GIOUPSoouuuiiiiiiieeeeieeeiiee e e e e ettt e e e e e e e e e eaatta e s s e eaeeeeannes 231
User Properties (3) — ACCeSS RIGhIS.......coooviiiiiii, 232
Creating @ USEI GIOUPcooeeee e 232
Deleting @ USEI GrOUP......cooiiieeeeee e 233
Adding a Group MEMDETuve e 234
Deleting @ Group MEMDIET e e e et e e e e e eanaes 235
Transferring User ReSPONSIDIlitYccoooiiiiiii e 235
Related CCL COMMANGASuvveiiiiieeiieeiiiies et s e e e e e et a s s e e e e e e e aaetaa e e aeaaaeennnes 237
S 1 0 PSSR 237
1 SRS 237
Chapter 11: ACCESS RIGNTS ... e e e e e e e et a e e e e aeeeneees 238
Database Access RightS DefiNitioncooiieoiiiiiiiiiiii e e 239
D= 1= o F= L= SRR 239
USEIE / GIOUP ..o 239
GENETAl FIEIA ACCESS ..ovviiii e ettt e e et s e e e e e e e e e et e e e e eaaeeeannes 239
Only Selected FIeldS ACCESScuuviiiiiiiiiiiiiiiiiieeeeeeeeee e 241
RECOI-LEVEI ACCESS ..ot e e et eeeeeeeeenes 241
The Hierarchy of AcCess RIGNLScooiiiiiiii e 243
Database ClUSIEr ACCESS ...ttt e e e e et a e e e eeeeeeeees 243
About Read-Protected Fieldsuuuiuiiiiiiiiiiiiiii e 243

Page 6 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Transferring Database OWNEIShIP......ccooooiiiiiiiiie e e 245
Related CCL COMMANTS ... 245
0] 210 PP 245
1 SRR 246
Part 5: The ENVIFONMIENL.......ooiiiiiiiiie et e e e et a e e e e e e e e eeeeenaaeaeeaeas 247
Chapter 12: ENVIFONMENT SELUDcciiiiiiiiiee e e ee et e e e e e et s e s e e e e e s eeaaea e e e e eaeeeaanees 248
The Configuration File tdbS.CONT........ccoi i 248
Location of tdDS.CONT......ooiiiiii e 248
Configuration File LOOKUP 0N WINAOWSccovviiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeee 248
Configuration File LOOKUP 0N UNDXooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeee 248
Effects on System AdmIniStrationcooooeiiii e 248
Effects on Installation ProCedures ... 248
o1 (o] ST (U o PO USSPPPPPRRN 250
Printer Queues and Printer Control FIleS........cooovvuiiiiiiieiieieeeee e 250
Specifying Non-Printable Characters............cccovvvviiiiiiiiiiiiiiieeee 251
More About Translation TabIESiiii i e e e eaenes 251
LOGICAI NAMES .. 253
UN DX 253
WVINAOWS . 253
TRIPsystem Logical Names Reference (TDBS)ccoovviiiiiiiiiieeeceeeceee e, 254
O O] 1 254
O @1 255
S = 257
AUTH_PROVIDERL.. ...ttt sssssssssnnnnes 258
AUTO _SAVE ..o nn s nn e 259
BAFFIT _SECURITY .o 260
BAFFRE _TIMEOUT ..ot e e e e e e e 261
BOLD_COLOR (WINAOWS ONIY) oo 262

O B I 1N I 1 263
CHARS .ttt 264
CHIVOC ...ttt ettt et e e e e e e e e aeaeees 265

O PP 266
CODEPAGE (Windows TRIPCIaSSIC ONlY)ccovvviiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeee 267
COM et 268
CONFLATOR _LANG ..ottt e e et e e e et e e e aes 269
CONFLATORS. ..ottt ettt ettt e e e e e et e e e e e e e e e eaeees 270
3 I PP 271
DEFATTR (UNIX ONIY) oo 272
DEMO ..o e aaaas 273
DISALLOW _GUEST ..ottt et e et e e et e e e e et e e e e aaa s 274

(D] S o I A O 1 [PR 275
EDIT (TRIPCIASSIC ONIY) .. e e e eeeees 276
ERRMAILST (UNIX ONLY) oo 277
EXE 278
FIND _THMEOUT ..ttt ettt e e e e et e e et e e e e et e e e e aaa s 279
GLBUPD_OPEN_DB_ONLYoouriiiieiieeeeieee ettt en e 280
HOME ...t e e aaaas 281
LAN G 282
LDAP_ANONYMOUS ... 283
LDAP _BASE ... 284
[N YN 4 o PR 285
LDAP_MECHANISM ... 286

Page 7 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

LDAP_PASSWORDttt 287
LDAP_SEARCH ..ottt 288
LDAP_SERVER ..ottt e 289
LDAP _TIMEOUT ..ttt e e e e et e e e e e e e e e bneeeaaeas 290
LDAP_USERNAMEttt e e e e e e as 291
LOG ettt e e e e 292
LONG_PHRASE ...t 293
MAX _ALLO_MEM ...ttt e e 294
MAX _THREADS ...ttt e e e e e e e e e e e e rreeaaeas 295
NO_GLBUPD_INDEXuittiiitiiiaaiiaiitie ettt e e e e e st e e e e e e e e e snnnnneeeaaeas 296
OVFBURSZttt e e e r e e e e e e e naeee s 297
PRC (UNIX ONIY) ettt e e e e e e e e e e e e e e e e e eannes 298
P RIN T et e et e e e e e et e e e as 299
PRINTUSER (WiINAOWS ONIY) ...ttt e et e s e e e e e eanees 300
PUTBAF _TIMEOUT ...ttt e ettt e e e e e eeaeeas 301
RE S T AR .ttt e e e e e ettt e e e e e e e e b bt n et e e e e e e e e n e aaae s 302
SCRATCH. ..ttt e e e ettt e e e e e e e e bbbt e e e e e e e e e s nnbane s 303
] | PP PP PP PPPPP PPN 304
1@] L PP P PP PP PP PPPPPRPPPPN 305
SPAWN ...t e e a e e e e 306
STO_LOCATION ..ttt ettt e e e e ettt e e e e e e e e bbbt e e e e e e e e e e ananrenees 307
STOP_WORDS. ...ttt e e e e e e e bbbt e e e e e e e e e e aanbeeees 308
SUPERMANttt ettt e e e ettt e e e e e e e e e bbbt e e e e e e e e e s e nnbane e 309
) S T PP PP PPPPP PP TPPPPN 310
TERMINAL (UNDX ONIY) .ttt 311
TERMLIM ..ottt e e e e e e 312
TRM (UNIX ONIY) ottt e e n et n et en s eeee s seese s s seneeas 313
TRMBURFSZ ...ttt e et e ettt e e e e et e e e e et aeaaees 314
TRIPserver Logical Names (TBS_) ...covviiiiiiiiiiiiiiiieeieeeeee e 315
A S E ettt e e e e e e e e e e 315
AT G ittt e et a e e e 316
COMPEORTER ...ttt ettt e e e e e e e e e 317
CONV ittt e ettt e e e e e e e ettt et e e e e e e e bbbttt e e e e e e e e e nnaeae e 318
DIR (UNIX ONIYY .ottt n et eseaeeees s sensesn s sanneen e, 319
HOSTINI <ttt e e e e e e e st e e e e e e e e e nnbeneeeaaeas 320
MAP (UNDX ONIY) ¢ttt e e e e e 322
MAP_DIR (UNIX ONIY) .ttt e e a e 323
SCRATCH (UNDX ONIY) ittt e e 324
TIME O U T e et e e ettt e e et s e e e eet e e e eat e e e e et aeaaees 325
TripDaemMonHOSt (WINAOWS ONIY)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeeeeeeeeseeeneeeeeeeeeeenee 326
TripDaemonPOort (WINAOWS ONIY).......uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieeeeneeeeeeeeeeneeeneeeeeeeeee 327
THPNEIPOI. .. e e e e ettt e e e e e e eeeeaa s 328
UNIXLOGIN (UNIX ONIY) 1.ttt e e e e e e 329
Part 6: Appendix and INAEXo.uuuuiiie e 330
APPENIX A 331
General Settings, Limits and Defaultsoouvviiiiiiiiiiiecce e 331
Support for the Euro Currency SYmbBOl..........cooovvviiiiiiiiiiiiiiiiiieeeeee 331
Searching for the Euro symbolcoooo e 331
Support for the Chinese character set GBK...........ooooiiiiiiiiii e, 331
Limit to TRIPclassic CCL Command Length..............cooooiiiiiiiiiii e, 331
No Limits to Database and Index File Sizesccccooeeiiiii, 332
Limit to the Number of Search Sets...........ccccoiiiiiiiiii 332

Page 8 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Limit to the Number of Open Databasesccceeiieieiiiiiiiiiii e, 332
Defaults for the DEfine command..............coooooiiiiii 332
TRIPserver Crash Handling (Windows ONlY)uvuiiiiiiiiiiiiiiiiiiiiiiiiiiiiineeieieeeeenes 333
APPENIX B 334
Obtaining Version and License INformation ... 334
TRIPmanager mmc Version Information..............cccoevviiiiiii e, 334
TRIPsystem Version INformation..............cuiiiiiii i 335
TRIP Product License INfOrMatioN.............uuuueuereriiiiiiiiiiieiiesieieenenennenennneeneeneeees 335
Updating a TRIP Product LICENSE KEYccooieiieiieieeeeeeeeee 335
TRIP User Account Validation Methodscooiiiiiiiiiiiii e 337
OVEBIVIBW ...t e ettt e ettt e e e e e e e et e ettt a s e e e e e e ee ettt e e e e eeeeeeeenssnnaaaeeaaeeennnes 337

LD AP 337
Local System Validationccooiiiiiiiiiii e e e eaanes 339
TRIP Standalone USEIMaAMIES.......uuuuuuuuueureieiueernneuenennennnnnnnssnennnnsnennnnsenesenseen 340
Connecting t0 TRIP SEIVEIS......coo oo 341
Server CONNECLION OVEIVIEWuuuieiii e eeeeeeetiteas e e e e ee e eettetaaa s e e eaeeeeaasenaasaeeaaeeennnes 341
Creating a Server CONNECLIONcuiiiiiiiiiiiiiiiieieeeeeeeeee ettt 342
SpPecCifying CredentialS..........ocei i e 344
Logging into the New Server CONNECLIONuieiieeeiiiiiiiiei e e eaeans 346
TRIP GIIOS .ottt e ettt e e e et e et e e e et et e e e e e e eeaaeeees 347
Introduction to TRIP grid COMPULINGcooeieeeeeeeeeeeee e 347
Creating @ Gril........coviiiiiiiiiiiieieee e 350
Creating @ Grid CIUSTEN.........coiiiiiiiiiiiieeeeeeeeeeeee et 350
Creating a Grid RepliCa Set..........ouiiiiiiii e 350
Publishing to @ REPIICA SEl.......cooiiiiiiiii e 351
Publishing to @ Grid CIUSTEN..........ooeiiiii e e e e eaaans 351
(€1 To U 11 g 1= o 1 To%= 11T] o SRS 352
AdVANCEA Grid PrOPEITIESuuuiiiiiiiiiiiiiiiiiii bbb 353
ClasSifiCation SCREIMESii i e e e e e e e e e e eeeeenes 354
Introduction to Classification SChemMEeS.........ccooeeieiiiiii e 354
SCOopEe SEArCh FACIILY .ocvvveeiii i 358
The new Scope Search facilitycoooooiiiiiiiiiii e 358
Scope Search EXamMPIE.......oooviiiiiiiiiiiieeee e 358
APPENAIX G 363
TRIP Programmingooeeeiiiiiiiiiiiiieieeeeee ettt ettt ettt e e e e e e e 363
LI 001 1 PP P TP SPPPTTR 363
(O7e] a1 1o I 3 i 11070 TR PURPUPPPRPPIN 363
=) A 1 o [EPPPPPPPPRR 364
Record, Record Part, Field and Subfield Markers..........ccovvvviieeiieiiiieiieeeeieeeies 365
Adding Records With TFOIMuuiiiiiiiiiiiiiii e 366
Updating Records With TFOIMooooiiiii 370
Data Type STring and the Length Marker............coooo i 371
Copying Records Using Print TFOMMoooiiiiiiiii e 371
Application SOftware EXItS (ASES)......ccuiiiiiiiiiiaie e 373
SUIMIMBIY ettt oo e ettt s e e e e e e et ettt a e e e e e et eeenbbb e e e eeaaeeennnes 373
The Format of an ASE ROULINEcooiiiiiiiiiii e 376
Linking ASE RoOULINES 10 TRIP.....cooiiiiii e, 376
Debugging ASE FOULINES ... e e e e et e e e e eeeeeeeees 379
OO NS S PP 379
OULPUL FOrMAL ASES ... et ees 380
TFOIM LOAO ASES....iiiiiii ittt e e e e e e et e e e e e e e e eeaseaa s 382
INOEX ASES . 387

Page 9 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Data Entry ASES (TRIPCIASSIC ONIY)uuiiiiiiiiiiiei et 391
Search Form ASES (TRIPCIASSIC ONlY)oooviiiiiiiiieeeeecce e, 396
TRIPsystem Callback Functions for ASE ROULINES............ccooviiiiiiiiiiiinicee 396
TRIPclassic Callback Functions for ASE ROULINESccoovieeiiiiiiiiiiiii e 396
TRIP APl ReferenCe GUIAEuuiiiii it e e 396

List of FIgUres and TabIESoouiiiiiiii e 397
T[RRI 397
TADIES .o 399
18T [P 401

Page 10 of 416

ABOUT THIS GUIDE

About This Guide

Scope and Assumptions

This guide describes the administration of TRIPsystem version 7.0 or later via
the TRIPmanager plug-in for Microsoft Management Console (mmc), which
encompasses the creation and maintenance of databases and the
management of user access to the system and its databases.

This guide does not cover the installation and set up of the TRIPmanager
mmc plug-in. For more information on this subject, consult the TRIPmanager
Installation Guide.

Furthermore, this guide assumes that the administrator performing the
TRIPsystem management has sufficient access rights to manage the
TRIPsystem installation in question and possesses a valid username and
password to log into that system.

It is also assumed that anyone using the TRIPmanager plug-in is already
familiar with the Windows operating system in general and with the mmc in
particular.

Further guidance can be found in the contextual help systems provided with
the mmc and also with the TRIPmanager plug-in.

The help for TRIPmanager can also be reached directly via the
TRIPmmc.chm help file in the TRIPmanager installation directory.

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP
product family and software (altogether “Software”) supplied by infinIT
Services GmbH (infinlT) are exclusively owned by infiniT.

The transfer of this Software, solutions or parts thereof requires the prior
written agreement of infinlT. Furthermore, the customer has the right to use
licensed Software and / or process solutions supplied by infinIT to the extent
specified in his contract with infinlT.

The free-to-use non-commercial version doesn’t require a prior written
agreement with infinlT but such customers, organizations and/or third parties
agree by using the software and / or solution of infinIT to be strongly obliged
to keep all rights to this software, documentation and logotypes of the TRIP
product family absolutely uninfringed and protected.

The TRIP Documentation Library

Other members of the TRIP documentation library include the Installation
Guides, Release Notes, Change Histories, TRIPmanager User Guide,
TRIPclassic Administration guide, TRIPclassic User Guide, CCL Command
Reference and the TRIPtoolkit.chm help file.

If you are not already familiar with searching and/or CCL (TRIP’s Common
Command Language), we recommend that you read the TRIPmanager User
Guide first, placing special emphasis on the basic commands Find, Display,

Page 11 of 416

ABOUT THIS GUIDE

Show, Print, DEfine, List, BASe, DELete, STatus, Run, SAve and Help.
Additional information on these and other commands is available in the CCL
Command Reference.

It is also important to understand the elements of data entry before
attempting database construction. If necessary, review Chapter Nine of the
TRIPclassic User Guide for data entry basics before proceeding.

The Structure of this Guide

This guide is divided into six main parts, Database Administration, Forms,
Batch Update, Database Security, The Environment and the Appendices:

Part I: Database Administration (Chapters One through Four)
contains TRIP fundamentals, as well as everything you will
need to begin creating and using TRIP applications,
databases, thesauri and usage statistics.

Part Il: Forms (Chapters Five through Seven) covers using
TRIPmanager to create, maintain and use TRIPclassic data
entry forms, reports and search forms.

Part III: Batch Update (Chapters Eight and Nine) includes global
updating and loading and indexing of data.

Part IV: Database Security (Chapters Ten and Eleven) discusses
database access and the administration of user rights.

Part V: The Environment (Chapter Twelve), discusses the setup of
the TRIP operating environment and TRIP logical names.

Part VI: The appendices which, in order, discuss:
Appendix A

e General Settings, Limits and Defaults
Appendix B

e Obtaining TRIP Version Information

e TRIP User Account Validation Methods

e Connecting to TRIP Servers

e TRIP Grids
Appendix C

e TFORM (The Trip output FORMat)

e TRIP ASEs (Application Software EXxits)

Every chapter is divided into short sections, each introducing a single concept
and giving examples where appropriate. These can be used either for
reference or as tutorials, repeating the examples given in the demonstration
databases Alice, Carroll, Corr and Thesali.

Page 12 of 416

ABOUT THIS GUIDE

Conventions Used in this Guide

Certain symbols and conventions are used throughout this manual to indicate
words or phrases with special meanings. A word might indicate the name of a
key on the keyboard (<Tab>), an option in the menus (CCL Search), one of
TRIP’s command words (DEfine or DE), the name of a database (Alice) or a
word being searched for (wonderland). The conventions and styles used are
summarized below:

italic

bold

lower case
UPPER CASE

Courier

<>

<[>
<CR>
<LF>
<NL>
<FF>

({32

used to indicate variables such as fieldtype or
databasename, and to emphasize important terms and
concepts

used to indicate anything that TRIP recognizes or can
interpret and act upon, such as the things mentioned above
(<Tab>, CCL Search, DEfine, Alice, and wonderland)

used for terms and variables where variables are also italic
used for proper names such as the database ALICE

Courier Font is used to indicate examples containing specific
text which you are to type in

chevrons—used to indicate key(s) on the keyboard such as
<Tab> or <Enter>

space character
carriage return
line feed

new line

form feed

messages from TRIP

In examples of CCL order syntax, square brackets ([]) indicate an optional
construct, braces [{ }] enclose option lists, a vertical bar [|] separates
exclusive alternatives, and the ellipsis [...] designates a repeating construct.

Page 13 of 416

ABOUT THIS GUIDE

TRIP Naming Conventions
TRIP’s naming requirements are presented in the following table:

Category Content Length?! First Allowable
Alpha- Letter Punctuation
numeric? Alpha-
betic?
File Yes 128 Yes Underscore
Database Yes 16 Yes Underscore
Field Yes 16 No Underscore
Procedure Yes 16 No Underscore
Output Yes 16 No Underscore
Format
Entry Form Yes 16 No Underscore
Search Yes 16 No Underscore
Form
Group Yes 32 No Underscore
User Yes 32 No Underscore
Password Yes 32 No Underscore

Table 0-1 TRIP naming conventions

1 maximum length in characters (including file paths where applicable)

TRIP Logical Names

Throughout this guide, TRIPsystem, TRIPserver and TRIPclassic internal
environment variables, normally defined in the [Privileged] and [Non
Privileged] sections of the tdbs.conf file, are referred to as ‘logical names’;
this has been done deliberately to avoid confusion with the identically named
Windows and UNIX environment variables. Where the term ‘environment
variable’ is used, it refers to those variables defined in a Windows or UNIX
user’'s environment.

Note:

Using the tdbs.conf file is the recommended method for TRIP internal
environment variable (logical name) creation.

Page 14 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 1:

Database Administration

Page 15 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 1: FUNDAMENTALS

Chapter 1:
Fundamentals

Navigation within TRIPmanager

After connecting to a TRIPsystem server, the mmc window will appear,
similar in appearance to the screenshot below, which shows a connection to
the local TRIP server on a Microsoft Windows 7 installation:

,%TRIPManager PN S TP e — - . - = E'ﬂh\

i File Action View -ﬂindow _ﬂelp
@ H

TRIP Servers Name
Pl E‘ My Computer
3 Databases
3 % Classification Scl
@ Search Forms
> &E Users and Group
» [My Profile

- &

% My Computer

Figure 1-1 The mmc showing a TRIP server connection

Each TRIP server connection will show four main icons representing sub-
groupings of items relating to the server being managed. These icons are:

e Databases All databases accessible to use administrator
accessing the server in question

e Search forms All search forms accessible to the
administrator accessing the server in question

e Users and Groups All search forms accessible to use
administrator accessing the server in question,
assuming the username is granted user
manager rights

o My Profile The profile belonging to the currently logged
on user

and will be covered in detail later in this guide.

Throughout this guide, reference is only made to the ‘Action’ menu. Regular
users of the mmc will, no doubt, already be aware that menu items within the
mmc are contextual, as in most Windows applications; this is also the case
with TRIPmanager, hence it is not always necessary to actually use the
physical ‘Action’ menu on the mmc’s menu bar. Therefore, where clarity is
paramount, screenshots may actually show contextual menus rather than the
‘Action’ menu.

Page 16 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 1. FUNDAMENTALS

TRIP System Basics

Introduction

Three of the most popular types of data models are the flat file, the relational
database and the full-text database management systems.

The first and simplest, the flat file system, is commonly used to store and
manipulate large quantities of relatively unstructured and non-mission critical
data where a return on any time investment made in data organisation is not
expected. Uses might include an in-house corporate telephone listing, or a
home music library catalogue kept in a spreadsheet.

The second, the relational database management system (RDMS), is useful
where data exists in small, discreet units that lend themselves to rigorous
organisation. Systems for inventory control and personnel management often
use relational databases for data storage and manipulation.

The third, the full-text database management system or text database system
(TDBS), is invaluable in the handling of large quantities of highly important,
rather unstructured, data that must be searched extremely rapidly. Areas
which find the TDBS of use are document management, standard operating
procedures and the management of scientific data such as seismic
exploration information. These database management systems, of which
TRIP is representative, are also adept at object storage, including such data
types as photographs, video images, voice imprints and hypertext.

These three data models are discussed in depth in the following section.

Data Models

Flat Files

Defining a flat file as a data model is perhaps an exaggeration. However,
many commercial applications take advantage of the relative ease of use that
flat files offer, even though their search capabilities are quite limited.

Employee | Telephone
Number

Fred Jones | (201) 555-1234
Ben Smith | (201) 555-8192
Ed Wedge | (201) 555-9999

Table 1-2 Sample flat file table

Typically, the only operators offered by such a ‘search engine’ are arithmetic
(e.g. equal to, greater than, less than etc.), and the search mechanism varies
from sequential scan, through indexed sequential scan to binary search (if the
data in the file is sorted).

Relational Database Management Systems

Relational data models call for data to be organized in fixed-sized tables of
related information, which are then ‘joined’ during a search to provide the
flexibility required to retrieve meaningful results.

Page 17 of 416

PART 1:
CHAPTER 1:

DATABASE ADMINISTRATION
FUNDAMENTALS

In the example below, two tables hold non-repetitive employee information
(i.e. there is only one place in the database where the value of ‘10’ is equated
to the value ‘Sales’).

RDBMS data table EMPLOYEES

Employee Title EmployeeNo | DeptNo
Fred Jones | Clerk 1268 20
Ben Smith Salesman | 7582 10
Ed Wedge | Salesman | 7654 10

X RDBMS data table DEPARTMENT
DeptNo | DeptName
10 Sales

20 Administration

Table 1-3 Sample relational database tables

Using an SQL (Structured Query Language) statement to extract all
employees in the Sales department, the tables are joined using the field
‘DeptNo’:

SELECT Employee

FROM EMPLOYEES, DEPARTMENT

WHERE DEPARTMENT.DeptName="Sales”

AND EMPLOYEES .DeptNo=DEPARTMENT . DeptNo;

When designing such a data model, considerable effort is typically expended
in constructing the various tables to ensure that data does not become
redundant. This process is referred to as data normalization.

Also, much thought must be given to constructing the index for these tables
so that, for instance, the join between the two ‘DeptNo’ columns can be
performed as rapidly as possible. Without this extra effort, searches will
complete extremely slowly.

Full Text Database Management Systems

In contrast to other database models, the full text model calls for complete
indexing of all possible database content. This frees database designers to
spend more time on user interface issues such as form design and
appearance, rather than on maximizing data model efficiency. As a result, full
text applications tend to focus on large bodies of often natural language text,
including books, documents and log files, rather than on small, discreet units
of information which are more suited to relational database management
systems.

Page 18 of 416

PART 1:
CHAPTER 1:

DATABASE ADMINISTRATION
FUNDAMENTALS

Indexing the Data

The fragment index is a hitherto unique feature of the TRIP database system
which provides significant performance increases when searching for
truncated terms. For instance, in the following table, the fragment index is
used to locate terms, which in turn are used to locate content within the
database itself. The example the CCL order:

Find S$DRES

finds any term in the database which contains ‘dre’, in this case, ‘dream’ and
‘dreams’.

As full text systems maintain a complete index, vocabulary listings are also a
common feature. For example:

Display S$DRES

will return a list of all terms in the index which contain ‘dre’.

<~ <
Word
Database Content Index Fr;'an%rgint
Table
| dream of falling; surrounded DREAM DRE
by colours,
| am swept by their
confidence,
Into the dreams of childhood, DREAMS DRE

Past the fondness of life.

Emotions flaking as dead
skin,

| see with the eyes of the
innocent.

Table 1-4 Sample full-text database table

Data Organisation

TRIP is a database system which has been specifically designed and
implemented to handle the large amounts of variable length data, which is
typical of free text applications. Free text is used here to mean natural
language text, as found in books, letters, reports, log files, etc.

It is the unpredictable length of the data strings encountered in such
applications which accounts for the main technical difficulties in designing

and implementing a system to handle such data efficiently. Most conventional
DBM (database management) systems deal mainly with fixed length blocks of
data, and possess a very limited capacity for manipulating variable length text
data. These field length fluctuations influence both the file structures and data
access methods adopted during TRIP system design, and it is here that TRIP
shows itself uniquely well placed for building this type of application.

The choice of data which TRIP has been implemented to handle most
efficiently determines, to some extent, the contents of typical fields within the

Page 19 of 416

PART 1:
CHAPTER 1:

DATABASE ADMINISTRATION
FUNDAMENTALS

system. Free text documents are, for example, normally broken into chapters,
sections and paragraphs. Paragraphs are further subdivided into sentences,
and sentences into words. In terms of fields, the most natural choice might be
the collection of paragraphs into sections or chapters. Thus fields in TRIP
which contain textual data might typically contain a number of paragraphs.

Within TRIP, the record level of organisation can be equated to a document,
and the database may correspond to a collection of related documents.

Meta-record structures are also available, in which the head record contains
information common to a number of sub-entities. A meta-record can be used
to describe a collection of articles in a periodical, the head record containing
such information as journal title, publisher, etc. and each part containing
specifics regarding individual articles such as author, text and references
cited.

A database might alternatively consist of a number of product descriptions.
Each product would have its own record within the database and each record
could consist of fields for the product name, product number, product
description and date of introduction. If this database employed meta-record
structure, record parts might then contain serial number, production run
number, alterations from the basic model, etc.

TRIP Field Types

TEXxt

PHrase

Although TRIP was designed specifically for the efficient manipulation of free
text, most documents have auxiliary information associated with them which

are not free text, such as dates, times, numbers, authors, publishers etc. To

accommodate varying data formats, TRIP supports seven data types, TEXt,

PHrase, DAte, Time, NUmber, INteger and STring, as described below.

stores free text in sentences and paragraphs. There can be any number of
paragraphs within a TExt field, which in turn may have any number of
sentences of any length.

The position of every word in the text is noted in the appropriate file when the
records are indexed, including the number of the paragraph within the text
field, the number of the sentence within the paragraph, and the number of the
word within the sentence.

usually contains short text elements, e.g. names, addresses, identifying
numbers or product codes. Each individual phrase constitutes one subfield.
There can be any number of subfields within a PHrase field and phrase fields
may contain any number of characters, however while all words in the entire
phrase will be word indexed, unlike in a TExt field, the whole phrase index
will only use the first 255 (normalised) chars

Note:

In this context, ‘normalising’ means first replacing all blank equivalents with
blanks, then removing all leading and trailing blanks, as well as
compressing all sequences of blanks to just a single blank.

Example (where “’ represents a blank or space character):

The phrase "-<cTarzan,°°Jane-and-ccccCheetaclikeeccbananas!!leo-~" will be
normalized to "TARZAN-JANE-AND-CHEETA-LIKE°-BANANAS").

Page 20 of 416

PART 1:
CHAPTER 1:

NUmber

INteger

DAte

Time

STring

DATABASE ADMINISTRATION
FUNDAMENTALS

When records which contain PHrase fields are indexed, the phrase along with
all subfield contents (as well as each individual word) is noted in a TRIP index
file along with its position (the number of the subfield within the field and the
number of the word within the subfield).

Note:

A phrase field can be any length but the index term for the complete phrase
will be maximum 255 chars (normalized as described above). However,
each single word of a phrase of any size will be indexed. The limit of 255
chars in the index only affects the whole phrase.

holds double precision signed 64-bit real numbers.
Note:

A database with NUmber values larger than would fit into a signed 32-bit
floating point cannot be used with older versions of TRIPsystem than 8.0
without risking system stability.

holds signed 64-bit integer values.

For greater accuracy, use the data type INteger instead of NUmber
whenever possible.

Note:

A database with INteger values larger than would fit into a signed 32-bit
integer cannot be used with older versions of TRIPsystem than 8.0 without
risking system stability.

stores dates, primarily of the form year-month-day
(e.g. 1985-04-20 or 85.04.20). A year only (1985 or 85) or a year and month
only (1985-04 or 85-04) may also be used when entering data or searching.

This is the standard date form, but other date forms are available. See the
‘Date Form’ section in Chapter Ten of the TRIPclassic User Guide entitled
‘User Administration’ for more information.

holds the time of day, expressed in 24-hour nomenclature of hours, minutes,
and seconds (e.g. 11:04:02 or 11.04.02). The hour only, or the hour and
minute only may also be given when entering data or searching.

contains a string of characters of any kind, i.e. images, video, voice etc. Data
of type STring cannot be indexed.

The field type determines some aspects of the manner in which the system
accesses data held within a field, as well as its indexing. It also determines to
some extent the information that can be entered into that field. For instance,
in DAte and Time fields there is an implicit validation employed that ensures
that the data entered can be interpreted as a date or time.

TExt data is organized into paragraphs and sentences. PHrase, DAte, Time,
NUmber and INteger data types may be divided into an unlimited number of
subfields, which can then be used for range searching within the database.
STring fields are stored within the database, but are not indexed, and so
cannot be retrieved using TRIP’s query language, CCL.

Page 21 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 1. FUNDAMENTALS

The CONTROL Database

A database system needs some method of tracking all of its parts or
components, which in TRIP include users, user groups, databases, clusters,
thesauri, reports, data entry forms, search forms, procedures and macros.
This is done by way of the system data dictionary, a database known as
CONTROL which contains definitions of the data structures currently within
the system. Each definition within CONTROL occupies a separate dictionary
entry.

The contents of the CONTROL database are illustrated schematically below.

CONTROL DATABASE ‘
|

[7 System Manager 41

Database User Manager
Administrator |

Public Group f—%

Databases Individual User Groups
Clusters Users
Thesauri il ‘

Public
Procedures |

Output Search H Data Entry

User User Group
I

Forms Profile Procedures Procedures

Formats Forms

Figure 1-2 The CONTROL database

TRIP Manager Privileges

Management responsibilities within TRIP are divided between three classes
of administrator:

System Manager:

the prime user within TRIP; assigns selected users database administrator or
user manager privilege and administers the public group (all users).

User Manager:

creates and maintains individual users and user groups, as well as the
procedures and macros which are private to these groups.

Database Administrator:

(also known as file manager) creates and modifies databases with their
associated reports, etc., and grants other users and user groups access to
the data within these databases.

TRIP Database Basics

Records

The data contained in a TRIP database is organized in terms of records, each
record consisting of a collection of fields. A record can have any number of
fields, not all of which need be filled (empty fields do not impose any storage
overhead).

Each record within a database is assigned a unique record number on entry
into the database, which can be used when accessing data within the
database. A record may also be assigned with a unique record name.

Page 22 of 416

PART 1:
CHAPTER 1:

DATABASE ADMINISTRATION
FUNDAMENTALS

In some applications, a record may exist as a two-level tree structure called a
meta- or composite record, composed of a head record and any number of
part records. In this arrangement some of the fields within the record are
shared by all of the part records, and are collectively known as the head
record. The contents of the remaining fields are unique to the record entity,
and together constitute one part record. If head and part records have been
included in the design of any particular database, each field is by definition
either a head or a part field for that database.

The head record, which includes the head fields, is described by the contents
of these fields and generally contains information which is relevant to all its
part records. The part records (each of which holds one or more of the part
fields) are described by the contents of those fields and usually contain
information which is applicable to that part record only. Head records with
part records are illustrated in the following figure.

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Head Record 2
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Head Record 3
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Figure 1-3 Head and part records in a database

Using the demonstration database Carroll as an example, head records
made up of head fields now contain all of the chapter information contained in
two books by Lewis Carroll—number and heading, the list of persons
performing actions in the text and the title of the book from which the text was
taken. The part fields within the part records hold the page information, and
include the speakers in the text as well as all of the text fields.

Page 23 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 1. FUNDAMENTALS

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

—_—
Head Record 1

Book Chapter Chaptnr Person
Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5
Speaker Speaker Speaker Speaker Speaker

Txt Txt Txt Txt Txt
Verse Verse Verse Verse Verse
Txt2 Txt2 Txt2 Txt2 Txt2

Head Record 2

Book Chapter Chaptnr Person
Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5
Speaker Speaker Speaker Speaker Speaker

Txt Txt Txt Txt Txt
Verse Verse Verse Verse Verse
Txt2 Txt2 Txt2 Txt2 Txt2

Figure 1-4 Carroll’'s head/part record structure

Each of the twenty-four main (chapter) records in Carroll has from one to
thirty-seven part (page) records clustered beneath it.

The following figures illustrate head and part record terminology.
e The head record, containing all of the head fields.
Figure 1-5 A head record

e The part record, consisting of one set of part fields.

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Figure 1-6 A part record

o Record entities 1, 2, 3 etc. represent the union (or sum) of head
record 1 and part record 1, head record 1 and part record 2,
head record 1 and part record 3, etc.

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Figure 1-7 A record entity

Page 24 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 1: FUNDAMENTALS

e A composite or meta-record is the union of the head record and
all of its part records.

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Figure 1-8 A composite record

¢ Record components are the unit records (individual head and part
records) in the database.

Head Record 1
Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1 Part Record 2 Part Record 3 Part Record 4 Part Record 5

Part Field 1 Part Field 1 Part Field 1 Part Field 1 Part Field 1
Part Field 2 Part Field 2 Part Field 2 Part Field 2 Part Field 2
Part Field 3 Part Field 3 Part Field 3 Part Field 3 Part Field 3
Part Field 4 Part Field 4 Part Field 4 Part Field 4 Part Field 4

Figure 1-9 Record components

File Structures

TRIP employs an inverted file organisation, in which the contents of every
field within the database can be indexed. Consequently, the contents of every
field can be searched, and records can be retrieved on the basis of these
searches.

A logical database within TRIP (one whose structure is governed by the
nature of the information contained within it, rather than the properties of its
storage media) consists of three separate physical files, the BAF (BAse File),
BIF (Base Index File) and VIF (Vocabulary Index File).

The BAF contains data, while the BIF and VIF are indexes to that data and
are used during data retrieval. The two index files are hashed tables, in which
any given term has a unique location.

The BAse File (BAF)

This file holds the database information itself. Within the BAF, the conceptual
level records are broken into a number of internal level records. In particular,
TExt fields within records are broken up and stored as individual paragraph
records within the BAF. This limits needless indexing of large TExt fields in
their entirety, since only paragraphs which have been modified since the last
indexing are reindexed.

The Base Index File (BIF)

This file is used to store positional information for terms in the BAF. During
the indexing process, the records in the BAF are scanned, and each term is
extracted separately. As each term is read, its position within the database is
recorded.

The Vocabulary Index File (VIF)

This file is in effect the index file for the TExt or PHrase fields which occur in
the BIF. Indexing here involves dissecting each term in the BIF into single

Page 25 of 416

PART 1:
CHAPTER 1:

DATABASE ADMINISTRATION
FUNDAMENTALS

(unigram), double (bigram) and triple (trigram) letter combinations, each of
which then becomes a term in its own right and is posted in the VIF.

Note:

It is important to understand this concept when using TRIP’s FUZzy search
capabilities. Refer to the TRIPmanager User Guide and CCL Command
Reference for further information regarding FUZz and Find FUZz.

The Session Index File (SIF)

The SIF stores all the information required to restart a search session
following an unscheduled disconnection, this includes search and print order
histories, search language (English, Swedish etc.), open thesauri and any
maximums, minimums or mapping that have been defined. Sessions may
also be intentionally saved to a SIF file using the CCL STOP SAve order:
See the CCL Command Reference for more information.

Page 26 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Chapter 2:
Databases

Notes on File Locations

The recommended method for administration of TRIP database physical
paths is to create logical names in the tdbs.conf file, to be used as pointers to
the locations of the database files.

This recommendation is to ease administration, as any later changes to file
locations will only necessitate the altering of a single logical name, rather
than having to alter many individual database designs.

In order to encourage this behaviour, the TRIPmanager Database creation
wizard has been designed to offer a drop-down selection box containing only
those logical names found in the tdbs.conf file; although it is possible to edit
these for direct physical file paths at a later stage, if absolutely necessary.

Further details on how to create logical names are contained in the section
entitled ‘Physical File Locations’.

Creating the Database

To create a database, activate the ‘New Database Wizard’ by clicking on the
‘Action’ menu item, ‘New Database’:

Welcome @

Welcome to the New
Database wizard

This wizard will lead you through the required steps to
create a new database

Figure 2-1 New Database Wizard

Page 27 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Clicking on the New Database Wizard’s ‘Next’ button will take you to the
general properties form:

Mew Database / Thesaurus @

e —

General Properties T '[[J
Define the location of the database [thesaurus files A

Files should be located using & logical name rather than a physical file path so that these files
can be moved around at a later date without affecting the design.

Mame: |
Available location names: |M'1'APP_BASES ﬂ
Current mapping: | C:\Tieto\MyAppBases
I” Use a transaction log file for backup | restore
| Database should be XML enabled
Description:

[< Back ” MNext = ll Cancel] l Help

Figure 2-2 New Database General Properties

General Database Properties

Database Name
First you will need to enter the name of the database you wish to create.

A database name in TRIP may have, at most, 16 characters. The first
character must be a letter; the others may be letters, digits, or underscores (

_)

Name: I |

Figure 2-3 Database Name Entry Field

Type an appropriate (and preferably descriptive) name in the entry box
beside ‘Name:’.

Page 28 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Physical File Locations

This portion of the form allows you to specify the location of the database files
within the hosts file system. TRIP creates the physical database files when
these specifications are saved, and the default file location (unless otherwise
indicated) is the first item in the drop-down list.

Available location names: IMYAPP_BASES Ll

Current mapping:] C:\Tieto\MyAppBases

Figure 2-4 The Database File Location Selection Boxes

Clicking on the down arrow at the right-hand end of the ‘Available locations
names:’ drop-down selection list, will display a list all available selections
allowing one to be chosen. The greyed-out ‘Current mapping:’ box below the
drop-down selection list, shows the physical path associated with the chosen
logical name.

Creating TRIP Logical Names

To create a new logical name, first quit any running instances of
TRIPmanager (and/or TRIPclassic), then open the tdbs.conf file in your
preferred text editor.

Next, anywhere in the [Non Privileged] section of the file, add a line of the
format

Logical Name=Physical Path

where Logical_Name is the name chosen for the new TRIP logical name
and Physical_Path is the actual operating system path to be mapped to the
logical name; for example:

In Windows:
MyRApp=C:\Users\Albert\TRIPapps

Would map the logical name My2App to the path
C:\Users\Albert\TRIPapps

In UNIX:
MyApp=/home/sally/TRIPapps
Would map the logical name MyApp to the path /home/sally/TRIPapps

Transaction Log

A transaction log records all changes made to the BAF, whether by data
entry, global updating, or the loading of another TForm file. Should the most

Page 29 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

recent BAF be damaged between backups, the log file and the BAF backup
can be used to restore the BAF to its previous condition.

You can attach a transaction log file to the database by checking the ‘Use a
transaction log file for backup / restore’ check-box shown below:

|” Use a transaction log file for backup / restore

Figure 2-5 Transaction log selection

Remember that a log file is associated with a backup of a database. After
creating a backup you should create a new empty version of its log file, for
example:

in UNIX,

rm filename

touch filename
in Windows,

del filename.log

type nul > filename.log < (In acommand window)
or

Remove-Item filename.log

New-Item filename.log -type file J (In Windows Power
Shell)

alternatively in Windows, you can delete the old log file, create a new text file,
then rename it to the original name.

When attempting to reconstruct a damaged BAF, you should retrieve the last
‘good’ BAF from backup and then apply all subsequent log files to that BAF
before backing up again. This is done using the database load/index menu
(described in Chapter Nine of this manual), which specifies each log file in
turn as the TForm file to be loaded into the BAF.

Note:

When restoring the BAF, you should delete the transaction log name from the
database design. If you do not, the old transaction log will be loaded as an
input TForm file and written redundantly to the new transaction log. After
restoration, you should replace the transaction log name to ensure the safety
of your data.

Page 30 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

XML Enabling the Database

Should it be necessary to create a database that will be used with TRIPxml,
then check the check-box labelled ‘database should be XML enabled’.

|” Database should be XML enabled

Figure 2-6 XML Enabling a Database

Description of the Database

The last field listed on the General Properties form is the database
Description field.

Description:

Figure 2-7 The Database Description field

Here you can enter a description of the database to a maximum of 255
characters. This will be part of the information given when the database list is
shown in the right-hand panel of the mmc, when the database properties are
selected in the mmc, or when a CCL STatus command is issued for that
database.

Page 31 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Saving the database design

Clicking on the ‘Next’ button at the bottom of the ‘General Properties’ form
takes you to the completion page of the New Database Design Wizard:

Finished (e

New Database wizard
completed

When you dick the Finish button, the console will
create the new database to which you can then add
fields and properties.

[<Back |{ Fimish | [Cancel | | eb

Figure 2-8 New Database Design Wizard Completion page

And clicking on the ‘Finish’ button saves the database design. This is
confirmed with a pop-up dialogue box:

]
’_TI?UP Message - Databases u

:I Database design for NEW_DBE_DESIGN created.

Figure 2-9 DB Creation Confirmation

Clicking on ‘OK’ opens a new dialogue box, asking if you wish to create the
database’s fields at this time:

P

N Do you want to specify the field collection for this new database /
& thesaurus?

Figure 2-10 Specify Field Collection Query

If you do wish to create the fields now, click on ‘Yes'. If you wish to create the
fields later, click ‘No’.

If you wish to go directly to database fields creation, turn to the section
entitled, “

Page 32 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Field Definition” on page 58 of this guide.

The next sections look at other database configuration parameters and how
to modify them.

Modifying Database Properties

Database Properties (1) — General

The ‘Create Database Wizard’ creates a database with mostly default
selections. Should it be necessary to alter these defaults, then it will be
necessary to access the database properties sheet.

The properties for a selected database can be accessed via the ‘Properties’
entry on the Action menu. Selecting this entry displays a four tabbed form
similar to that shown below:

New_Db_Design Properties E

General |Files | Indexing | Links | Advaneed |

Record count: 0

Last update date: Mane
Last index date: Mone
Record name field: Mane
Part name field: Mone

Record number field: Mone

Character set: 150 8859-1 Latin 1 (Western European) -

Default report: | (None) j
Default entry form: | (Mong) ﬂ
Classification scheme: |(rqgne) j

Description

Design for NEW_DB_DESIGN

o] Lo) [o

Figure 2-11 The Database General Properties Form

The first tab displayed is always the ‘General’ properties tab. This tab has six
information fields (non-editable) and three user updatable fields. The non-
editable information fields are:

e Record count: A count of the total number of records in the
database

e Last update date: The date that the database was last updated

e Lastindex date: The date of the last index to be performed in

the database
¢ Record name field: Which field, if any, is the Record Name field

e Part name field: Which field, if any, is the Part Record Name
field

Page 33 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

e Record number field: Which field, if any, is the Record Number
field

The user definable fields are detailed in the following sections and are:
e Character Set:
e Default Report:
e Default Entry Form:
e Classification scheme:
e Description:

Character Set:
This drop down box is used to select the default character set for the
database.
Note:
This value can only be changed in an empty (i.e. new) database

Default Report

The Default Report (formerly known as the Default Output Format) for the
database, may be selected from the drop-down list of available reports.

If you do not provide the name of a default report, the system will show all
output using its built-in default report ‘Dump’. This report presents all non-
empty fields contained within the database, headed by their field names.
Unless a SORt or Show REVerse order has been given, records appear
sorted in increasing record number order. Fields within records are output
according to their field type, in this order:

PHrase, NUmber, INteger, DAte, Time, TExt
The fields are listed in field number order within those field types.

The sample below was taken from the demonstration database Alice, using
the CCL command

Show Format=dump

In it, the PHrase fields chapter and person (field numbers two and three) are
output first, then the INteger field chaptnr, and finally the TExt field txt:

Database Contents
; R — —— S
File Edit

record 1 in Database ALICE -

CHAPTER: Down the Rabbit-hole
PERSON : Alice’'s sister, white rabbit
CHAPTNR: 1
TXT : Alice was beginning to get very tired of sitting by her sister on the
I bank, and of having nothing to do: once or twice she had peeped into
the book her sister was reading, but it had no pictures or
conversations in it, "and what is the use of a book,” thought Alice,
"without pictures or conversations?” L
so she was considering, in her own mind (as well as she could, for =
the hot da¥ made her feel very s1eep¥ and stupid), whether the
pleasure of making a daisy-chain would be worth the trouble of getting
up and picking the daisies, when suddenly a white rabbit with pink
eyes ran close by her.

record 2 in Database ALICE
CHAPTER: Down the Rabbit-hole
pERenN * white rahhit

Help Close

Figure 2-12 Sample SYSTEM default report, ‘Dump’

Page 34 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Designating a default report allows the use of a simple Show command in
CCL without a preceding DEfine Format statement. For example, rather than
using the series

BASe alice J
Find tweedle J

DEfine Format=outputformatname .
show

a user may simply enter
BASe alice
Find tweedle
show
after a search.
The DEfine Format statement is not needed if a report has been specified.

Default Entry Form

The default Data Entry form for the database may be selected from a drop-
down list of existing Entry Forms.

If the database is to be updated using interactive data entry (as opposed to
global or TForm updating), you should nhame a default entry form, whether or
not one or several different entry forms are to be used for the database.

If you have specified a default data entry form, TRIP will automatically
provide the name of the default entry form after a user enters the name of
that database.

Naming a default entry form also allows the CCL command
edit J

to be used without a preceding entry form name definition. For example,
rather than using the command series

BASe alice
Find dee J
DEfine EForm=entryformname .
edit s=0 J
a user may simply enter
BASe alice
Find dee J
edit s=0 J
after a search.

The DEfine EForm statement is not necessary if the default entry form has
been included in the database design form above.

For greatest efficiency, the default form should be designed generically
enough so that as large a population of write-privileged users as possible
may have recourse to it. See the section entitled ‘Creating a Data Entry Form’
in Chapter Five of this manual for more information.

Page 35 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Classification scheme
This drop down box can be used to attach a classification scheme to a
database.

To do this, simply choose the name of any available classification scheme
from the 'Classification scheme:' drop down box. The database will then need
to be re-indexed to be classified, and any new or subsequently modified data
will be processed for classification during normal indexing procedures.

Note:

For more detail on how to create and manage classification schemes, see

the relevant section in Appendix B and also the white paper entitled, "TRIP

Document Classification”, included with the TRIPsystem documentation.
Database Description

The database description, if one was entered during database creation, may
be modified here or, if required, may be added here.

Page 36 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Database Properties (2) — Files

Clicking on the ‘Files’ tab of the Properties will change the display to show the
Database Files Property form. This form has two sections, one for collectively
locating files by logical name and another for specifying individual file
locations.

It is this the lower half of this form, ‘File locations are specified individually’,
that should be used if you wish to locate files using full path names:

Mew_Db Properties @ﬂ—hJ

General | Files |Indexing|Links |Advanced

Files should be located using a logical name rather than a physical file path
so that these files can be moved around at a later date without affecting
the design.

{* Files are located collectively using a logical name;

Location: | MY_BASES ﬂ

File name: | NEW_DB

| Database uses a transaction log file

" File locations are specified individually

BAF file: [MY_BASES:NEW_DB.BAF
BIF fie: | MY_BASES:NEW_DB.BIF
VIF file: | MY_BASES:NEW_DB.VIF
LOG file: |

o) Lo [ow

Figure 2-13 The Database Files Properties Form 1

Files are located collectively using a logical name

If the radio button is clicked for, ‘Files are located collectively using a logical
name’, only three options will be available to the user:

e A drop-down selection box entitled ‘Location’.
e Atext entry box entitled, ‘File Name’.
e A checkbox for selecting ‘Database uses a transaction log’.

These are the same three entries that were made on the Create database
Wizard’s general Properties form and need no further explanation here.

Should you wish to alter these entries the methods described in creating a
database also apply here.

Individually specified File Locations

Clicking on the ‘Files locations are specified individually’ radio button will
change the Database Files Property form display so that it becomes similar to
below:

Page 37 of 416

PART 1: DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Mew_Db Properties

A=)

General | Files |Indexing|Lir1ks IAdvanced|

Files should be located using a logical name rather than a physical file path
so that these files can be moved around at a later date without affecting
the design.

" Files are located collectively using a logical name

sl MY_BASES =]
File name: | NEW_DB
-

{+ File locations are specified individually:

BAF file: | MY_BASES:NEW _DB.BAF
BIF file: | MY_BASES:MEW _DB.BIF
VIF file: | MY _BASES:MEW _DE.VIF
LOG file: |
[Ok] [Cancel] [Apply] l Help

)

= —

Figure 2-14 The Database Files Properties Form 2

As can been seen from Figure 2-13, each individual file location can now be
altered and (though this is not recommended) should it be absolutely
necessary, a physical file location could be entered for any or all of the files.

This is also where the location for transaction log files can be specified.

Note:

Both a transaction log file name and file path, or file name and logical name
representing a path, must be specified. If no log file location and/or name
are entered, no transaction log will be created.

Page 38 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Database Properties (3) — Indexing

Clicking on the ‘Indexing’ tab of the Properties will change the display to show
the Database Indexing Property form.

New_Db_Design Properties ‘- @ﬂ_hj
| General | Files | Indexing |Links | Advanced

Matural language: (RN ~| Segmentation: |Mone
Folding dass: Mone -

Additional searchable characters: |
Scanning Rules

¥ Parse sentences

[l Extra characters that mark start of sentence: [(<[{"
Characters that mark end of sentence: ID—
I Character dasses that separate sentences: ISN—
Character dasses that begin sentences: IL,IB—

| Parse paragraphs
Character dasses that separate paragraphs: N
I Paragraphs must begin with a valid sentence

I¥ Paragraphs must end with a valid sentence
| Ignore these characters when parsing: B

L [Ok] [Cancel] [Apply] [Help]

Figure 2—-15 The Database Indexing Properties Form

The upper section of this form has drop-down selection boxes for ‘Natural
language’, ‘Folding class’ and ‘Segmentation’ and a text entry box for
specifying additional searchable characters, while in the lower section there
are controls for specifying the rules used when creating database indexes.
These subjects are covered in more detail in the following sections:

Character handling

-- - -

Natural language: |{None vI Segmentation: |None -

English
b Swedish

Al

German

—Finnish

Chinese

Norwegian

Figure 2-16 Natural Language Treatment selection box

The ‘Natural Language’ drop-down selection box allows for the selection of a
default language for use in indexing the selected database. The current
alternatives are: ‘None’ (default), ‘English’, ‘Swedish’, ‘German’, ‘Finnish’,
‘Chinese’ and ‘Norwegian’.

Notes:

Page 39 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

e The language selected here will be used as the default for stemming
searches (See the “CCL Command Reference — Display STEMming”
section for more information.)

e If no language is selected here, the value defined by TDBS_LANG will
be used.

e As detailed in the next section, the ‘Segmentation’ selection box will
only ever be activated when ‘Natural language’ is set to ‘Chinese’.

Chinese word segmentation

If the natural language chosen is set to Chinese, you can also choose to use
smart work tokenization, which switches on a special algorithm that attempts
to split Chinese character streams into words. If you index a database in
Chinese without this option, each character in the character stream is treated
as a separate word.

Note:

If Chinese is stored in a database that is not setup for Chinese natural
language processing, that data will be unsearchable.

TRIP supports four different methods for Chinese Word Segmentation:
¢ M- Maximum

This method selects the maximum length Chinese words from a
string, based on a dictionary containing words of length 2-10 Chinese
characters. This method also handles cross-ambiguities and
continuous-cross-ambiguities of Chinese words correctly.

e W —Word

This method is similar to method M and adds re-segmentation of all
words longer than three Chinese characters.

e A-Al
This method segments every possible Chinese word as well as all
single-character Chinese words.

e N - None

This method indexes every single Chinese character as a word on its
own.

Folding class

Every text database system intended for use in more than one country must
possess a sort method for multinational characters, which encompasses
those characters not found in the system designer’s native language. An
overview of these special characters follows:

Page 40 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

A|lC|E]|] I [N|J]O|]S|U]|Y
A E | 1 6) U
A E | | o) uly
%]
A E | 1 o) U
A N | &
A E | 1 o) U
A
/E OE
C
R

Table 2-1 Special characters

The Folding Class selection box allows the database designer to specify how
characters outside his or her native language will be treated during sorting
and indexing, where one letter is regarded as having the same indexed value
as another letter. Databases using different character folding methods cannot
be searched simultaneously.

The character folding classes available are English, Swedish, German,
Finnish and Norwegian.

The default is that no character folding is done; e.g. an é is a singular
character and is separate from e, & is not indexed as a, and so forth.

The folding class English, does not recognize diacritics or umlauts, so that &,
e, é (and so on) are folded onto e, & onto a, 6 onto o, etc.

The folding class Swedish, is identical to English except that a, &, and 6 are
recognized as singular characters.

The folding class German, is identical to English except that &1 and 6, & and 3
are recognised as singular characters.

The folding class Finnish, is identical to English except that & and 6 are
recognised as singular characters.

The folding class Norwegian, is identical to English except that A&, U and g
are recognised as singular characters.

Page 41 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

The ways in which the five main classes treat various characters are outlined
below.

Note:

CHinese is handled separately, using a different character set (GBK):

Latinl ENGlish SWEdish | GERman NORwegian
(MULtinational)

clc|c|c|lun|o|C|ofo|o|o(o|Z|—=|—[—|—|m[mm|m[O[>|>|>>|>|>|>

<|lc|c|c|c|m R |o|o|o |0 |O|z|= (= |=|—|m|m|[m|m |0 |&|>|>|>|>|>|>
<lelc|c|cln|@|ofo|o|o|a|o|z|=|=|—|—|m[m|m|m|O|&|>|f|>|>|> >

<|G|e|c|c|m] 00|00 . |O [z = === [m: | m [| m [0 | f Do 3] D3| 2> >
<|lclc|c|lc|n|o|lo|lo|lo|o|o|o|z|—-|—-|—-|—-[m|m[m|m|o|>]|>[>]|>[>]|>|>

=<

Table 2-2 The character folding classes

Page 42 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Additional searchable characters

The searchable characters in the text parts of a TRIP database are letters
and digits by default. However, you may add to this set of characters by
specifying extra searchable characters in the Additional searchable
characters input box.

Additional searchable characters:

Figure 2 -1 Additional searchable characters input box

Any character except the single [] and double ["] quotes may be made
searchable by typing the characters into the Searchable Special Characters
design field without separators.

Note:

You cannot combine multiple databases with disparate searchable
character sets in a search.

The characters used as truncation symbols, character masks, word masks,
delineators, operators or sentence separator defaults should not be
designated as searchable, since they have special functions in search orders.
These symbols are listed below:

Symbol | Reserved Function

$ truncation and masking
truncation and masking
& masking

masking, sentence separator

I truncation and masking,
sentence separator

? sentence separator

truncation and masking

() delineators

+ AND operator

Table 2-3 Truncation, masking and special symbols

The sentence separator defaults are included in the table above since during
the execution of a word-string search order, TRIP searches for the given
terms only within the same sentence (or subfield), unless the meaning of the
space character is redefined by the CCL order, DEfine SPACE.

Page 43 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Characters not defined as searchable are treated as space characters, both
during searching and indexing. For example, unless the hyphen [-] has been
included in the searchable character set for a database, TRIP will interpret
both ‘on-line’ and ‘on line’ as dual-word rather than single-word terms.

Refer to the CCL Command Reference for further information regarding
DEfine SPace, truncation and masking.

Scanning Rules

The scanning rules section of the database properties “ form, permits the
modification of TRIPsystem’s scanning rules for indexing sentences and
paragraphs.

Scanning Rules
I¥ Parse sentences
Extra characters that mark start of sentence: | (<[{™

Characters that mark end of sentence: | A7
Character dasses that separate sentences: | SN
Character dasses that beain sentences: | B

|+ Parse paragraphs
Character dasses that separate paragraphs: | M

[Paragraphs must begin with a valid sentence

[+ Paragraphs must end with a valid sentence
Ignore these characters when parsing: | 1=]3

Figure 2 -2 The Indexing Scanning Rules sub-form

The system defaults for each category are presented as seen in Figure 2 - 2
above.

Sentences and Paragraphs

Unless otherwise instructed, TRIP will separate text into paragraphs and
sentences by defaulting to a set of predefined rules. The internal text
separation rules can be altered by customizing the sentence and paragraph
delimiters from the General Database Properties form, causing TRIP to
separate the text into paragraphs and sentences accordingly.

Character Classes

Ten character classes are available to facilitate paragraph and sentence
recognition specification. Each character is by default assigned to only one of
the following categories:

Page 44 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Char. | Content Contents Alter

Class | Description Definition?
L Lower Case Letters abc..z No
U Upper Case Letters ABC..Z No
D Digits 012..9 No
S Space Equivalents ASCII values 0-32, minus Class N No
N New Line Equivalents <LF><VT> <FF> No
H Hyphen - No
R Reset Variable Yes
B Special Sentence Begin (<[{«™ Yes
| Ignore)>1}» and <CR> Yes
E Sentence End 12 Yes

Table 2-4 The character classes

Of these, L, U, D, S, N and H cannot be changed, i.e. no characters can be
added to or removed from these classes.

Classes B, | and E may have character sets defined for each (default
contents are shown in the preceding table).

Class N consists of the <LF> (Line Feed), <VT> (Vertical Tab) and <FF>
(Form Feed).

With the exception of the <CR> (Carriage Return), which is permanently
assigned to Class I, Class S contains the space character (ASCII value 32)
as well as all control characters (ASCII values 0-31) not belonging to Class N.

Class R contains those characters that do not belong to any of the other
classes. Characters that are added to or removed from the B, | or E classes
are automatically removed from or added to Class R respectively.

Classes L, U, D, H and B are known collectively as the ‘Sentence Begin’
classes, in which any characters from these classes can define the start of a
new sentence.

Defining a Sentence

The fields shown below allow you to define the beginning, the end and the
separations between sentences.

Page 45 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Scanning Rules

[V Parse sentences

Extra characters that mark start of sentence: <"

Characters that mark end of sentence: [l?—
Character dasses that separate sentences: W
Character dasses that begin sentences: |—UB—

Figure 2 - 3 The Sentence Parsing fields

The default values for sentence parsing are shown in Figure 2 -18 above. A
more detailed description of these conditions follows.

Parse sentences

Checking or clearing the ‘Parse sentences’ checkbox will respectively switch
sentence separation on and off

If you choose to have sentence separation switched on and then attempt to
perform a non-exact match PHrase search in CCL such as:

Find mad hatter A

the terms ‘mad’ and ‘hatter’ will not be found unless they appear as
contiguous terms in the text and are in the same order as specified in the
CCL command.

If you choose No, the terms can be split across what would normally be
considered as several sentences, and TRIP will still find them.

If you choose Yes and your text contains errors (perhaps during import from
OCR) such that extraneous characters have been accidentally inserted into
one or more phrases (for example, a period [.] or other character from Class
E), then these corrupted terms will not be found during straightforward CCL
searching.

Using the ‘mad hatter’ example above, if ‘mad’ became modified to ‘ma.’,
TRIP would consider ‘ma.’ and ‘hatter’ to reside in separate sentences, and
would not find the term ‘mad hatter’ wherever this has occurred.

Choosing No for Sentence Separation may be advantageous in instances
such as the one above, where you may be unsure of the integrity of your
incoming data. Since TRIP does not parse for sentences, this may also be
faster; however, without Sentence Separation you will be unable to perform
CCL proximity searching with constructs such as AND.S.

If you choose No, import data to your database and then change your
separation selection to Yes, you must then rebuild the database (that is, print
the database into TForm, delete the database and reload it from TForm),
since TRIP will not reparse the data that was already loaded (parsing occurs
only on the instream, or incoming data).

Page 46 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Extra characters that mark start of sentence

This option specifies which character(s) belong to Class B. If characters are
removed from Class B, and not placed in Classes | or E, they will be moved
to Class R. This option cannot exceed thirty-two characters. The default
system values are (<[{«""

Characters that mark end of sentence

This option, represented by Class E, specifies which character(s) will identify
the end of a sentence. If any characters are removed from this class and not
placed in Classes | or B, they will be moved to Class R. This option must
contain between one and sixteen characters, unless you select No for
Sentence Separator (see below). The default system values are .!I?

Characters classes that separate sentences

This option specifies which character(s) will identify the separator(s) between
a Sentence End and a Sentence Begin. Only characters from Classes S and
N are allowed, and the number of characters required signifies the
separation, e.g. 2SN means 2 characters from Class S or one from Class N.
This option must contain at least one character from either class, but cannot
exceed nine characters for each of the classes. The default system values
are SN (or 1S1N), meaning that in order for two legal sentences to be legally
separated, there can be either one space or one character from Class N
between them.

Characters classes that begin sentences

This option specifies which character(s) will be used to identify the beginning
of a sentence, and can include one or more values from the character
Classes L, U, D, H or B. Class B can be used to specify characters that are
not present in the predefined classes L, U, D or H. This option must include
between one and five classes. The default system classes for this option are
UB.

Defining a Paragraph

The fields shown below allow you to define the beginning, the end and the
separations between sentences.

IV Parse paragraphs
Character classes that separate paragraphs: | 2N
I~ Paragraphs must begin with a valid sentence

[V Paragraphs must end with a valid sentence

Figure 2 -4 The Paragraph Parsing fields

Page 47 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

The default values for paragraph parsing are shown in Figure 2 -19 above. A
more detailed description of these conditions follows.

Parse paragraphs checkbox

Checking or clearing the ‘Parse sentences’ checkbox will respectively switch
paragraph parsing on and off

Paragraph separation is recommended for performance reasons, since a
single-character modification in a document that exists as a single large block
of text would require reindexing of the entire document. If paragraph
separation is operative, only the altered paragraph in the document needs to
be indexed again.

As with Sentence Separation, if incoming data quality is uncertain you may
wish to deactivate Sentence Begin/Sentence End Required and use the
Paragraph Separation classes to section the data. If you have filled your
database without specifying Paragraph Separation and change this option to
Yes, you will need to rebuild the database as discussed previously.

Character classes that separate paragraphs

This option specifies which character(s) satisfy the requirements for a
paragraph break, the default being two characters from Class N, or 2N
(usually 2 <LF>). The number of characters required from Class N followed
by the number of characters from Class S defines a Paragraph Separation,
e.g. 2N4S means two characters from Class N followed by four characters
from Class S. The number of characters from Class N must be greater than
the number of characters from Class N for Sentence Separation (if any has
been specified). This option must contain at least one character from Class
N, but cannot exceed nine characters for each of the classes.

To continue with the example from Sentence End usage:

[A] oo Mother Goose Rhymes: <CR><LF>
... <CR><LF>

... (1) The cow jumped over the moon. <CR><LF>
... <CR><LF>

... (2) Old Mother Hubbard lived in a cupboard.
... <CR><LF>

... <CR><LF>

... (3) Hickory Dickory Dock, the mouse ran up the
ClOCK. wvvviiiiiiiiiiiie e <CR><LF>

If the Paragraph Separator is 3N (three new lines), then [A], (1), (2) and (3)
constitute a single paragraph; if 2N, then each of them forms one new
paragraph.

Paragraphs must begin with a valid sentence

This option specifies whether a sentence begin character is required, i.e.
whether a character from the Sentence Begin classes (as specified above
Sentence Separation) must be received to complete a paragraph break.
Alternatives include Y (Yes) or N (No); the system default is N.

Again using the preceding example:

[A] oo Mother Goose Rhymes: <CR><LF>
... <CR><LF>

Page 48 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

... (1) The cow jumped over the moon. <CR><LF>
... <CR><LF>

... (2) Old Mother Hubbard lived in a cupboard.
... <CR><LF>

... <CR><LF>

... (3) Hickory Dickory Dock, the mouse ran up the
ClOCK. evviee i <CR><LF>

If Sentence Begin Required is No (where a paragraph need not begin with a
valid sentence begin character), the Paragraph Separator Class is 2N, and
Class B is not included in the Sentence Begin classes, then [A], (1), (2) and
(3) represent individual paragraphs. If the Paragraph Separator class is 3N,
then they form a single paragraph.

If Sentence Begin is Yes (where a paragraph must begin with a valid
sentence begin character) and Class B is not one of the Sentence Begin
classes (which it is by default), then [A], (1), (2) and (3) form a single-
sentence paragraph.

Therefore, a paragraph separation can be defined as:
1 atextblock
2 one character from Class E (if Sentence End is required)
3 specified number of characters from Class N
4 the specified number of characters from Class S
5

one character from the Sentence Begin classes (if Sentence Begin is
required)

6 atext block, as illustrated in the table that follows:

Text Block 1 from Class ? from Class N ? from Class 1 from Begin Next Block

E S

ABCO123 .. 12 <LF><VT><FF> ASCII 0-32 ABC(<[" DEF4567 . .

Table 2-5 Paragraph definition in TRIP
The illustration above shows two paragraphs and their separators.

Paragraphs must end with a valid sentence

The options are checked for Yes and cleared for No; the system default is
Yes.

This option specifies whether a Sentence End Character is required (i.e. a
character from Class E must be detected) to indicate the beginning of a new
paragraph, or paragraph break.

The following outline illustrates Sentence End usage:

Page 49 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

[A] oo Mother Goose Rhymes: <CR><LF>
... <CR><LF>

... (1) The cow jumped over the moon. <CR><LF>
... <CR><LF>

... (2) Old Mother Hubbard lived in a cupboard.
... <CR><LF>

... <CR><LF>

... (3) Hickory Dickory Dock, the mouse ran up the
ClOCK. ..veee it <CR><LF>

The dotted lines in the illustration above represent white space.

If Sentence End is defined as Yes and the colon [:] is not part of the
Sentence End classes, then Sentence [A] and Sentence (1) constitute the
same paragraph. If Sentence End is No and the [:] is not included in the
Sentence End classes, then Sentences [A] and (1) exist as separate
paragraphs, depending on the Paragraph Disconnection and Sentence Begin
Required options that were chosen.

Note:

Exercise caution when choosing characters designating a Sentence End.
Adding characters that occur frequently in normal text (such as colons,
parentheses etc.) may cause problems in text division.

Setting characters to ignore

The fields shown below allow you to define the beginning, the end and the
separations between sentences.

Ignore these characters when parsing: I =13

Figure 2-5 The lgnore Character field

The default values for ignoring are shown in Figure 2 -19 above. A more
detailed description follows.
Ignore these characters when parsing

This option specifies which character(s) will belong to Class | (Ignore
characters). If characters are removed from Class I, and not placed in
Classes B or E, they will be moved to Class R. This option cannot exceed
sixty-four characters. The default system values are) >]} »

Therefore, a sentence separation can be defined as:

Page 50 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

a text string
one character from Class E

default sentence separation (characters from Classes S or N) or user-
defined separation

one character from the Sentence Begin classes (one or more of L, U,
D, HorB)

a text string, as shown below:

Text String 1 from Class E 1 from Class S/N 1 from Begin Next string

ABC0123. .. 12 <LF> ABC(<[" DEF4567 . ..

Table 2-6 Sentence definition in TRIP

The illustration above shows two sentences and their possible separators,
where [] represents a single space.

Considerations for Altering Scanning Rules

Be careful when changing the default settings for a pre-existing
database. You must extract all data before the changes are made and
reload it into the new design.

If Sentence Separation is required without Paragraph Separation,
then TRIP will automatically set the Sentence End required option to
Yes, Sentence Begin required option to No and clear the Paragraph
Separator classes option.

If Paragraph Separation and Sentence Begin and/or End is required
without Sentence Separation, then the Sentence End and Begin
classes options must still be specified.

Characters of Class | are ignored if found after the character that
initiates a sentence or paragraph break (normally a Class E
character), but before the break is complete.

Characters from Class R, if found in the same position as above, will
inhibit the current break and cause the program to scan for the next
character that will commence a sentence or paragraph break.

Characters from Classes L, U and D that are not specified as
Sentence Begin classes will be treated as belonging to Class R.

Characters from Class H that are not specified as Sentence Begin
classes will be treated as belonging to Class I.

Characters from Classes S and N will be treated as belonging to
Class | when they do not appear as Sentence or Paragraph
Separators.

Page 51 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Database Properties (4) — Links

The link properties for a database comprise items that affect the integrity of
data within the database, and how that integrity should be maintained
and/or enforced with regard to other databases in a multi-database system.

Clicking on the ‘Links’ tab of the Properties will change the display to show
the Database Links Property form. For example:

Alice Properties . ? 5
| General I Files I Indexing | Links |Advanc_ed
Foreign Keys:
Key Databaze Field On Delete
=] Chapter Carrol Chapter CASCADE
« [I = »
Dependendes:
Databaze Field Key On Delete

[OK] [Cancel] ’ Apply] [Help]

Figure 2- 6 The Database Links Properties Form

In this case, the DBA established a link between the ALICE database and
the CARROLL database, stating that the "Chapter" field in both databases
holds a shared value (a "foreign key" in relational database terms). Further,
the link specifies how that sharing is to be enforced in the case of updates
or deletes -- in this case, deletes are not allowed, whilst updates are to be
cascaded through the link.

Links in general exist to stop data in one database getting out of synch with
data in another database. For example, imagine that you setup a database
holding code/name pairs:

CODE NAME

ABC ACME Broadcasting
Corporation, Inc.

MOX Ministry of Xenological Affairs

RAZ Rationing Association of
Zodiacs, Corp.

Now further imagine a production database that stores the code within its
own data and uses this "lookup" database when reporting to translate
codes into names. All's well until at some later point, you decide to update
the code "MOX" to "MOXA".

Page 52 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Users confronted with the above situation have two options when searching
(through a MAP, for example) for the Ministry:

Always add wildcard prefix and suffix notation to every search they
ever do, just in case the code changes slightly

Report the problem to the DBA, who has to resort to a global update
to correct the issue

Using a link allows the DBA to specifically allow or deny certain operations,
and to ensure that if updates or deletes are performed on the "lookup"
database (in this case), those updates or deletes are reflected back onto
the production database.

The types of action that you can specify to take place in the face of either
an update or delete are:

RESTRICT -- disallow the operation if it would affect any records in
the linked database

CASCADE -- reflect the update (or delete) on the linked database --
for example in our case described above, if the code "MOX" were
updated to "MOXA", then when the record is committed to the
"lookup" database, the production database is also updated
automatically to change every occurrence of "MOX" to "MOXA".

SET_NULL -- any records containing the affected value will be
blanked in the linked database.

SET_DEFAULT -- any records containing the affected value will have
that field reset to its default value, whatever that might be.

NO_ACTION -- the default (and the traditional behaviour of TRIP).

Page 53 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Database Properties (5) — Advanced

Clicking on the ‘Files’ tab of the Properties will change the display to show
the Database Files Property form:

MNew_Db_Design Properties l @Iéj

| General | Files | indexing | Links | Advanced |

Background Task Execution
Batch queue for task submission: [TDBS BATCH
v Motify on completion [Printlogfile [Keep logfile

ASE called before submitting tasks: |

ASE called after submitting tasks: |

Data Loading

ASE called before saving records: |

ASE called after saving records: |

Flags
r

IV Automatically reorganize index filles as needed
[Log deleted records to the transaction loafile
[Use an audit logfile to capture database events

' Co (e][o

Figure 2- 7 The Database Advanced Properties Form

The final tab is the ‘Advanced’ properties tab. This tab has three areas:
e Background Task Execution
e Data Loading
o Flags
These areas are describe in detail in the following sections.
Background Task Execution
This feature allows different indexing and queue submission criteria to be
defined for each database, and is used when loading, global updating and
indexing jobs are submitted from TRIP.

- - = - - - -
Background Task Execution
Batch queue for task submission: TDBS BATCH

I¥ Motify on completion [~ Printlogfle v Keep logfile

ASE called before submitting tasks: |

ASE called after submitting tasks: |

Figure 2- 8 The Background Task Execution form

Page 54 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Batch queue for task submission

This is a logical name by which the TRIPdaemon separates and serialises
execution of tasks on different databases. The default for all platforms is
"TDBS_BATCH?"; this is simply a "catch-all" queue.

Notify On Completion

If this flag is set, the TRIPkernel will signal to the TRIPdaemon that when the
background task completes, it should notify the end user of this fact.
Depending on the platform being used, this notification is more or less
successfully delivered. Typically in a web-based environment, for example,
such notifications are lost.

Print Log File

If this flag is set, any log file generated by a background task will
automatically be submitted for printing when the task completes.
Keep Log File

If this flag is not set, any log file generated by a background task will
automatically be deleted when the task completes.

Data Loading

This section of the Database design properties ‘Advanced’ form defines the
calling of any ASEs necessary for loading of TForm records.

Data Loading

ASE called before saving records: |

ASE called after saving records: |

Figure 2-9 The Data Loading form

Here you may enter the names of any ASEs you wish to call either before or
after saving records to the BAF.

ASE To Be Called Before Submission

An ASE can be called after all processing for a TRIP job has completed and
before it is submitted to the batch queue, allowing customized checks to be
incorporated into the submission process. Consult the Appendix in this
manual for further information.

ASE To Be Called After Submission

An ASE can be called if and after the job has been submitted to the batch
queue specified. For further details, refer to the Appendix in this guide.

Note:
See Appendix C of this manual for more information regarding ASEs.

Flags

The final section of the Database design properties ‘Advanced’ form allows
for the setting of four flags.

Page 55 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Flags
[
vV Automatically reorganize index files as needed

[Log deleted records to the transaction logfile
| Use an audit logfile to capture database events

Figure 2- 10 The Database Flags Form
The flags are as follows:

Database contains XML documents

If set, TRIP allows path-specific searches to be accomplished that take
advantage of the structure of the XML documents stored within the database.
Without this flag set, any XML documents stored in the database are simply
treated as text.

Note:

XML can only be performed at the moment of database creation; hence this
checkbox is automatically greyed out and cannot be altered. If the database
was created as XML enabled, then the checkbox will be checked. If not, the
checkbox will remain unchecked.

Automatically reorganise index files as needed

It is not uncommon in large database environments for an update to the
database to require significant physical storage and time as that update
causes a reorganization of the index files. This process can significantly
impact both the performance and the availability of the database, and so
administrators can clear this flag to stop the TRIPkernel from performing such
automatic reorganization. When the database does need reorganization, the
indexing log files will reflect the need and the administrator must then run the
TRIPkernel utility REBIF to perform the reorganization (for detail on the
usage of this utility, consult REBIF.PDF in the TRIPsystem installation).

Note:
This checkbox is set by default.
Log deleted records to the transaction log file

Set this flag to force the content of deleted records to be logged in the
transaction log file. This can be useful to administrators when attempting to
decide if a given record should be reinstated to the database, or if a user
inadvertently deletes a record and then wishes to recover it. In such a
circumstance, the administrator can simply locate the record in the log file,
extract the contents and minimally edit them to turn it from a delete to an
update.

Use an audit log file to capture database events

In certain extreme circumstances, notably when tracking down complex bug
scenarios, it might be necessary to be able to see every search performed
against the database. Establishing an audit trail is the means by which this is
made possible.

Simply checking this option does not turn on the audit file and this option is
not supported unless you are being guided by customer support, as there are

Page 56 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

other steps that must be undertaken as well. This policy is for the protection
of database administrators, as unwittingly turning on this option will
significantly degrade the performance of any operations on the database.

Page 57 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Field Definition

Defaults and Restrictions
The following table presents the defaults and restrictions (and defaults if

defined) for each of the TRIP field types TExt, PHrase, NUmber, INteger,

DAte, TIme and STring.

—
m

Restrictions

-
T

pd
c

z

o
>

-

09}
|

Field name

Field type

Field is included in index

Layout retained

Part field

Field can have subfields

Can have valid value type

< Ix > O”KI~KI> |>»

Can have valid value

> > (> |00 -> >

> x> |0 |”|> |»

Description

>

A

A

> > |x [» |0 |”|>» |»

> > |x [>» |0 |”|> |»

> > (X |>» (O [(O> |>»

> (X (X |> |0OIx|x|>|>»

Table 2—=7 Field Defaults and Restrictions

M Default: Checkbox is checked

] Default: Checkbox is cleared
A Applicable for this data type
X

Not applicable for this data type

The Modify Fields Collection Form

If you chose yes to the dialogue box presented at the end of the database
design wizard, you will be immediately taken to the ‘Modify Fields Collection’

form. If you chose ‘N0’ in response to the dialogue box, then you will need to

select the database for which you wish to create fields and choose the

‘Modify Fields Collection...” action from the menu.

Note:

Depending on which field type is selected and which options for that field
are chosen, different areas of the ‘Modify Filed Collections’ form will

automatically be made available or unavailable as appropriate.

For example:

The ‘Record name field” selection box will only be unavailable if the

field is of type, Phrase.

The ‘Record number field’ selection box will only be unavailable if the

field is of type, Integer.

If the selection box for ‘Field is included in index’ is left cleared, then

the other two selection boxes in the ‘Index mode’ area of the form will

be unavailable.

Page 58 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Once you chose to modify the fields collection, you will be presented with a
form similar to figure 2-10 overleaf, showing the default state of this dialog
with a simple database design loaded (in this case, the example database
CORRY):

Modify Fields Collection s . LD [
Field name: Field type: |PHrase j Field Mame ~
Rname
Index mode: W Fieldis induded inindex Attributes: [~ Record name field
Elrcomp

[T Create field-spedific index r EZJraddr

I” Create word-based index I~ Part field Elrcountry

[~ Enforce unique field values r Elsname

— - s

LiNen ™ Required comp

Minimum number of sub Elsador 5
0 [Layout retained [P—— .

Maximum number of subfields: 0
Restriction: % Unrestricted Values:

(" List of valid values

(" Database reference Database: | J Field: | J

" Pattern Pattern: |
Load ASE: The name of the copyright holder is in: =
Index ASE: Unit cost of viewing / printing this field: 0
Description:

| | Reset | Commit | Cancel | Help

Figure 2- 11 Modify Fields Collection Form

There are two basic mechanisms for interacting with the fields collection
through this dialog:

Editing or deleting existing fields

In order to modify or delete an existing field, select it in the list to the top right
of the dialog. Selecting such a field will cause the field's properties to be
displayed in the dialog.

To edit the field's properties, simply make the changes required and click the
"Save Field" button.

Note:

The "Save Field" button will not be available until a valid modification is
made).

To delete the field, simply click the "Delete Field" button
Note:
The "Delete Field" button will only be available if the database is empty.

In order to clear the dialog back to its default state (for example, after loading
an existing field and before creating a new one), click the "Reset" button.

When you have completed your changes to the fields collection, you must
commit the changes to the database design. To do this, simply click the
"Commit" button.

Creating new fields

In order to create a new field, simply specify the field name and choose the
type from the drop-down. Everything else is optional and will default to
"sensible" values. If you have no need to customise the field further, simply

Page 59 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

click the "Save Field" button and the new field will be added to the list of fields
shown in the control at the top right of the dialog.

The controls on the dialog are described in the following sections, starting
with the field name entry box and the field type drop-down selection box:

Moedify Fields Collection

Field name: l Field type: IPHrase

=)

Figure 2- 12 Field Name Entry and Field Type Selection

The Field List

After defining or modifying (and then saving) one or more fields, they will be
visible in the filed list window on the ‘Modify Fields Collection’ form.

Field Mame -
Rname

Rcomp =
Raddr
chuntry
Sname
Scomp
Saddr

M.

s

Figure 2- 13 The Field List

To select a field from the list for closer inspection or alteration, simply click on
it. To save any changes, click on the ‘Save filed’ button. To leave the list
without selecting, click on the ‘Reset’ button; this will rest the form to its
default state.

Field Name
Choose a field name which is unique to the parent database for the new field
you wish to define, and type it in the ‘Fieldname’ box.

Note:
A field name in TRIP may contain from one to sixteen alphanumeric
characters, must start with a letter and may include the underscore (_).

Field Type
Use the drop down selection box to select one of the following field types;
either, TExt, PHrase, NUmber, INteger, DAte, TIme or STring.

Depending on the field type chosen, the rest of the dialog will be initialized
accordingly, so as to only make available those options that are valid for the

field type.
Note:

When editing fields, you cannot modify the type of a field if the database is
not empty.

Page 60 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Index Mode
Indexing makes the data in each field available for searching. If a field is
defined as ‘Not Indexed’, the contents can only be displayed, not searched.

The indexing modes are Indexed, Unindexed, Field-specific Indexing and
Word-based Indexing.

Index mode: [Field is induded in index
[Create field-spedific index
[Create word-based index
[Enforce unique field values

[Mon-Boolean indusion

Figure 2- 14 Index Mode Selection

You can set the indexing mode by checking, or unchecking, one of three
checkboxes described below:

Field is included in index
Checking this checkbox sets the indexing category to Indexed. Leaving the
checkbox unchecked sets the category to Unindexed.

Indexed is the default or normal indexing mode, in which each word, phrase
and their component grams (uni-, bi- and trigrams) are indexed.

For TExt fields, each word and word gram is indexed separately.

With PHrase fields, each complete phrase is indexed as an individual term in
addition to its words and word grams. This allows use of the CCL construct

Find fieldname='a phrase' J

which performs exact matching for ‘a phrase’ on an entire subfield of a
PHrase field.

The numeric field types (INteger, NUmber, DAte and TIme) are indexed by
field number rather than field content.

STring fields are non-indexable; however, the field number is indexed to allow
for use of the CCL construct

Find fieldname=$ J
which will find all records where fieldname has content.

Create field-specific index

This checkbox selection is available only for PHrase and TEXxt fields. Terms
occurring in a field so designated will have a default index plus an additional
posting list (separate index) for occurrences in this field.

This is valuable in those instances where the field contents contain
identically-spelled homonyms of terms commonly found in the general
database. For example, many applications use code words or acronyms that
are also common words in the general vocabulary, but have a different
meaning, such as the stock exchange company identifiers ‘THE’ and ‘IBM’
(Figure 2-28). Since these business abbreviations may occur far more
frequently in the TExt fields of the database at large than in this particular
field, separate indexing would save searching time and resources.

Page 61 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Default List Separate Index

Number Number of Postings: Individual Occurrences| Number Number of Postings: Individual Occurrencesg
of Records | Occurrences | 1 2 3 |....]n of Records | Occurrences | 1 2 3 | n

Term

STD | 8903 9706 N .- 103 189

THE | 115852 273451 |- |---]] - 52 67

IBM 4371 5724 IEEIES --- -- 371 424

SAT 1289 2833 A |- - 12 33

- -- 23 27
DN Record number

Field number

Subfield or paragraph number
Sentence number (TExt fields only)
Word number

Word position

Figure 2- 15 Separate Indexing

Each posting box contains a record number, field number, subfield or
paragraph number, sentence number (in a TExt field), word number and word
position, all of which is represented by dashes in the illustration above.

Create word-based index

This option applies to PHrase fields only, where words and their
corresponding grams are indexed rather than the entire phrase. This is
advantageous in those instances where you wish to maintain the utility of a
PHrase field, but have no need to Display entire phrases. Word indexed
PHrase fields are displayed in the same manner as TExt fields, i.e. words are
shown individually rather than as constituents of phrases.

This category saves file space; however, exact matching during searching is
not possible.

Enforce Unique Field Values

If the field is of type PHrase, you can select this checkbox to make TRIP
check each entry into this field to ensure that it occurs in no other record in
the database.

Non-Boolean Inclusion

Check this flag to include the contents of this field in all Non-Boolean
calculations, including processing required for the ABOUT() search function
and also for document classification.

Notes:

e For more detail on using the ABOUT()function, consult the "Define" and
"Find" sections in the "CCL Command Reference", included with the
TRIPsystem documentation.

e For more detail on non-Boolean searching, see the white paper entitled,
"TRIP Non-Boolean Searching", included with the TRIPsystem
documentation.

¢ For more detail on how to create and manage classification schemes,
see the relevant section in Appendix B and also the white paper entitled,
"TRIP Document Classification", included with the TRIPsystem
documentation.

Field Attributes

The Field Attributes include whether the field is a Record hame (or number)
field, is a Part Field, is Required or is Layout Retained and are available

Page 62 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

depending on which field type is selected. E.g. The figure below shows the
default attributes for a Phrase type field.

Attributes: | Record name field
[
[Part field
-
| Reqguired
| Layout retained

Figure 2- 16 Field attributes selection

Record name field

TRIP automatically numbers each record with a unique record identifier as it
is entered into the database. In some applications it may be desirable to have
a record name field as well. This must be a PHrase field of 255 characters or
less, and its contents in a record must be unique in the database.

For example, a technical reports database system may have a record hame
field consisting of three parts: a location code, a database name code and a
document number. This three-code arrangement will produce a unique record
name value for each technical report in the system, as seen below:

Location Database Report Record

Number Name
Chemistry Organic_Chemistry 0001984 Chemistry_Organic_Chemistry_0001984
Chemistry Physical_Chemistry 0023132 Chemistry_Physical_Chemistry_0023132
Chemistry Nuclear_Chemistry 0005767 Chemistry_Nuclear_Chemistry_0005767

Table 2-8 Use of the record name field

Although this feature can be extremely useful, it is widely overused.
Nonjudicious inclusion of record name fields in a database design results in
needless performance degradation during data loading, as both the BAF and
the BIF must be updated.

Record number field

The record number given by the system may be put in a record number field.
The contents of that field will be searchable in the usual way, but cannot be
changed.

Record number fields are not necessary with new database designs. They
are included here solely to maintain compatibility with older designs, for which
the CCL construct

find R=n Jd
was not available.

Part

Checking this checkbox makes this field a part field in a part record; Leaving
it unchecked makes it a head field in a head record.

Page 63 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

The default for this design field is unchecked and if no fields in the database
have been designated as part fields, this becomes a ‘head’ or ‘flat’ record.
For more information on part fields, see Chapter 2, ‘Records’.

Note:
When editing fields, this value can only be changed in an empty database.

Record Part Name Field

If your database design employs head/part record structure, you should
always utilise record part name fields, which allow the unique identification of
parts within a composite record.

Required

This is a courtesy flag that simply sets the minimum number of subfields or
paragraphs to 1 (or to zero, if the checkbox is cleared). This checkbox can be
modified at any time, although doing so has no effect on records already in
the database.

Layout Retained

For TExt fields, Layout Retained ensures the preservation of formatting
characteristics such as <Tab>, <LF>, and blank lines in the BAF, exactly as
they occur in the entered text. In PHrase fields, <Tab> and multiple spaces
are maintained.

The default for PHrase fields is No, meaning that a series of spaces or tabs
will be compressed to a single space when the record is loaded into the BAF.
The default for TExt fields is Yes. A No in a TExt field causes <Tab> to be
converted into a single space, multiple spaces into a single space and
carriage returns/line feeds to be removed.

Field Organisation (Subfields and Paragraphs)

Minimum number of subfields: 0
Maximum number of subfields: 0

Figure 2- 17 Subfield specification

The above two fields accept up to three digits each, and can be used to
define the field organisation of any data type except String — See note below.

They allow you to define the minimum and maximum number of subfields
allowed for all field types except TExt, for which they specify the minimum
and maximum number of paragraphs.

Assigning a TExt field a maximum means that it must not contain more
paragraphs than that number. If a maximum of one paragraph is defined and
that definition is changed after data has been loaded into the database, the
database must be rebuilt.

If the minimum number of paragraphs is one or more, the field must contain
at least that number of subfields, and entry into that field is mandatory.

Note:

Due to their internal structure, it is strongly recommended that STring type
fields not be limited to a set number of subfields or paragraphs, as to do so

Page 64 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

will result in an error message when trying to write paragraphs of greater
than 1MB in size.

Setting Field Restrictions

All field types are unrestricted by default. However, if required, field
restrictions can be set by selecting one of the three radio buttons; ‘List if valid
values’, ‘database reference’ or ‘Pattern’.

Valid Values

You may specify a comma separated list of accepted values for a field by
clicking on the ‘List of values’ radio button and then clicking on the ‘Add’
button.

Restriction: (" Unrestricted Values:

¥ List of valid values

Figure 2- 18 List of valid values

This will cause an entry box to appear:

Add Value (-2 [|
Value: || oK |

Cancel

Figure 2- 19 Valid values entry box

Type the desired values into the entry box and click on the ‘OK’ button to add
them to the list of values in the ‘Values’ text area.

Each element in the list represents the contents of a subfield. The list may
contain at most twenty elements, for a maximum length of 255 characters.

To delete an unwanted entry from the list, simply select it from the ‘Values’
window and click on the ‘Remove’ button.

Database Reference (Dictionaries)

Selecting the ‘Database reference’ radio button signifies that the field
currently being defined is to be restricted by a database reference (‘Data
dictionary’) that is held in a specific field of a particular database.

For example, selecting the field ‘Chapter’ in the database ‘Alice’ using the
database reference drop-down selection boxes:

@ Bobase fvarce] Dstabose: [B —

Figure 2- 20 Database reference selection
means that entries are validated against the field ‘Chapter’ in the database
‘Alice’.
Note:

To specify that entries must NOT occur in the dictionary, use the NOT
modifier, e.g.

NOT Alice.person
in the Valid Value field (Figures 2-18 and 2-19).

Page 65 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

The dictionary can also consist of fields from more than one database, for
example:

Alice.person,Alice.speaker,Corr.rname
where the fields are combined with OR operators.

In this way an entry found in only one of the fields is enough to permit entry
of a term into the database.

Pattern

A pattern is a regular expression giving the total number of words or
characters and the set of characters themselves that may be entered in each
subfield of the PHrase field.

Patterns represent the fastest method of data validation available in TRIP,
and are especially useful with figures such as inventory control or part
number data. For example, a pattern for the TRIP version number V2.4-11
could be defined in this way:

Letter V + digit + . (period) + digit + optional - (hyphen) + optional digit(s)

Patterns may be disadvantageous to the database designer in those
instances where the complexity of the pattern itself dictates pattern
development costs that far outweigh any potential benefit. They may also be
confusing to the user who, when attempting to access data entry Help for a
pattern-controlled field, will receive only a display of the pattern the field is
restricted against, without explanation.

Pattern: |

Figure 2- 21 Pattern entry

A pattern is defined by selecting the Pattern radio button and entering the
valid pattern in the entry field next to it. There can be only one pattern for a
PHrase field.

A pattern may consist of a number of parts, including the following:

Symbol | Usage

() control characters indicating start/end of
word pattern

* start of character set specification

w,e,s,X,0, | letters are case-insensitive (see table below)

9
‘from . . to’

/ named characters following / are to be
added to or deleted from set

1 characters following // are identified by
ASCII values

+ add characters to character set

- subtract characters from character set

Table 2-9 Symbols used in pattern specification

Page 66 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

An asterisk [x] marks the start of a character set specification. A word pattern
consisting of a single word pattern part with no character set specification (i.e.
without the asterisk) specifies a list of words. For example, (2..*9) represents
a word pattern, while (2) designates two words.

Each word pattern part must be surrounded by parentheses, if it contains
more than one or more explicitly given characters that are to be matched.
This is a generic clause, and indicates that more than one possible character
will be accepted for any one position in a pattern. All multinational characters
are valid as matching characters as long as the string does not conflict with
what is stated within parentheses. Letters are not case sensitive, neither as
matching characters nor in a character set specification (an a in the pattern
will accept both A and a). Any character will match itself.

An interval is symbolized by two dots [..], and character sets are represented
by letters and digits (see table following). A slash [/] immediately following a
character set name signifies that explicitly given characters should be added
to [+] or subtracted from [-] the given character set. A double slash [//] directly
after a character set name signifies that the characters following it will be
given by their ordinal numbers in the DEC multinational character set.

The six predefined character sets are outlined in the table below.

Symbol Character Set

w digits and multinational
letters

e English letters

S Swedish letters

X non-space characters

0 empty set

9 digits

Table 2-10 TRIP’s predefined character sets

The simplest patterns are those which require one or more characters from
any character set to be entered, for example:

Expression | Character | Function
(1*e) (start word pattern part
1 exactly one character
required
* ‘of or ‘from’
e the English letter character
set
) end word pattern part

Table 2-11 A simple pattern

For example, to ensure that a data value will contain three English letters
followed by a slash, then three digits, a hyphen and a single digit

Page 67 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

(for example, abc/123-7), the pattern (3*e)/(3*9)-(1*9) would be entered
without spaces or commas:

Expression Character Function
(3*e) (start word pattern part
3 three characters required
* ‘of’ or ‘from’
e the English letter character set
) end word pattern part
/ slash required at this position
(3*9) (start word pattern part
3 three characters required
* ‘of or ‘from’
9 the Digits character set
) end word pattern part
- hyphen required at this position
(2*9) (start word pattern part
1 single character required
* ‘of or ‘from’
9 the Digits character set
) end word pattern part

Table 2-12 A more complex pattern

Page 68 of 416

PART 1:
CHAPTER 2: DATABASES

DATABASE ADMINISTRATION

Examples of some easily applied patterns follow.

Pattern

Coding

Meaning

12

(2.79)

Strings of two or more digits.

a4c/123-7 or
1b3/123-7 or
abc/123-7 or
123/123-7

(3*e+9)/(3*9)-(1*9)

Three English letters, a slash, three
numeric characters, a hyphen and
one numeric character.

abc/123-7 or
ab/123-7 or
a/123-7

(1..3*)/(3*9)-(1*9)

One to three English letters, a
slash, three numeric characters, a
hyphen and one numeric character.

a...z/123-7

(1..*€)/(3%9)-(1*9)

One to 249 English letters, slash,
etc.

/123-7

(0..*€)/(3*9)-(1*9)

Any number of English letters,
slash, etc.

abc or al2 or

(3*e+9/-09876543) or

Three English letters or digits or a 1

12a (3*e+0/+12) or 2, slash, etc.

a(b) (4*e+0//+40,41) Four English characters or
parentheses.

abc (1..3) Strings of one to three words.

allb2@c3#d (10*x) A word of ten characters.

430 (3*s-e) Three letters from the Swedish

character set minus the English set.

&30 4406 012

(1.*s) (0..*s) (1..3*9)

Strings of one or two words of
Swedish letters, and one word of
one to three digits.

aae

(1.*w) (0..*w) (0..*w)

Strings of one to three words of
digits and/or multinational letters

AlbOc

a(1*9)(0..*e+9)

A string consisting of one word
starting with the letter ‘A’ and a
digit, optionally followed by a
sequence of English letters and/or
digits

Table 2-13 More patterns

Word patterns can specify sets of legal characters for each of their parts. You
can also use combinations of predefined sets with explicitly given characters
added to or taken from the combinations. If no character set is specified, the

set consists only of multinational characters.

Note:

Remember what was said at the start of this section about the asterisk

marking the start of a character set specification, and about the
parentheses that must surround each word pattern part!

Page 69 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Examples of combined sets are:

Character Set | Meaning

Configuration

9+s Digits and Swedish letters.

s-e The three extra vowels in Swedish.
e+9/-089 The English letters and the digits 1 to 7
0/+AEIOU The vowels a, e, i, 0, and u.

9//+40,41 The digits and left and right parentheses

Table 2-14 Sample combined character sets

In the last example the parentheses are specified by their ordinal numbers in
the DEC multinational character set; note the double slash.

The following paragraphs detail the valid field restrictions available to each
field type.

TExt Fields

The contents of a TExt field cannot be restricted to valid values. For a PHrase
field, however, there are several ways of doing this.

PHrase Fields

A PHrase field may be restricted to valid values in three ways; by entering a
list of valid values, by entering a reference field, or by entering a pattern:
NUmber

A NUmber field may be restricted to a specified list of values and/or intervals,
with the elements separated by commas. The list may contain at most twenty
elements or 255 characters, and is entered in the entry field at the bottom of
the screen. An interval is symbolized by two dots [..], in the same way as in a
pattern specification for a phrase field.

A list of valid NUmber values might look like this:
-2..5.5, 20..

meaning that numbers between or equal to -2 and 5.5, and equal to or
greater than 20 will be accepted. As this example contains a real number, it
could not be used for INteger.

INteger

An INteger field may also be restricted to a value/interval list, with at most
twenty elements or 255 characters separated by commas. The list is also
entered in the entry field at the bottom of the screen, with intervals
symbolized by two dots [..].

A list of valid INteger values might look like this:
-2..5, 20..

meaning that numbers between or equal to -2 and 5, and equal to or greater
than 20 will be accepted.

Another INteger restriction could be
.5, T..

Page 70 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

which would make all possible integers (with the exception of 6) valid.

DAte

DAte fields may also be restricted to a specified list of values and/or intervals,
the elements separated by commas. The length of the list is restricted in the
same way as for a number; however dates may be specified using their full
format (YYYYMMDD), year and month (YYYYMM) or year only (YYYY). A
DAte list could look like this:

19850625..19851031, 1986

meaning that any date in 1986 as well as dates from June 25, 1985 up to and
including the whole of October 1985 will be accepted.

If this date form is employed (digits, year followed by month and day, and no
separators), any acceptable private date form may be used in data entry.

Restrictions given in other date forms will accept only dates of the same form
in data entry.

Note:

Refer to the section entitled ‘Date Form’ in Chapter 10 of the TRIPclassic
User Guide for a listing of available date formats.

Time

The rules for Time fields are similar to those for DAte fields. A list of TIme
values and intervals could look like this:

10:10:00..13:30:10, 15
Note:

The ‘15’ in the example above indicates 3:00pm exactly (15:00:00), not
3:00:01PM to 3:59:59PM inclusive.

We now continue with our description of the remaining ‘Modify Fields
Collection’ form elements.
Defining Field ASEs

Field ASEs are specified in the two ‘ASE’ boxes on the ‘Modify Fields
Collection’ form:

Load ASE: l
Index ASE: l

Figure 2- 22 Field ASE specification boxes

Here you can specify ASEs to be called on a per-field basis, either when
loading a record from TForm or when indexing a record. An ASE is called
once per field.

Accounting Information

This part of the form allows the selection of a field containing the record
copyright holder and a unit cost for examining the onscreen and printed
contents of that field.

Page 71 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

The name of the copyright holder is in: | L]
Unit cost of viewing / printing this field: 0

Figure 2- 23 Accounting Information specification

For example, if you download information from an online subscription service
(host a copyrighted database), you could specify a copyright holder for the
downloaded records for chargeback purposes, which will be reflected in the
DEBIT.LOG file.

Refer to Chapter Four, ‘System Logging Functions’ for information regarding
accounting functions, and the ‘Output Format Reference Guide’ section in
Chapter Six of this manual for details on the <debit> filter.

Description

Description:

This is a storage area for field descriptions and instructions regarding field
content, and consists of free text up to 255 characters in length. Its contents
will be displayed with the CCL commands STatus, Show BASe, and Print
BASe, as well as during data entry if field help is activated.

Saving a field design

To temporarily save the design for this field, before moving on to create or

modify further fields, click on the <Save field> button, located to the bottom
left-hand corner of the form. You will now be able to continue working with

other fields in the database.

Notes:

¢ Saved new and modified fields will not be committed to the database
until you either:

a) Click on the <Commit> button, to the bottom right of the form

b) Click on the <Cancel> button, to the bottom right of the form and
respond <Yes> to the ‘Save changes to DATABASE NAME
design’ confirmation dialogue.

¢ Inboth (a) and (b) above, the alteration of the database design will be
confirmed by a pop-up TRIP message, ‘Database design for
DATABASE_NAME altered’. Click the <OK> button, or press the
<Enter> key on the keyboard to continue.

Committing field designs and changes to the
database

To commit the designs for any new and modified fields to the database, click
on the <Commit> button to the bottom left-hand corner of the form.

Note:

The alteration of the database design will be confirmed by a pop-up TRIP
message, ‘Database design for DATABASE_NAME altered’. Click the <OK>
button, or press the <Enter> key on the keyboard to continue.

Page 72 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

Deleting a field design

To delete the design for a field, click on the <Delete field> button in the
bottom left-hand corner of the form. You will now be able to continue
designing the other fields for the database.

Note:

If the field being deleted was previously committed to the database, a
confirmation dialogue, ‘Are you sure you want to delete FIELD _NAME?’ will
first appear. Otherwise, if the field has been saved, but not yet committed to
the database, it will be deleted without further warnings.

Saving a Database Design

Saving a new database design entails entering it as an item in the Control
system file that controls the database. To save an entire design specification,
press the <OK> button, or the keyboard <Enter> key from the General
Database Properties form.

The BAF, BIF, VIF, and the Log file (if specified) are created when the
database design is saved.

Modifying a Database Design

You may alter anything in a database design as long as no data has been
entered into the database.

If, however, data has already been loaded into your design, keep in mind the
following recommended actions for implementing common design changes:

Type of Change Required Recommended
Action

Field name None

File location None

Default form (entry and output) | None

Searchable characters Reindex database
Character folding Reindex database
Index mode Reindex database
Delete field from design Rebuild database
Add/*remove/change special Rebuild database
field

Sentence/paragraph definition | Rebuild database

Field type Rebuild database
Layout retained Rebuild database
Field organisation Rebuild database
Head/part status Rebuild database

Table 2-15 Modifying a database design

Page 73 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

* The record name, record number and part name fields are special fields.

‘Reindex database’ means to reset the index status of the database by
running $TDBS_EXE/bafini (%TDBS_EXE%/bafini in Windows) and providing
a database name at the prompt. You will then need to index the database.

‘Rebuild database’ means to print the database contents into TForm, rename
the database BAF, BIF and VIF, alter the database design as necessary, load
data into the modified database design from TForm, index the newly-filled
database and delete the renamed BAF, BIF and VIF.

Note:

If you change field names or types, you must edit all entry, output and search
forms which refer to those fields to ensure uniformity among field name and
data type references.

To remove a field from the database design, bring up the ‘Modify Fields
Collection’ form and choose the field to delete from the field list; then click on
the ‘Delete field’ button; the deletion of a field is automatically committed to
the database after Yes has been selected from the Yes/No prompt which
appears.

Note:

All currently open TRIP sessions will have to exit and re-enter before any
changes that have been made become apparent; this is because, for
performance reasons, TRIP caches the design of any open database for any
given session and does not reread the design until a new session is started.

Deleting a Database Design

Select the database you wish to delete from the list of databases in the mmc
window, and select ‘Delete’ from the Action menu.

This will delete the database from the Control file as well as its associated
BAF, BIF, or VIF files, as long as there is no data in the database.

If the database which has content, the delete option will not appear on the
action menu, so you must first delete the database’s BAF, BIF and VIF, after
which all associated forms and formats will also be deleted.

Copying a database Design

In the mmc main window, select the database you wish to copy and select
‘Copy’ from the ‘Action’ menu.

Next, select the ‘Databases’ root node in the TRIPmanager window, the
select ‘Paste’ from the action menu. A dialogue box will appear, requesting
the name for the new database copy:

Choose Name for Copy @léj

Copying: New_Db_Design oK |
To: |
Cancel

[Copy everything

Figure 2- 24 Choose Name for Copy

Page 74 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

If you also wish to copy all forms and formats with the database design,
check the ‘Copy everything’ checkbox. A confirmation dialogue box will then
appear to confirm the copy.

Note:

When attempting to perform the ‘Paste part of the above operation, if you do
not have the ‘Databases’ root node selected , the context sensitive ‘Paste’
option will not appear as it makes no sense to paste a copy of a database on
top of an existing database.

Once the new database copy has been created, you can alter it using the
‘Modify Fields Collection’ form.

Note:

To create the files BAF, BIF, VIF and Log of the copy database, you must
modify the database properties and save the design. This is important
because, before the files are created, other users cannot be granted write-
access to the database if the directory where the files are to reside is write-
protected by the operating system.

Page 75 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Related CCL Commands
Note:

It is necessary to select ‘CCL Order’, from the ‘Action” menu, in order to be
able to enter any CCL commands.

STatus

When you have completed and saved the database design, you can look at
the result by using the CCL command STatus to review general information
about your database.

The form of a STatus order is

STatus databasename

B
4 System Information - ﬂ

File Edit

Data base: ALICE Design created: 1992-10-19 18:04:02 N

owner : SYSTEM Design revised: 2013-05-16 11:41:57

Number of records: 475 Last update: 1987-06-18 8:43:44
Last index: 2013-05-16 11:42:13

pescription: Text from 'Alice in wonderland® and 'Through the Looking-Glass® by 3
Lewis Carroll

pefault format: FULL
Formats available: 1, 2, SHORT, FULL

Files: TRIPSDEMO:ALICE.BAF
TRIPSDEMO:ALICE. BIF
TRIPSDEMO:ALICE. VIF

Index / Update submission information

Natifu nn comnlatinn: v

Close

Figure 2- 25 STatus for database Alice

Here the BAF, BIF and VIF name specifications are given, as well as the
names of the reports and those of any other forms belonging to the database.
When there is data in the database, the total number of records and the
dates of the latest database update and indexing are also provided.

The list of field names for that database will be presented in field number
order, with their data types, field numbers (necessary for TForm data input),
and comments, if any.

Show

An overview of all databases created by a user is obtained by giving the CCL
order:

Show BASe

The list will contain, for each database, the same information as the STatus
command gives for a single database.

This order lists the databases in a shorter format than Show BASe:
Show BASe List

Print
Use Print instead of Show to send output to a printer or file.

The system manager may add R=ALL to the order and have a list of all of the
databases in the system, if the Control file has been indexed.

Page 76 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

IMPOrt and EXPOrt

To produce an ASCII definition file for a database design, use the CCL
command EXPOrt:

EXPOrt BASe=databasename [path=mypath]
FILe=filename

For example, on Windows:

EXPOrt BASe=mybase path=C:\Tieto\exports
FILe=myfile.def

Or on UNIX:

EXPOrt BASe=mybase.* path=/user/home/fred
FILe=myfile.def

to export the database design and any associated reports and entry forms for
Mybase as well. If the (optional) path is not specified or does not exist, the file
will be written to the local working directory.

This definition’s description can be used to move the database description
between Control files, or to create a new database description in the same
Control file rather than using the Copy function. To use the definition file in
this manner, use the CCL command

IMPOrt BASe=databasename [path=mypath]
FILe=filename

For example, on Windows:

IMPOrt BASe=mybase path=C:\Tieto\exports
FILe=myfile.def

or on UNIX:

IMPOrt BASe=mybase.* path=/user/home/fred
FILe=myfile.def

to import the database design and any associated reports and entry forms for
Mybase as well. If the (optional) path is not specified or does not exist, an
attempt will be made to read the file the local working directory. If the file
cannot be located, a file not found error will be generated.

Database Clusters

Creating a Cluster

You can define static or permanent database clusters (as opposed to
dynamically from CCL) by selecting the ‘Databases’ root icon, in the mmc
windows and, from the ‘Action’ menu, selecting ‘New’ then ‘database cluster’

Page 77 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

| 4= = | Mew Database...
TRIP CCL Query...

ems W GRS T WD T oEeen e Ve W A ==l
“h TRIP Manager
ﬁ] .FI|E A;liun] View Window Help I;"i“ﬂ

1 s Classification Scl
B2 Search Forms

| 3 Users and Group:

& (47 My Profile

< m b

Type Records Last Modified
“ % E Mew 3 New Database...
‘4 l_ All Tasks 3 New Thesaurus..
New Window from Here New Database Cluster...
Refresh DEMO 99 2013-05-16
USER 0 2013-05-28
Export List...
SYST.. 222 2001-11-03
Help SYST... 120 2001-11-03
 F4 Shellhip & Tdbserr SYST... 879 2004-09-09
b Tdbserr B Tdbshlp SYST.. 1 2001-11-03
[3 Tdbshlp @Thesah DEMO 139 1994-02-08
[Thesali

Owner
SYSTEM
SYSTEM
SYSTEM
TDBS
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM
SYSTEM

Description

Text from ',

Help texts d...
Text from "...

TRIPsystem ...
A collection...
design for ...

TRIPsystem ...
TRIPsystem ...
TRIPsystem ...
TRIPsystem ..
Athesaurus...

Create a new database cluster on the server

Figure 2- 26 Create New Database Cluster

The New Database Cluster’ wizard will then start.

-
Welcome

Welcome to the New

Database Cluster wizard

This wizard will lead you through the required steps to

create a new database duster

B

< Back [Next >][Cancel]

Help

Figure 2- 27 New Database Cluster Wizard

The wizard will present you with a form in which to select up to thirty

database cluster members.

Page 78 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 2. DATABASES

New Database Cluster ﬁ
S —— —
General properties T I]’J
Specify the name and component databases of the new duster SR
Cluster name: | |
Databases:
o Alice 3 Cluster_Db_4 7 Shellhlp
7 Alice_Demo_Hlp # Cluster_Db_5 i Tdbserr
Carroll Control 3 Tdbship
Cluster_Db_1 Corr [, Thesali
4 Cluster_Db_2 3 New_Db_Design
3 Cluster_Db_3 3 Shellerr
Description:
[< Back][Mext =] [Cancel] [Help

Figure 2- 28 Database selection form

Enter a name for the database cluster into the ‘Cluster name’ entry box and
select the desired databases (and / or other clusters) for the cluster, by
holding down the <Ctrl> key on the keyboard, whilst clicking on databases in
the ‘Databases:’” window.

Optionally enter a description in the ‘Description:” window, to a maximum of
255 characters in length.

Finally, click on the ‘Next’ button to continue, or the ‘Cancel’ button to quite
the wizard.

The finishing page of the wizard will appear. You can then click on the ‘Finish’
button to create the cluster.

Note:

The design of static database clusters is still limited to 30 members;
however a workaround is to create database clusters containing other
database clusters.

Warning:

Whilst using the workaround above, it is theoretically possible to exceed the
maximum limit on simultaneously opened databases (250), however such a
cluster would immediately be unusable and care should be taken to avoid
exceeding this limit.

Modifying a Database Cluster

In the mmc main window, select the cluster you wish to modify; then choose
‘Properties’ from the ‘Action’ menu.

Page 79 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Bﬁn TRIP Manager

% File [Action | View Window Help

4@ $ | Grant Access..

TRIP CCL Query.. ne Last Modified Owner Description
“ % M All Tasks ol 2013-05-28 SYSTEM
« g i n 2 2013-05-28 SYSTEM
Mew Window from Here b3 2013-05-28 SYSTEM
Copy o4 2013-05-28 SYSTEM
Delete 05 2013-05-28 SYSTEM
I Rename
| Refresh
Export List...
I Properties
Help
~ [New_Db_Design
» Shellerr
» [Shellhlp
> dbserr L4
> [d Tdbshlp
» [@ Thesali
» % Classification Schem _
e e
| < [1 | »
|0pensthe properties dialog box for the current selection.
Figure 2- 29 Modify a Database Cluster
A window will appear showing the cluster properties:
Db_Cluster Properties &Iﬂ
General | Members
Cluster Name: IDb_CIuster
Description
|
o] o) [5w

Figure 2- 30 Cluster General Properties

The first tab on the cluster properties form is the ‘General’ tab. This tab
displays the cluster name and can also be used modify the database cluster’s
description. The name of a database cluster cannot be changed. You can,
however, copy the cluster to a new name.

The other tab on the database cluster properties form, is the ‘Members tab:

Page 80 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 2: DATABASES

Db_Cluster Properties M

Available Databases:
] Alice

4 Shellhlp

Alice_Demo_Hlp Tdbserr
Carroll 4 Tdbshlp
Contral @ Thesali

Corr
Mew_Db_Design
5 Shellerr

Current Members:

g Cluster_Db_1
Cluster_Db_2
Cluster_Db_3
Cluster_Db_4
g Cluster_Db_5

o) Coma [0

Figure 2- 31 Cluster Member Properties

You can modify the cluster member list by adding or removing databases
(and / or other clusters) from the ‘Current members’ list. To add a database
select it in the ‘Available databases’ list and click on the ‘Add’ button. To
remove a database, select it in the ‘Current members’ list and click on the
‘Remove’ button. Multiple selections can be made by holding down the <Ctrl>
key, whilst clicking on the databases to select.

Deleting a Cluster

Select the cluster in the mmc window and then select ‘Delete’ from the action
menu. A Yes/No confirmation box will appear before the cluster is removed
from TRIP. Deleting a cluster has no effect upon its component databases.

Related CCL Commands

Once a cluster has been opened, issuing the STatus command will give the
status of all database members of the cluster. However, the STatus
clustername command will give the actual status of the cluster, for example:

e R T TR =

File Edit
Data base: CLUSTER_DB_1 Design created: 2013-05-28 14:06:37 -

Files: TDBS_HOME:CLUSTER_DB_1.BAF
TDBS_HOME : CLUSTER_DBE_1.BIF
TDBS_HOME :CLUSTER_DB_1.VIF

m

owner : SYSTEM Design revised: 2013-05-28 14:06:37 ‘—

Submit queue: TDBS_BATCH

Notify on completion: v (|
print log file: N

Keep log file: Y

pata base: CLUSTER_DB_2 Design created: 2013-05-28 14:06:53

owner: SYSTEM pesign revised: 2013-05-28 14:06:53

Files: TDBS_HOME:CLUSTER_DE_2.BAF
TDBS_HOME :CLUSTER_DB_2.BIF
TNRS HOME *C1 IISTER NR 2 VUTE

Figure 2- 32 A STatus screen for a cluster database.

Page 81 of 416

PART 1:
CHAPTER 2:

DATABASE ADMINISTRATION
DATABASES

Any database that you have access to can be a member of the cluster. Once
a cluster has been created, granting access to it is the same as for any other
database and is accomplished through the DB Access menu.

Page 82 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

Chapter 3:
Thesauri

What Is a Thesaurus?

A typical thesaurus that one might find on a library bookshelf or packaged
with a word processor is often nothing more than a collection of synonyms for
a given word or phrase. A structured online thesaurus, however, is more than
a single-level assortment of equivalent or synonymous terms. Itis a
hierarchical, multilevel reference database of terms similar to a manuscript
outline that permits vertical as well as horizontal movement among terms and
their meanings. This structure allows a user who wishes to research a
particular expression to find a broader, more expansive classification for it, a
narrower, more divided subterm of it, and terms that are related to it as well
as synonyms.

A thesaurus can solve many problems when used while searching a
database:

¢ Finding the correct, accepted or established term for something. This
is very useful when a database designer wishes to create a controlled
vocabulary using synonyms, and is generally automated using an
ASE behind a TRIPclassic data entry form.
For example, if the only acceptable abbreviation for ‘United States’
during data entry is ‘US’, an ASE could be used to validate every
insertion made to the box in question via thesaurus. If the data enterer
types ‘United States’, and this term appears as an accepted term in
the thesaurus, it is valid. If ‘United States’ is listed as a synonym of an
accepted term, it will be replaced with ‘US’.

¢ Finding more general, ‘umbrella’ terms to use when the one you were
searching with gives no results.
For example, in a database containing race horse bloodlines and
breeding data, the broader or more inclusive term for a champion
thoroughbred brood mare called ‘Bonney Girl Blue’ might be
‘Thoroughbred Dam’.

e Finding more limited or precisely defined terms when the one in use
produces an enormous number of hits, or a search result consisting of
uninteresting generalities.

For example, in a pharmaceuticals thesaurus, narrower terms or
subcategories of the expression ‘painkiller’ might include ‘aspirin’,
‘acetaminophen’, ‘ibuprofen’, ‘codeine’, ‘morphine’ etc.

¢ Expanding a search laterally by locating terms that are somehow
related to or associated with the one being used for searching, that is,
using a synonym list or directory. Related terms may or may not be on
the same level.
For example, related terms for ‘daisy’ might be ‘rose’, ‘bluebell’ and
‘pansy’, or they could be ‘flowering plants’, ‘Shasta daisy’, ‘roadside
weeds’ and ‘composite flowers’.

Page 83 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

e Verifying the usage of a term by searching for its summary or
definition. Rather than searching a term and reading its description
dictionary-fashion, you could search a term’s synopsis for key words
and use these to search the database for appropriate expressions.
For example, if the definition of ‘painkiller’ were ‘a drug or narcotic that
alleviates physical suffering, i.e. pain palliative’, a productive search
might include the words ‘pain’ and ‘palliative’.

Many of these tasks could be accomplished with a good dictionary. An online
thesaurus, however, is faster to use, and its contents are tailored specifically
for applications with one or several databases.

A Simple Thesaurus

A small thesaurus containing terms related to train equipment, types of train
cars and the names of individual engines is here diagrammed vertically:

Railroad Equipment
Locomotive
Steam Engine
The Flying Scotsman
Stevenson’s Rocket
Puffing Billy
Electric Engine
The Duke of Norfolk
Belvoir Castle
Diesel Engine
2302
#4872
Freight Car
Passenger Car
Work Equipment
Crane
Caboose
Snow Plow
Figure 3-1 The ‘Train’ thesaurus, vertical representation

and here horizontally:

Railroad Equipment

Locomotive Freight Car Passenger Car Work Equipment

Steam Engine Crane
The Flying Scotsman Caboose
Stevenson’s Rocket Snow Plow

Puffing Billy

Electric Engine

The Duke of Norfolk

Belvoir Castle

Diesel Engine

#2302

#4872

Figure 3-2 The “Train’ thesaurus, horizontal representation

Page 84 of 416

PART 1:
CHAPTER 3:

DATABASE ADMINISTRATION
THESAURI

In this example, the immediate sub groupings of the term ‘Railroad
Equipment’ are ‘Locomotive’, ‘Freight Car’, ‘Passenger Car’ and ‘Work
Equipment’, while the next subdivision of ‘Locomotive’ includes ‘Steam
Engine’, ‘Electric Engine’ and ‘Diesel Engine’, and so on.

Seen another way:

Term

Broader Term

Narrower Term(s)

Railroad Equipment

Locomotive, Freight Car,
Passenger Car, Work

Equipment

Locomotive Railroad Equipment | Steam Engine, Electric Engine,
Diesel Engine

Freight Car Railroad Equipment | ------

Passenger Car

Railroad Equipment

Work Equipment

Railroad Equipment

Crane, Caboose, Snow Plow

Steam Engine Locomotive The Flying Scotsman,
Stevenson’s Rocket, Puffing
Billy

Electric Engine Locomotive The Duke of Norfolk, Belvoir
Castle

Diesel Engine Locomotive #2302, # 4872

The Flying Scotsman

Steam Engine

Stevenson’s Rocket

Steam Engine

Puffing Billy

Steam Engine

The Duke of Norfolk

Electric Engine

Belvoir Castle

Electric Engine

#2302 Diesel Engine | ------
#4872 Diesel Engine | ------
Crane Work Equipment | ------
Caboose Work Equipment | ------
Snow Plow Work Equipment | ------
Table 3-1 Record contents and thesaurus design for ‘Train’

In this illustration the term ‘Railroad Equipment’, which has no larger category
or broader term, is the top term in the hierarchy. Certain pieces of railroad
equipment such as ‘Passenger Car’ and articles of work equipment such as
‘Caboose’ are terminal expressions, since they contain no subcategories or
narrower terms. The names of individual locomotives such as ‘Puffing Billy’,
‘Belvoir Castle’ and ‘# 4872, which have the greatest number of larger term
groupings above them and no narrower terms, are the lowest terms. A
terminal expression may or may not be a lowest term in the hierarchy;
however a lowest term is always a terminal expression.

Page 85 of 416

PART 1:
CHAPTER 3:

DATABASE ADMINISTRATION
THESAURI

A thesaurus can be considered an upside-down ‘tree’, where the top term is
the root and the terminal expressions are the leaves.

There can be more than one tree in a thesaurus, that is, a thesaurus may
contain several top terms, each marking the highest level of an individual
tree.

Creating a Thesaurus

Several steps are necessary in building a thesaurus. First and foremost is the
conceptual data layout and physical database design, the default conceptual
layout being defined by the system.

Next, the planner must decide if the database will be filled manually (using
data entry) or automatically (via TForm file). If using data entry, the designer
must build a data entry form; if using TForm, he or she must create a
program to convert existing online thesaurus data to TForm, or manually
create a TForm file via the system editor.

Finally, the defaults should be defined, such as a report, entry form etc.

To create a thesaurus, highlight ‘databases’ in the mmc
window and select ‘New’ then ‘New Thesaurus...” from the
action menu.

'ﬁ]TRIPManager R— J— — ————_ l‘:' o X
‘i File [Action | View Window Help _|=
e ‘ New Database...
Y Trie ey me Type Records LastModified Owner Description
BN New v New Database... 5 SYSTEM Text from ..
<[l All Tasks 3 New Thesaurus... 8 SYSTEM Help texts d...
— b1 USER 0 2013-05-28 SYSTEM
—— 52 USER 0 2013-05-28 SYSTEM
53 USER 0 2013-05-28 SYSTEM
Help h4 USER 0 2013-05-28 SYSTEM
» § Cluster_Db_4 T Cluster Db5 USER 0 2013-05-28 SYSTEM
,) Cluster Db5 Contral SYST. 464 3008-10-14 TDBS TRIPsystem ..
> Control Corr DEMO 99 2013-05-16 SYSTEM A collection...
- B Corr [§3Db_Cluster USER 0 2013-05-28 SYSTEM
+ {§3 Db_Cluster Megacluster USER 625 3013-05-29 SYSTEM
» [Megacluster Mew Db Desi.. USER 0 2013-05-28 SYSTEM design for ..
> @l New_Db Design Shellerr SYST... 223 2001-11-03 SYSTEM TRIPsystem ...
> B Shellerr Shellhlp SYST... 120 2001-11-03 SYSTEM TRIPsystem ...
> i Shellhlp [Tdbserr SVST... 870 2004-00-09 SYSTEM TRIPsystem ...
» @ Tdbserr [0 Tdbshlp SVST... 1 2001-11-03 SYSTEM TRIPsystem ..
» 1 Tdbship ~ || B Thesali DEMO 139 1994-02-08 SYSTEM A thesaurus...
4 m (2

Create a new thesaurus on the server

Figure 3-3 New Thesaurus Menu

This will start the New Thesaurus wizard. As this wizard is identical in form to
the Database design wizard, refer to the section on creating a new database
for more details.

Note:

A newly created thesaurus will contain fields according to the TRIP
thesaurus design template.

Page 86 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

Thesaurus Structure
TRIP provides a template for thesaurus creation, the structure of which is

shown below:

Field Acronym Field Type Indexed? | Comments
CTX PHrase Yes Controlled Term
BTX PHrase No Broader Term
NTX PHrase No Narrower Term
RTX PHrase No Related Term
UFX PHrase Yes Synonyms
SNX TExt Yes Scope Note/term description
NRX PHrase No Hierarchical position designation used

for numerical decimal classification

Table 3-2 The thesaurus template

Note:

The PHrase field NRX may be used by a data entry facility to contain a
number expressing the level of the CT terms in the thesaurus. It is optional,
and has no other function.

Data Layout

In the following we will use the terms CT, BT and so on, instead of the field
names with the added ‘X’. That letter is added only because the thesaurus
terms are reserved words in CCL and can not be used as field names.

In the hierarchical or conceptual design of a thesaurus, each record contains
both a term and its nearest semantic relatives:

Page 87 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 3. THESAURI

Field Acronym Field Contents Comment

CT term [------

BT CT'’s parent nearest more general term(s)

NT CT'’s children nearest more specific term(s)

RT other thesaurus CTs | except CT’s parent or child. This

that are related to can be any other relative, or even
the term a term with no ancestor in
common with the CT

UF othernon-CT [------

thesaurus terms that
are synonyms or
near-synonyms of
CT

SN descriptionofCT | ------

NR hierarchical number | provided for compliance with
ANSI thesaurus structure
standard; not used by TRIP

Table 3-3 Record contents and thesaurus design

Using the first two levels of the train example illustrated in Figure 3-1 , the

hierarchical relationships of the top five terms are outlined below:

Page 88 of 416

PART 1:
CHAPTER 3: THESAURI

DATABASE ADMINISTRATION

Terms
Railroad Locomotive Freight Car Passenger Work
Equipment Car Equipment
CT Railroad Locomotive Freight Car Passenger Work
Equipment Car Equipment
BT [-.---. Railroad Railroad Railroad Railroad
Equipment Equipment Equipment Equipment
NT Locomotive, Steam Engine, |------ [------ Crane,
Freight Car, Electric Engine, Caboose, Snow
Passenger Car, | Diesel Engine Plow
Work
Equipment
RT |...... Freight Car, Locomotive, Locomotive, | Locomotive,
Passenger Car, | Passenger Freight Car, | Freight Car,
Work Car, Work Work Passenger Car,
Equipment, Equipment, Equipment, Railroad
Railroad Railroad Railroad Equipment
Equipment Equipment Equipment
UF |[...... Engine Baggage Car, |------ Maintenance
Cargo Carrier Gear
SN All vehicles The source of Any rail carrier | Any rail Any rail car or
used to power in a designed to carrier accessory used
transport or railway transport intended to primarily for the
maintain caravan, cargo transport preservation
persons, operated by shipments persons and restoration
objects or steam, rather than rather than of railway
equipment by electricity or people. cargo. equipment and
rail petroleum rights-of-way.
fuels.
NR |1 11 12 13 1.4
Table 3-4 Hierarchical relationships of the ‘Train’ thesaurus

While the BTX and NTX fields must have content to form the hierarchical
structure of the thesaurus, the contents of the RTX, UFX, SNX and NRX
fields are discretionary and serve only to make the thesaurus more useful.

A term may be the CT term of more than one record, but only if the BT terms
of the records differ, that is, if they are either homonyms or the same term
seen from different aspects.

In each record the CT field holds exactly one term; that is, CT may not
contain more than one subfield. The number of terms or subfields is not
restricted for any other thesaurus PHrase field except BT, whose maximum-
single subfield default value can be altered.

CT is the only thesaurus field that can be defined as a record name field.

Each term in a BT, NT or RT field of a record must also appear as the CT of
another record, which is why they are not indexed (not searchable) in those
records where they are not the CT term.

Page 89 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

The UF terms, the synonyms or near-synonyms, must not appear as CT
terms with records of their own.

Note:
TRIP will not automatically detect a thesaurus design error wherein term 1A
has NT=1B and term 1B has NT=1A. The same is true if term 1A has NT=1.
Attempting to Display Down from a level above 1A can then result in a loop
and possibly a crash if the Display MAXimum definition is sufficiently large.
Care should be exercised to avoid such looping conditions when creating a

thesaurus.

Page 90 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 3. THESAURI

Thesaurus Database Design

General Thesaurus Properties

Refer to Chapter Two of this guide, ‘Creating a Database’ and ‘Modifying the
Fields Collection’ for background information on designing a thesaurus.

Special Thesaurus Fields

As the CTX field is the only mandatory field, it could be made a record name
field with the understanding that the contents of CTX must then be unique in
the database. The ‘Part Record Field’ option is unavailable for thesaurus
design.

Defaults
The default report is the same as for database design.

Be cautious in designing customized reports for use with a search form, as
the same report will be used for both Show and thesaurus Display orders.
Although it is possible to override the format used to display thesaurus output
by designating another default, we strongly suggest that you contact your
local TRIP agent for guidance before doing so.

Character Sets
You may select a character folding class as for an ordinary database.

Description of the Thesaurus

The thesaurus description appears on STatus requests as with a standard
database.

Other Thesaurus Properties

The ‘ASE (Application Software Exit)’, ‘Sentences and Paragraphs’ and
‘Index/Update Submission’ screens are identical to those provided for
standard database design.

Field Definition

To create fields in addition to those provided in the thesaurus template or
modify the attributes of the pre-existing fields, use the ‘Modify Fields
Collection’ form. Any customised appended fields will not be shown in a
Display of the thesaurus, however.

The ‘Index’ specification for any of the seven predefined thesaurus fields
cannot be altered.

Although each field has been provided with a brief description, you may add
additional comments and/or restrictions.

Page 91 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

Filling The Thesaurus

Using TForm

If your thesaurus data exist in a commercially-procured or editor-constructed
text file, the file can be converted to TForm, the input format of TRIP and then

loaded into TRIP. Todo t

his you should first design the thesaurus on paper,

either manually or using a thesaurus maintenance tool, to ensure that all
reciprocal terms within the data are correct. You will also need the field
numbers of the thesaurus design, which are displayable using a STatus order
after the thesaurus has been created.

See the Appendix in this guide for more information on creating a TForm file.

Using Data Entry

To fill a thesaurus manually, the thesaurus designer must first build a data
entry form containing at least the CTX, BTX and NTX fields, and preferably
the other fields as applicable. Data entry then proceeds as usual,

constructing term relation
records as there are term

ships one record at a time. You must enter as many
s or nodes in the thesaurus tree.

See Chapter Six of the TRIPclassic Manager Guide for more information on

building data entry forms.

Related CCL Commands

Thesaurus designs can b

e EXPOrted and IMPOrted in the same manner as

standard database designs, so that any additional fields that may have been
appended to the thesaurus design will be maintained during a move between

CONTROL files.

STatus

You can use the CCL STatus command to review general information about
your thesaurus once the design has been completed and saved:

STatus databasename J

System Information

==

File Edit

Thesaurus: THESALL
owner : SYSTEM

Number of records:

Formats available:

Description: A thesaurus of the persons in the demonstration data base ALICE

Files: TRIPSDEMO:THESALIL. BAF
TRIPSDEMO: THESALI. BIF
TRIP$DEMO: THESALI. VIF

Index / Update submission information

1993-05-24
1994-02-08

9:45:45
14:24:45

pesign created:
Design revised:
139 Last update:
Last index:

1994-04-19
2004-10-01

15:20:12
9:13:04

m

LISTSY, LISTALL

print log file:
Keep log file:

Notify on completion: Y

N
Y

: Close

—

Figure 3-4 S

Show
Show BASe .

Tatus for thesaurus ‘Thesali’

Show BASe LIST

Page 92 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 3: THESAURI

IMPOrt/EXPOrt

IMPOrt THESaurus=thesaurusname file=filename
EXPOrt THESaurus=thesaurusname file=filename

Page 93 of 416

PART 1:

DATABASE ADMINISTRATION

CHAPTER 4. SYSTEM LOGGING FUNCTIONS

Chapter 4:
System Logging Functions

Overview

System logging functions include accounting, auditing and event monitoring.

Auditing is the logging of certain user activities and the time each was
performed on the TRIP system. These may include the databases a user has
opened and closed, searches performed and output produced.

Accounting is a cost accrual for all records shown or printed by a user
according to a predesignated unit cost per field specified in the database
design. The costs recorded can be affected using the DEBIT output function
(for more information, see the ‘Debit’ section in Chapter Six, ‘Output Format
Reference Guide’ of this manual).

Event monitoring is a feature that allows the TRIP systems administrator or
DBA to output events from TRIP sessions.

Activating System Accounting Functions

The simplest method of switching on logging functions is to create a blank file
called DEBIT.LOG in the directory pointed to by TDBS_SYS.

If you have a directory for the storage of accounting files defined under the
logical name TDBS_ACCDIR, TRIP will create an accounting file
automatically according to the value specified by the logical name
TDBS_ACCFLG. See the next section for more information.

Assigning Field Costs for Accounting

Assigning a cost to a field when a record is output is done in the database
specification. See Chapter Two, ‘Database Design’ for more information
regarding field cost assignment.

Accounting function Logical Names

There are two logical names that control the user logging functions in TRIP.

The first, TDBS_ACCDIR defines a directory in which the system accounting
logs are kept.

For both UNIX and Windows, TRIP assumes the accounting file is kept in
TDBS_SYS if the logical name TDBS_ACCDIR is not defined. Any definition
of TDBS_ACCDIR that a user may have set up in his or her own environment
will be overridden by any definition in tdbs.conf, which is located in the conf
directory of the TRIPsystem installation.

The second logical name, TDBS_ACCFLG, can be used to customize the
name and content of accounting logs.

In UNIX and Windows, any definition of TDBS_ACCFLG in a user’s
environment will be overridden by a definition in tdbs.conf.

Page 94 of 416

PART 1:
CHAPTER 4:

DATABASE ADMINISTRATION
SYSTEM LOGGING FUNCTIONS

The value of TDBS_ACCFLG is an integer bitmask, whose value varies
between 0 and 255. The meaning of each individual bit (0-7) is explained
below.

TDBS_ACCFLG Bits

To compute the value required for the setting of TDBS_ACCFLG, simply add
the values of those bits that you wish to enable. For example, to enable all
possible logging and activate show focus accounting, set these bits:

Bit Bit Value
Number

3 8 (29)

6 64 (25)

Therefore, the value of TDBS_ACCFLG should be (64+8)=72.

Bit 0

This bit (value 1) specifies the use of a user specific account file called
TRIPusername.LOG, if not otherwise specified by bit number 1. For example,
if the user name is ‘FRED’, then the user-specific accounting log in
TDBS_ACCDIR will be called ‘FRED.LOG’. Any pre-existing DEBIT.LOG file
will not be used.

Bit 1
This bit (value 2 or 2?) uses the SIF file name as the name of the account file.

If this bit is set, then the name of the user-specific accounting log is the
filename portion of the SIF, as specified by the logical name TDBS_SIF.

If TDBS_SIF is defined as the UNIX path + filename
{usr/users/sif_files/jim_johnson.sif and the username is ‘FRED’, the
accounting file will be called $TDBS_ACCDIR/jim_johnson.LOG.

If TDBS_SIF is defined as the Windows path + filename
C:\users\jjohnson\sif_files\jim_johnson.sif and the username is ‘FRED’, the
accounting file will be called %TDBS_ACCDIR%\jim_johnson.LOG.

Note:

If TDBS_SIF does not contain a filename specification, setting this bit will
have no effect (see the section entitled ‘Logical Names’ in Chapter Twelve
of this manual for the definitions of TDBS_SIF).

Bit 2
This bit (value 4 or 22) uses the SIF file name as the identifier in the account

file, rather than the TRIP user name. By default, every entry written to the
accounting file contains the TRIP username involved.

Setting this bit instructs TRIP to replace the TRIP username with the filename
portion of the TDBS_SIF definition.

Bit 3

This bit (value 8 or 23) logs all possible information. If this bit is not set,

logging will not be performed when a database cluster is opened and when
the CCL orders Find, FRequency and MEasure are used.

Page 95 of 416

PART 1:
CHAPTER 4:

DATABASE ADMINISTRATION
SYSTEM LOGGING FUNCTIONS

Bit 4
This bit (value 16 or 2¢) specifies that TRIP should not accumulate database
statistics.

The accounting default is for TRIP to accumulate accounting information for
all actions taken, and to record this information only when the user logs off
the system. If this flag is set, an accounting line is written whenever
databases are changed with the BASe command. Statistics will be written for
the last database opened upon logout, therefore this flag will be of no use if
the user opens only a single database during their entire session.

Bit 5
This bit (value 32 or 2°) specifies that TRIP should not collect output

statistics, but should write accounting information whenever a new Show
request is begun.

Setting this bit directs TRIP to record statistics for each Show command
separately, so that in the event of an abnormal termination only those
statistics for the last Show request performed will be lost.

Bit 6
This bit (value 64 or 2¢) switches accounting on for Show FOcus. The TRIP

default provides accounting information only for normal Show procedures,
and does not typically include Show FOcus.

Bit 7

This bit (value 128 or 27) dictates that only records in open databases can be
shown. This type of accounting prevents a user from Showing the results of
previous searches—to view these, the user must reopen the database
against which those searches were made. Print commands for prior searches
are still allowed.

Accounting Log File Format

The accounting log is a shared sequential file, with each ASCIlI-readable
record containing a maximum of 255 characters. The records or lines have a
predefined time of recording, starting and ending position (given in columns)
and length, and for convenience are referred to by a single-letter acronym
such as B-line.

Each user’s session as recorded in the accounting file may contain any
combination of the line types shown overleaf:

Page 96 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Line Name Line Starting Ending Length Field Description When Recorded
Acronym Position Position
Beginning B—Iine:l 3 50 48 Session identity At the beginning of a
session
Changing or C-line 52 67 16 Database name On changing a
Closing 69 88 20 Closing date and time database or logging
out
Exit E-Iine2 52 71 20 Closing date and time On exit from the
72 171 100 Operating system statistics system
Field F-line 52 67 16 Database name On output of a
69 255 187 Copyright holder information copyright-protected
field
Multibase M-line 52 253 200 Logs database clusters Immediately after
opening
Opening O-line 52 67 16 Database name On opening a
69 88 20 Opening date and time database
FreQuency Q-line 52 253 200 Logs FRequency orders Immediately after
order has been
completed
MeasuRe R-line 52 253 200 Logs MEasure orders Immediately after
order has been
completed
Search S-line 52 253 200 Logs Find orders Immediately after
order has been
completed
Usage U-line 52 67 16 Database name On exit from the
69 76 8 Database connect time system, but this may
78 83 6 (hh:mm:ss) be affected by the
85 92 8 No. records shown (right- value of
94 99 6 justified) TDBS_ACCFLG
101 108 8 Cost of records shown
No. records printed (right-
justified)
Cost of records printed

Table 4-1

1 For each user entering TRIP, a unique session identity, the B-Line, is
created from the date and time of TRIP entry and the operating system user
name, the TRIP user name or the SIF file name, depending on the setting of
TDBS_ACCFLG. This session identity is repeated on each line of the debit
file in character positions three to fifty, so that each user’s entries can be
grouped using a simple sort.

Hierarchical relationships of the ‘Train’ thesaurus

2 The operating system statistics captured by the E-Line include total TRIP
connect time and CPU time.

Page 97 of 416

PART 1:
CHAPTER 4:

DATABASE ADMINISTRATION
SYSTEM LOGGING FUNCTIONS

Example

The following example is a log file from a short single-user TRIP session. The
initial ten lines of code of the interactive user session reproduced below
(Table 4-2) generate the first fourteen lines of output in the accounting file
(Figure 4-1). The last line of code, the Print statement, executes a batch job
that produces the remaining nine lines of accounting output.

The user name for the session is JANNE, and the TRIP user name is
SYSTEM. A cost has been assigned to one of the fields of the database
CORR, but no copyright holder has been specified (that information is not
mandatory). Bit number three of TDBS_ACCFLG has been set.

The session consisted of the following TRIP orders:

Timepoint CCL Command
User’s Interactive base corr
Session

F $rip

show

base alco=alice, corr

find alice

show

show reverse

freq rname

meas chaptnr

f jabber$ or jan

Batch Print Job print file=x

Page 98 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

The accounting log file would appear as follows:

COLUMN POSITION

=== Session Identity | | === I [====== === .

B JANNE SYSTEM 11-JAN-1991 09:27:15

O JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 11-JAN-1991 09:27:20

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find $rip 110
M JANNE SYSTEM 11-JAN-1991 09:27:15 BASe alco=alice, corr

O JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 11-JAN-1991 09:27:30

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find alice

Q JANNE SYSTEM 11-JAN-1991 09:27:15 freq rname

R JANNE SYSTEM 11-JAN-1991 09:27:15 meas chaptnr

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find jabber$ OR jan

C JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 11-JAN-1991 09:29:20

C JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 11-JAN-1991 09:29:20

U JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 00:02:02 2 0 0 0
U JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 00:01:49 2 0 0 0
E JANNE SYSTEM 11-JAN-1991 09:27:15 11-JAN-1991 09:29:23 ELAPSED: 0 00:02:07.75 ...

... CPU: 0:00:07.76 BUFIO: 08 DIRIO: 71 FAULTS: 56

B JANNE SYSTEM 11-JAN-1991 09:30:22

M JANNE SYSTEM 11-JAN-1991 09:30:22 BASe alco=alice, corr

O JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 11-JAN-1991 09:30:20

O JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 11-JAN-1991 09:30:20

C JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 11-JAN-1991 09:30:20

C JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 11-JAN-1991 09:30:20

U JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 00:00:04 0 0 17 0
U JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 00:00:04 0 0 1 0
E JANNE SYSTEM 11-JAN-1991 09:30:22 11-JAN-1991 09:30:27 ELAPSED: 0 00:00:05.58 ...

... CPU: 0:00:03.50 BUFIO: 19 DIRIO: 71 FAULTS: 397

Table 4-2 A sample accounting file

Event logging

An event logger library has been added to TRIPsystem. This is able to detect
various events in TRIP sessions and log its findings to file.

Overview

Event monitoring is a feature that allows the TRIP systems administrator or
DBA to output events from TRIP sessions. If event monitoring is enabled,
each session gets its own event log file.

Events in this context are:

e Errorsin the current session

o Changes to users (e.g. created, deleted)

¢ Changes and actions on databases (e.g. created, deleted, opened,
closed)

e Submitted batch jobs (index jobs, print jobs and global updates)

e Session changes (login, logout)

Page 99 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

How to Enable Event Logging

Event logging is disabled by default. It is enabled by adding the following
property to the tdbs.conf file:

Property name Value description
TDBS_MONITOR_LIB Fully qualified path to the monitor
library file

It is also possible to generate performance measurements on query
executions. This is not enabled by default, even if event monitoring is
otherwise enabled, but may be enabled by setting the following property in
the tdbs.conf file:

Property name Value description

TDBS_MONITOR_QPERF “Y” or “1” to enable query
performance event logging

Example, with query monitoring enabled:

TDBS MONITOR LIB=S${TDBS HOME}/bin/libmonlog.so
TDBS MONITOR QPERF=Y
Monitoring is always enabled if the TDBS_MONITOR_LIB property is defined
and refers to the libmonlog shared object or DLL file.

Parameters

Additional parameters to the event monitor can be given by adding the
following properties to the tdbs.conf file:

TDBS_MONLOG_FLUSH

Determines if log statements should be forced to disk immediately as they
are written, or allowed to delay in the file system cache.

Enable by specifying Y. Default is N (false).
TDBS_MONLOG_MONOLITHIC

Determines if the monitoring event log is monolithic or per session. When
monolithic logging is enabled, all sessions share the same log file.

Default is Y (true). Disable by specifying N.
TDBS_MONLOG_MONOLITHIC_PERIOD

Determines the time period of monolithic logs. A new log file is created for
each new period. Valid values:

e HOUR
e DAY

e WEEK
e MONTH
e YEAR

Default is DAY.

Page 100 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

TDBS_MONLOG_TSTAMP

Determines if a year-to-second time stamp should be included in the log file

for each log row.

Default is N (false). Enable by specifying Y.

Event Log Output

The format of the event log file is a comma-separated values (CSV) file. The
following tables describe the fields in the file.

Common fields for all message types:

Field nr Value Type

Description

1 Process ID

The process ID of the process from which
the event originated. This is typically the
TRIP Daemon (tripd), the TRIPserver
(tbserver), and TRIP classic (trip), but also
includes serverside TRIP processes that
directly use the TRIP kernel.

2 Time stamp

Time stamp in the format “YYYY-MM-DD
hh:mm:ss”. This field contains an empty
value unless the
TDBS_MONLOG_TSTAMP property is set
toY.

3 Hi-res time

A nano-second time offset from the start of
the process from which the event
originated. The format of this value is
hh:mm:ss:mmm.uuu.nnn.

4 Message
Type

Indicates the type of the information on the
current row. The value types of the
remainder of the fields are determined by
this value.

The following fields apply to message type PROCINFO, which denotes basic
process information. This information is sent when the monitored process is

starting up.
Field nr | Value Type Description
5 Process The type of the process. This is “TRIP
Type kernel” for a TRIP session or “Tieto

TRIP daemon” for the TRIP Daemon
(tripd).

6 User name The name of the currently logged on
user

7 Is Session Indicates if the process currently hosts
an active TRIP session, i.e. a logged on
user.

Page 101 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

The following fields apply to message type EVENT, the most common entry
in the event monitoring log.

Field nr

Value Type

Description

8

Severity

The severity of the event. Possible values
are INFO, WARNING, ERROR and
CRITICAL.

Resource
Type

The type of resource associated with the
event. Typical values are USER and
DATABASE. Additional possible values
are SESSION, HOST, PROCESS and
JOB.

10

Resource ID

The identity name of the resource
associated with the event.

11

Event Type

The type of the event being signalled.

Valid values are:

e STARTED - e.g. a successful user
login

e STOPPED - e.g. a logout

¢ OCCURRED - a generic event

e CREATED - e.g. a database was
created

e DESTROYED - e.g. a database was
deleted

e ERROR - e.g. an error has been
raised

e WARNING - e.g. a non-critical error
has occurred

e FAILED - e.g. generic non-erroneous
failure

MEASUREMENT - e.g. query

performance

12

Event Name

Display name or title for the event. In
case of errors and warnings, this
indicates the code of the TRIP error.

13

Description

Human-readable event description. In
case of errors and warnings, this is
typically the TRIP error message.

Log File Location and Name

The event log is written to the directory indicated by the TDBS_LOG property
in the tdbs.conf file.

The name of the file is determined by whether monolithic mode is enabled
(see the description of the property TDBS_MONLOG_MONOLITHIC) and the
period of the monalithic logging (see the description of the property
TDBS_MONLOG_MONOLITHIC_PERIOD).

If monolithic logging is disabled, the log file name will be:

eventlog <year><month><day><hour><min><sec> <pid>.

log

Page 102 of 416

PART 1: DATABASE ADMINISTRATION
CHAPTER 4: SYSTEM LOGGING FUNCTIONS

If monolithic logging is enabled, the log file names depend on the time period:

HOUR
eventlog <year><month><day><hour><min><sec>.log

DAY
eventlog <year><month><day>.log

WEEK
eventlog <year><dayofyear>.log

MONTH
eventlog <year><month>.log

YEAR
eventlog <year>.log

Year is always a 4-digit number. The values for month, day, hour, minute and
second are all zero-padded 2-digit numbers. The value for ‘dayofyear’ used
for WEEK time period is a zero-padded 3-digit number that denotes the day
of the year for the Monday in the current week.

Page 103 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 2:

Forms

Page 104 of 416

PART 2: Forms
CHAPTER 5: DATA ENTRY FORMS

Chapter 5:

TRIPclassic Data Entry Forms

Data entry is the process of manual insertion of data into a database. To do
this, the database manager or a user with access to the database designs a

screen form giving access to the fields of the database.

A data entry form consists of one or more screen pages for the entering of
the records. Headers, frames and visual characteristics of different kinds may
be added to the form. The data entry form can be used both for entering new
records and editing old ones. The records created using the form are added

directly to the BAF file.

To view the existing data entry forms for a given database, expand its sub-
tree in the mmc window then click on the ‘Entry Forms’ icon. A list of entry

forms will then appear.

‘g TRIP Manager

=

) [|

&1 File Action View Window Help
@z xlald=H

+ 1§ Alicluster
- [l Carroll
» [Cluster Db 1
. [Cluster_Db_2
. [Cluster Db 3
» [Cluster Db 4
» [l Cluster_Db_5
. [l Control
Corr

=2 Reports

N

I > [{3 Db_Cluster
+ (33 Megacluster

- i Shellerr
- [Shellhlp
s [Tdbserr
» [Tdbshlp
o [Thesali

< (T

Entry Forms
[0 Access Right]=

| S Mew_Db_Design

> 4 Classification Schem
Lo e S

Entry Form Name Last Modified
Bl 1934-02-08
Full 1994-02-08

r

Owner
SYSTEM
SYSTEM

Description

Figure 5-1 Entry forms for database CORR

Selecting an entry form and choosing ‘Properties’ from the action menu, will
list the properties for that form.

Page 105 of 416

PART 2: Forms

CHAPTER 5. DATA ENTRY FORMS

Full Pro

Last

Creator [Owner:

Created:

perties
General
Mame: Full
Database: CORR

SYSTEM

1993-05-23 22:41:15

modified: 1994-02-08 14:24:26

Description:

[QK][Cancel]

Figure 5-2 Properties for CORR entry form FULL

Creating and Modifying TRIPclassic Data Entry

Forms

TRIPmanager currently has no means of carrying out these operations. It is
hoped to include this functionality in a later release. For now, consult the
TRIPclassic user guide for details of how to perform these actions.

Copying TRIPclassic Data Entry Forms

To copy a data entry form, click on ‘Entry Forms’ in the chosen database sub-
tree, select the form to copy and select ‘Copy’ from the action menu.

Next click in the right hand pane of the mmc to deselect the Entry Form being
copied, then select ‘Paste’ from the action menu.

nﬁ] TRIP Manager

‘% File
|

&ctlon]!iew Window Help

Set Default

4|

CCL Query...
All Tasks

Cut

Copy
Delete

Rename

Properties

Help

|

ntry Form Mame

5| Full

[Access Rights =
» 3 Db_Cluster
> @ Megacluster

> % Classification Schem
[ki

[
T | »

Last Modified
1994-02-08
1994-02-08

Owner
SYSTEM
SYSTEM

Description

Copies th

e current selection.

Figure 5-3 Copy a Data Entry form

Page 106 of 416

PART 2: Forms
CHAPTER 5: DATA ENTRY FORMS

A dialogue will appear, in which you may enter the name for the new Entry
form copy and click on the ‘OK’ button to confirm the action.

Choose Mame for Copy M
Copying: Full oK |
Ta: | |

Cancel

Figure 5-4 Name New Data Entry Copy

a new Entry Form creation confirmation will then appear.
TRIP Message - Entry Forms M\

:| Entry form FULL_COPY created for database CORR.

Figure 5-5 Data Entry Copy Confirmation

Clicking on the ‘OK’ button will clear the confirmation. The copy of the new
form has now been created.

Page 107 of 416

PART 2: Forms
CHAPTER 5: DATA ENTRY FORMS

Deleting TRIPclassic Data Entry Forms

To delete a data entry form, click on ‘Entry Forms’ in the chosen database
sub-tree, select the form to erase and select ‘Delete’ from the action menu.

“8) TRIP Manager ¢ r-— - — — l @Eﬂ
‘%) File [Action | View Window Help _|=
dm b | Set Default |
CELUEE ntry Form Name LastModified Owner Description
All Tasks v H1 1994-02-08 SYSTEM
8 Full 1994-02-08 SYSTEM
! JE|Full_Copy 2013-05-20 SYSTEM

Copy
Delete

Rename

Properties

Help

[[@ Access Righty =
> 1) Db_Cluster

> 1) Megacluster

> [d Mew_Db_Design

> [Shellerr

b hellhlp
i > [Tdbser
| > [Tdbship -
b [&h Thesali

» 8 Classification Schem
........... 2

[l T —

Deletes the current selection.

Figure 5-6 Delete a Data Entry form

A ‘Yes/No’ confirmation dialogue will appear. Click the ‘Yes’ button to confirm
the action, or the ‘No’ button to cancel it.

-

Confirm

Figure 5-7 Delete Data Entry form confirmation

Clicking on ‘Yes’ will cause a deletion confirmation to appear.

TRIP Message - Full_Copy Lﬂ

:I Entry form FULL_COPY deleted for database CORR.

Figure 5-8 Data Entry form Deleted

Clicking on the ‘OK’ button will clear the confirmation. The selected data entry
form has now been deleted.

Page 108 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

Chapter 6:
Reports / Output Formats

Notes:

o In keeping with modern database terminology, TRIP’s output formats
are often now referred to as 'reports'. However, in reality, persistence in
using the original title 'output format' means that the two terms are, in
effect, interchangeable.

e Due to TRIPclassic's legacy of having been designed in the era of
'‘dumb’ terminals (e.g. the venerable VT100), which all utilised fixed
width fonts arranged in columns and rows, many of the character
positioning functions used when designing TRIP reports for textual
output are based on an imaginary, user pre-defined, screen grid with
each square on the grid containing one character. Calculations as to
text and output box positions, therefore, relate to the dimensions of this
underlying grid; a fact which should be kept in mind when reading this
section.

¢ In contrast to designing textual output reports, when designing reports
for (e.g.) HTML, or XML outputting, the report designer is free to include
whatever tags they wish and the screen grid can largely be considered
an irrelevance.

A report, or output format, specifies how a record in a database is to be
output. It produces a user-specific data summary containing only the pieces
of information required by the user, in the blueprint or configuration most
useful to him or her. Using specialised symbols and functions, a user may
specify which parts of the record should be output, how the different parts
should be separated, in what position on the page (screen or printed page)
they should be written, and what additional information should accompany
them.

Any user with read-access to a database may create such a tailored report
and send it either to screen or printer, but only the author of a report or the
database administrator (DBA) may edit or delete it.

All specifications (with the exception of text string literals) are case-
insensitive.

The Report

A report specifies how a single record in a database should look when
printed, which TRIP uses as a template to print one record after another. A
report consists of the left chevron or less-than symbol [<], one or more layout
box definitions and the right chevron or greater-than symbol [>].

Since records vary in length, an output page may not be identical to the
previous one.

Page 109 of 416

PART 2: Forms

CHAPTER 6. REPORTS

We recommend that you diagram one page of your report before attempting
to create the code, so that you have some idea of how it will (or should) look:

Gnnekfj gbisueoriv

t 000 rut
o ghquts fvn w o r gngjb bjtiig
sshdjhfyr eyrt ufhg sbban anab sbns b

B

ig hoohd dnc]
snfbfd, dhf

znxksd dncihfur

men

Figure 6-1 Report layout and construction

To produce the desired layout, a report is divided into boxes, which in turn
contain the items to be printed, as illustrated below.

Format Layout Box Box Content

<
format-level
operations
box 1
box 2
box 3
box &]— |
Dox 5
>

e—the box contents.>

Figure 6-2 Report components

The basic element of a report specification is the box, a block of data that
may be placed anywhere on the screen or printed page. Each box consists of
a box definition, comprised of one left chevron, the word ‘box’, the contents of
the box and one right chevron, all positioned somewhere within the format
definition.

Boxes may contain any or all of the following constituents:

contents of one or more fields

field headers, separators and trailers
text string insertions and constants
functions and filters

control characters

Report elements appear in a particular order within the report:

1. The elements of the report specification must be inside the delimiters

of a box or box group. There are three exceptions: text variable
declarations, a specification of page size (for Print statements), and
<Sortfields> must all appear immediately after the ‘Begin Format
Specification’ marker.

Page 110 of 416

PART 2: Forms
CHAPTER 6: REPORTS

2. Headers, separators, trailers, <For> constructs and control variable
declarations are the only elements that can be placed outside a box,
after the ‘Begin Box Group’ delimiter.

3. The elements of a format specification can be sorted into two groups,
let us call them A and B. Group A contains the output control
elements, or headers, separators, trailers, control variable
declarations and free-standing functions such as <Indent> and
<Noorig>. Group B encompasses box content, including text inserts
and names signalling output of field contents (field and data type
names).

4. Within a box definition, all members belonging to group A appear
before everything that belongs to group B. While the internal order of
the elements in group A has no affect on the output, the internal order
of the elements in group B will determine the order of the output of the
groups.

5. Aformat is read one line at a time during system processing, therefore
it is not possible to refer to a box or variable that has not yet been
defined. Such a reference will generate an error message when you
create (attempt to save) the format.

Copying Reports
It is often labour-saving to base new reports on the structure of similar ones.
If you need to adapt formats to a standard, you can do that easily using the
same technique described in the “Copying TRIPclassic Data Entry Forms”
section of the “Forms” chapter in this manual.

Notes:

¢ At the moment, if you wish to copy a report from one database to
another using TRIPmanager, you will get an error if the source report
references fields that do not exist in the target database.

e As a workaround, you can either use TRIPclassic to perform this action
(See the TRIPclassic Administration guide), or you must first create a
new report in the target database (See “Creating a New Report”, below),
then edit the source report and copy-past it’s contents into the new
target report’s open editor, ensuring that any field name issues are
resolved before saving the new report.

Deleting Reports

A format that is no longer used should be deleted. This can be dome by
selecting the report (or reports) to be removed, then using the Delete option
in the Action menu of TRIPmanager.

Creating a New Report

After creating a default report for a database, you should select the default
report name on the database design properties, ‘General’ tab, using the
‘Default report’ selection box.

Page 111 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

To create the default report, click on the plus (+) sign in the mmc window next
to the desired database in order to expand its sub-tree, select the ‘Reports’
sub tree branch, then select ‘New’ and ‘New Report...’ from the ‘Action’ menu.

ﬁ] TRIP Manager l =& éj

‘& File [Action | View Window Help -|=

@ $ | Mew Report...
CCL Query...

Last Modified Owner Description

Mew 3 L Mew Report... M
All Tasks 3 U M

Mew Window from Here

Refresh
Export List...

Help
Entry Forms
[C8 Access Right:

> @ Db_Cluster

> @ Megacluster

>kl Mew_Db_Design ~
[] ¥

Create a new report definition

Figure 6-3 New Report Menu

You will then be brought into the welcome page of the New Report Wizard.
Clicking on <Next> will take you to the General information entry dialog:

New Output Format lé]
General
Set general properties for the new repart mE
Name:
Description:
H
|
I |
| [< Back][Mext = J [Cancel] [Help]

Figure 6-4 New Output Format name entry dialog

Here you can enter a name and a description for your new output format.
When you have done so, click on <Next> to proceed to the new report
Properties entry form:

Page 112 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

New Output Format L&J
Properties
Choose properties of the new report T—IP
Fields to use: BIEME. ..o s [FormatType
E;%grp I Printer and screen use
Rcountry Columns: ’1_
Sname e
Scomp
Saddr {* Textual output
Scountry (™ ¥ML output
Day
Cat r
Content (" HTML tabular output
Modified i &

Figure 6-5 New report Properties dialog

The Properties dialog, in Figure 6-5, short-circuits some of the basic report
setup steps that need to be performed every time you create a new report. As
can be seen, the dialog has two main areas:

In the left hand area, you can <Shift> or <control> click to select multiple
fields to be included in your report.

In the right hand area, the following options are available for creating different
format types:

Note:

"Printer and screen use" sets the report up to specify a page size.

o If you specify a number of columns, the page size is divided by
that number.

Choosing "Textual output" will generate a report something that looks
a lot like the TRIP DUMP format

Note:

You can use the CCL command Show Format=DUMP to see an
example of the TRIP DUMP format.

Choosing "XML output”, will generate a simple, well-formed, XML
document.

o Toinclude an XML header in the new report (e.g. "<?xml
encoding="..." ?>, etc.), select the “Include XML header”
checkbox.

Choosing "HTML tabular output”, will generate a simple HTML table
similar in layout to the TRIP DUMP format, where each field name
and contents generates an individual table cell in the report definition.

If any of the fields chosen are part fields, a part loop variable is created to
control the output of the various components.

Clicking on <Next> will bring you to the dialog previewing the report's
content prior to it actually being committed to the server:

Page 113 of 416

ms-its:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Databases/Reports/New_Content.htm
ms-its:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Databases/Reports/New_Content.htm

PART 2:

Forms

CHAPTER 6. REPORTS

New Output Format ﬁ
—

Content T IP

Create the content of the new report e

==_.8= >
<box at b(*)+1,1

[< Back][Mext =][Cancel][Help]

Figure 6-6 New report Content dialog

Clicking on <Edit> will bring you into the default external text editor which, for
Windows, is ‘Notepad’. This can be used to create and modify the
specification file for the report. When this file is saved, TRIP checks the new
or altered format for syntax errors and, providing there are none, the format is
then created. If TRIP does detect an error it will send a message detailing
where and what the problem is, and you can re-edit the file as necessary.

Defining Layout Boxes

Simple Boxes

The simplest format is one that contains only one box, and the simplest box
instructs TRIP to output the contents of a single field. The contents of a
particular field are output by including the name of the field in the box.

This example,
<<box content>>

which we will call ‘Corr_Out’, writes only the data from field ‘Content’ of the
demonstration database Corr, beginning on the first free line and in the first
empty column on the screen or page. The first record prints in the top and
leftmost position on the page, and subsequent records are written on the line
immediately after the preceding record with no intermediate linefeeds.

The outer symbols [<] and [>] mark the beginning and end of the report
specification (format definition enclosures), while the inner [<] and [>]
symbols identify the start and stop of the box description (box definition
enclosures).

If the following statements were entered in the CCL command window:
BASe corr
Find R=3,5,6 J
Show format=corr out J

the output would look like this:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

Page 114 of 416

PART 2: Forms
CHAPTER 6: REPORTS

To make

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE
Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be
at hand this summer. I will mail further information.

Best regards,
Mats G. Lindquist
Sirs,

I would be grateful if you could send me any information available
on the free-text retrieval system 3RIP, marketed by your company.

Thank you.
Sincerely,

George Hodge

a report specification easier to read, we recommend the use of

spaces, tabs and linefeeds to align box and box group definitions. These are
editing helps only and do not affect the final appearance of the output.

Adding spaces, linefeeds and comments to improve comprehension and
readability, the report outlined above might look like this:

! This is a report:

<

<box content>

>

This format may be summarized as follows:

Component | Explanation

I Thisis an... | Comment

< Begin format specification
<box Begin box specification, define box, print
content> contents of field ‘Content’ and end format

specification

> End format specification

This specification will work exactly as the single-line specification given
previously, as the spaces and linefeeds will not affect the output. The
exclamation mark [!] signifies a comment, and any text from the [!] to the end
of the line will be ignored.

For maximum readability, if a box contains only a single item place the ‘Begin
Box Specification’, box definition, box content and ‘End Box Specification’ on
the same line.

Page 115 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

If the box contains more than one item, place the ‘Begin Box’ chevron and
box definition on one line, each content item on its own line and indented
slightly and the ‘End Box’ symbol on the line below the last item, aligned with
the ‘Begin Box’ mark:

<
<box
sname
scomp
saddr
scountry
>

>

As this is a very simple report lacking defined linefeeds and separators, the
output for record numbers three, five and six looks like this:

Mr. Ron SmithThe Sparkler Institutelé Sparkling RoadSparkletownUSA
Mats G. LindquistPARALOG ABBox 2284103 17 STOCKHOLMSverige

George HodgeThe Response ProjectP.O. Box 53DallasTexas 75265USA

Note:

The string tstamp is used to output the timestamp of a record (the date and
time when the record was created or updated). It is treated as a field name
and accepts headers, separators etc. like a field.

Output of Specific Field Elements

To output the entire contents of a box, use only the field name in the box
specification. To output only part of a non-TExt field, use the field name
followed by a full stop and the number of the element you wish to print. For
example, to write only the second subfield of the Corr field sname you would
use

<<box sname.2>>

Similarly, to print a particular sentence from a certain paragraph of a TExt
field use the field name, a full stop, the paragraph number, full stop and the
number of the sentence. This example,

<<box content.2.1>>

outputs the first sentence of the second paragraph of field Content for each
record, and

<<box content.*.1>>
outputs the first sentence of every paragraph.

Record components are numbered, the head record being zero and the parts
numbered from one upwards. To output only a certain field in a part record for
each part record, use a full stop, the part number or index and the field name.
Using the field Txt from the demonstration database Carroll, this example
outputs the first sentence, second paragraph, fourth part:

<<box .4.txt.2.1>>

Page 116 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Box Numbering
To prevent confusion, it is always preferable to use directed box
specifications rather than ambiguous or non-specific statements, therefore we
recommend numbering each box consecutively as it is defined. The previous
example with box numbering looks like this:

! This is a report:

<

<box 1 content>

>
in which the first box to be defined in this format is Box Number 1. Again, the
output is the same as the previous <<Box content>> example.
Box Positioning

The simple format example above prints the data from one ‘Content’ field
after another, without intervening lines to mark the beginning and end of the
records. This produces ‘run-on data’, which can hinder readability.

One way to create record boundaries in reports is through text box
positioning on the page, which defines where the upper left-hand corner of
each box should be placed.

A layout location may be given in several ways:

o directly, by giving the number of the line and the column (page
coordinates) relative to the current record

¢ indirectly, by referring to the top or bottom line or right- or left-most
column of a pre-existing or preceding box, which may be either the
last box written or a box identified by a number.

¢ Absolute and relative positions may be combined within a format in
any way you find suitable. Both line and column can be given either
as a relative position or an absolute position.

Positioning Using Coordinates

With reports, any statement using line and column positioning or absolute
placement refers to the last written line of the preceding record (Line Number
0), not to a line on the screen or printed page. When you do specify a
coordinate position you must give both line and column, separated by a
comma.

If the ‘Box content’ example is rewritten using coordinates like this:
<
<box 1 at 2,10 content>
<box 2 rname>

>

Box 1 will begin on the second line (the last written line of the preceding
record being line 0) and in the tenth column of the screen or paper page. As
no coordinates were provided for Box 2, it will appear on the next free line in
column one with no separators.

Page 117 of 416

PART 2: Forms
CHAPTER 6: REPORTS

If the format is used to output records three, five and six of database Corr as
before, the output will look like this:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE
Mats G. LindquistMats Lofstrom
Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be
at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist
Mr. Ron Smith

Sirs,

I would be grateful if you could send me any information available
on the free-text retrieval system 3RIP, marketed by your company.

Thank you.
Sincerely,

George Hodge

The information contained in the ‘Content’ field of record number three will
begin printing on line two, column ten. When all ‘Content’ data from record
three has been output, TRIP will descend two lines from the last line written,
move to column ten and begin printing the output from record five, and so on
until all records have been output.

If no box position is provided, the box will start printing in the first column of
the first empty line by default. We recommend using box numbering and
positional ‘at’ statements wherever possible.

Positioning Using Preceding Boxes

Building on the previous example, the initial line position for Box 1 appears
below in relation to the bottom line of the last box printed:

<

<box 1 at b(*)+2,2 content>

>

This specification can be summarized as follows:

Page 118 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Component | Explanation

< Begin format specification

<box 1 Begin box specification and define Box 1

at b(*) Pasition cursor on bottom line of last box
written

+2,2 Add two linefeeds and move to column two
of the new line

content> Print contents of field ‘Content’, each line
beginning in column two; end box
specification

> End format specification

and the output:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be
at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist

Sirs,

I would be grateful if you could send me any information available
on the free-text retrieval system 3RIP, marketed by your company.

Thank you.

Sincerely,

George Hodge

In addition to the bottom line, you can also use the top line (T) or the

rightmost (R) or leftmost (L) columns of another box as reference points. You

must refer to a numbered box when using T, R, or L.

Some examples follow overleaf:

Page 119 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Box at T(1),41 The box is placed at the top line of box number 1, in
column 41.

Box at T(1),R(1)+2 The box is placed at the top line of box number 1, two
columns to the right of it.

Box at 10, L(2) The box is placed on line 10, starting in the same left
column of box number 2.

As with box positioning using coordinates, if no box position is provided the
box will start printing in the first column of the first empty line by default. We
again recommend using box numbering and positional ‘at’ statements
wherever possible.

Box Proportions
The dimensions of a box may be defined using any of the following:
e number of lines and columns
o number of lines, with columns unspecified
e number of columns, with lines unspecified
¢ neither lines nor columns specified.

If the field contents of a box occupy less room than has been provided in the
box definition, the text block will be padded with empty lines and spaces as
necessary.

Proportioning With Lines and Columns

The height and width of a box can be simultaneously defined by using the

‘Size’ directive and providing both the number of lines to be output and the
line length in characters, separated by an asterisk [+, pronounced ‘by’]. For
example:

<
<box 1 at b(*)+2,2 content>
<box 2 at b(l)+1,40 size 2*20 rname>

>

outputs box number two as a two line by twenty column block, beginning in
column forty of the line below the final line printed for box number one as
shown on the next page:

Page 120 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/7807 WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist

Mats Lofstrém
Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be
at hand this summer. I will mail further information.

Best regards,
Mats G. Lindquist

Mr. Ron Smith

[]
Sirs,

I would be grateful if you could send me any information available
on the free-text retrieval system 3RIP, marketed by your company.

Thank you.
Sincerely,

George Hodge

We will use empty brackets [] as a convention in output examples such as
the one above to indicate empty lines inserted by TRIP.

If both line and column figures are given there must be no space between
each total and the asterisk.
Proportioning With Lines Only

To define only the vertical or top-to-bottom box size, give only the number of
lines to be output for box height with the ‘Size’ instruction, like this:

<
<box 1 at b(*)+2,2 size 4 content>
<box 2 at b(l)+1,40 size 2*20 rname>

>

Box one will be four lines in length, and as is evident by the output below, a
considerable amount of text has not been printed due to the lack of defined
space:

Page 121 of 416

PART 2: Forms
CHAPTER 6: REPORTS

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
Mats G. Lindquist

Mats Lofstrom

Dear Mr. Smith,

3RIP runs only on DECl10 and DEC20. A system for VAX under VMS,
Mr. Ron Smith
[]

Sirs,

I would be grateful if you could send me any information available

Proportioning With Columns Only

To specify only the horizontal or left-to-right dimension, give only the size in
columns for box width, leaving a blank space between ‘Size’ and the asterisk:

<

<box 1 at b(*)+2,2 size *45 content>
<box at b(*)+2,2 size 2*20 rname>

>

Box 1 will be forty-five columns wide, as shown by the output below:

Page 122 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM
PLEASE SEND INFORMATION ABOUT THE STATUS OF
TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE
PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist
Mats Lofstroém

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system
for VAX under VMS,

called TDBS, is under development. A first
prototype will be

at hand this summer. I will mail further
information.

Best regards,
Mats G. Lindquist

Mr. Ron Smith

Sirs,

I would be grateful if you could send me
any information available
on the free-text retrieval system 3RIP,
marketed by your company.

Thank you.
Sincerely,

George Hodge

If the width in columns is not given, the default line length will be the width of
your screen or your defined printer page size, whichever is applicable.

Box Grouping

Boxes may be assembled into box groups, collections of boxes designed to
save typing, permit the creation of simpler reports and enable the sharing of
material between several boxes without repeating the instructions for each
box. This is done by assigning common attributes or conditional statements
to more than one box, i.e. several boxes may share headers and separators.
Two or more boxes may be joined to form a box group by surrounding their
definitions with box group definition enclosures, the less-than [<] and greater-
than [>] symbols. Most report instructions must be enclosed within a box or
box group.

In this example we have added a second box, which will print the contents of
the field rname (Receiver's name) directly after content. The additional < and
> delimiters join the two boxes in a box group:

<
<<Box group functions>

<box 1 at b(*)+2,2 size *45 content>

Page 123 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<box at b(*)+2,2 size 2*20 rname>

>

>

This definition is summarized below:

Component

Explanation

<

Begin format specification

<<Box group
functions>

Begin box group specification; begin and
end functions that will affect all boxes in
this group

<box 1

Begin box specification; define Box One

at b(*)

Position cursor on bottom line of last box
written

+2,2

Add two linefeeds and move to column two
of the new line

size *45

Make this box forty-five columns wide

content>

Print contents of field content, each line
beginning in column two; end box
specification

<box 2

Begin box specification; define Box Two

at b(1)

Position cursor on bottom line of Box One

+2,2

Add two linefeeds and move to column two
of the new line

size 2*20

Make this box two lines long and twenty
columns wide

rname>

Print contents of field rname; end box
specification

>

End box group specification

>

End format specification

Background Text

A text string is any collection of characters printed to screen or paper that is
not native to (contained within) the database being output, and may be used

in text inserts, headers, separators, and trailers. These are classified
according to their dependence on field content, and may consist of text

constants, data produced by output functions or the contents of format text

variables.

The word element as it appears below and throughout this chapter is taken to
mean those portions of a record normally accessed by a report, the field,

subfield, paragraph or sentence.

Page 124 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

Text String Type | Written As Function

Text Insert t outputs where and as it
appears in format

Header h.element labels or headlines that
preface an element (field,
subfield, paragraph or
sentence)

Separator s.element separates the elements, and
is not output before the first
element or after the last one

Trailer tr.element outputs after each element
has been printed

Table 6-1 Types of background text

None of the last three types are output when the unit the text is supposed to
head, follow or separate is empty, and all three affect only the box or box
group in which they occur.

TRIP recognizes certain text string reserved characters in all text string types,
the meanings of which change depending on the manner in which they are
used. The less-than [<] and greater-than [>] symbols in a text string signal the
beginning and end of functions. The slash character [/] in a text string
signifies a linefeed, and an exclamation point [!] marks a comment. To use
one of these characters as literals in a text string, each must be preceded by
an underscore [_].

These are outlined below:

Reserved | Function Function

Character | When Used Alone | When Used With
Underscore

/ <CR><LF> literal slash [/]

< begin function literal less-than symbol [<]

> end function literal greater-than symbol
[>]

! comment literal exclamation point [!]

_ literal precursor literal underscore [_]

Table 6-2 Text string reserved characters

A series of spaces or tabs in a text string will be output exactly as they are
written, as long as there is no linefeed in the series. If any text string in a
format specification contains a series of spaces, tabs and linefeeds, one of
which is a linefeed, the entire group of formatting characters will be replaced
with a single space when the text is output, irrespective of their number.

A carriage return/linefeed (<CR><LF>) inside the text string of a header will
not result in a carriage return/linefeed in the string that is output. To create a
<CR><LF> inside a text string, you must use the slash [/], one per linefeed.

Page 125 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Field-Dependent Text Strings

A field or field type-specific text string is output only if a field has content; i.e.,
if it is not empty. This type includes headers, separators and trailers.

Headers

A header, abbreviated ‘h’, is a headline that begins a field, a subfield, a
paragraph, or a sentence. The h must be followed by a period [.] and a
notation for what it will head, like this:

To begin a ... Use ...

Field h.field or
h.fieldtype or
h.fieldname

Subfield h.sub

Paragraph h.p

Sentence h.s

Table 6-3 Headers

A header applies only to the box or the box group in which it is written, and
must appear before any field names in the text box definition. As with the
other field-specific text string types, if the field or fields that a header is
attached to are empty in a record, the header is not output.

Note:

If a box or a box group contains several potential field headers, the one
which is most specific to that field will have priority. For example, if a box
which prints the contents of the Corr field rcomp (correspondence receiver’s
company name) contained instructions for h.field, h.phrase, and h.rcomp,
the field-specific h.rcomp would be used.

Separators

A separator (abbreviation: s) segregates fields, subfields, paragraphs, or
sentences, and therefore will begin printing after the first element in an output
list. In the same way as for headers, the s must be followed by a full stop
(period, [.]) and a notation for what it will separate:

To separate a ... Use ...

Field s.field or
s.fieldtype or
s.fieldname

Subfield s.sub

Paragraph s.p

Sentence S.S

Table 6-4 Separators

The same rules apply to a separator as to a header when it comes to placing,
contents and scope.

Page 126 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Using headers and separators and the example discussed previously under
‘Text Box Grouping’, we have altered the box definition to create columnar
output for the rname and sname fields, more clearly demarcate the boundary
between records and divide the text of content into cleaner paragraphs:

<

<box 1 at b(*)+2,2

<h.content=**/>

<s.p=/ >

content

>

<<s.sub=/>

<box 2 at b(l)+2,2 size *40 rname>

<box 3 at t(2),40 size *40 sname>

>

>

The box specification summary appears below.

Page 127 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Component Explanation

< Begin format specification

<box 1 Begin box specification; define Box One

at b(*) Position cursor on bottom line of last box written

+2,2 Add two linefeeds and move to column two of the
new line

<h.content Begin header specification; define field header

=**[> Type two asterisks, then perform one linefeed; end
header specification

<s.p Begin separator specification; define paragraph
separator

= > Perform one linefeed, then type (indent) three
spaces on next line; end separator specification

content Print contents of field content, each line beginning
in column two

> End box specification

<<s.sub=/> Begin box group specification; separate subfields
with one <CR><LF>

<box 2 Begin box specification; define Box 2

at b(1) Position cursor on bottom line of Box One

+2,2 Add two linefeeds and move to column two of the
new line

size *40 Make this box forty columns wide

rname> Print contents of field rname; end box specification

<box 3 Begin box specification; define Box 3

at t(2), Position cursor at top of Box Two

40 Move to column forty of the new line

size *40 Make this box forty columns wide

sname> Print contents of field rname; end box specification

> End box group specification

> End format specification

Boxes 2 and 3 inherit the <s.sub=/> statement from their parent box group.
Records one, three and five in Corr are considerably easier to read when
output using the edited report:

Page 128 of 416

PART 2: Forms
CHAPTER 6: REPORTS

*k

Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows:
the central modules of the system are completed and work on
the user interface is underway. We will exhibit the system
in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

The first version of the system is, as you know implemented
on a VAX in Pascal. He will make the system portable to other

machines, e. g. IBM, in the near future.
Hoping that you can hold out a little bit longer, I remain

Yours sincerely,
Mats G. Lindquist

Marketing Manager
Mr. Ron Smith Mats G. Lindquist

*k

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist Mr. Ron Smith

Mats Lofstrom
*x
Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.
Best regards,
Mats G. Lindquist

Mr. Ron Smith

Trailers

A trailer, written as ‘tr’ in the format specification, follow the same rules and
use the same elements as headers and separators:

Toenda... Use ...

Field tr.field or
tr.fieldtype or
tr.fieldname

Subfield tr.sub

Paragraph tr.p

Sentence tr.s

Table 6-5 Trailers

Field-Independent Text Strings

Headers, separators, and trailers are dependent on the field content; that is, if
the entities they are meant to label are empty in one of the records, they will

Page 129 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

not be output for that record. If a string must be output regardless of the
contents of the record, you must use text inserts or field-independent text
strings (short form: t) instead.

Text Inserts

The text strings of text inserts follow the same rules as the text strings of
headers and separators, in that they may contain anything that can be built
into headers, separators, and trailers, and vice versa.

The only major difference between header/separator/trailer text and inserted
text is that a text insert is independent of the contents of the records, and so
is always output according to its position in the format specification.

The exception to this rule is that a text insert may occur in a box by itself. This
is not possible with headers, separators or trailers, as these must be placed
in the same box or box group as the units they head, separate or follow.

If a header marks the start of a new record, as it does in the previous
example, it should be output regardless of whether the particular field that it
identifies is empty or not and should be rewritten as a text insert.

If we edit the specification file from this example to make the first header a
text insert, the revised code looks like this:

<

<box 1 at b(*)+2,2

<t=*r/>

<s.p=/ >

content

>

<<s.sub=/>

<box 2 at b(l)+2,2 size *40 rname>
<box 3 at t(2),40 size *40 sname>
>

>

and the output will be exactly the same as that of the previous version, except
that the “*’ string will be output even if the content field is empty.

Note:

In the database Corr the content field is never empty, so a header would
have worked in the unedited version.

Functions

Text String Functions

There are many functions that will import information from a database, search
or TRIP itself for use in text inserts, headers, separators or trailers. Here is a
list of simple output functions that can be used in text strings:

Page 130 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

Function Output

<base> database name

<call> result of an external user-written function

<chr> unprintable characters

<curdate> current date

<dateform> date format

<ff> form feed

<hits> total number of hit records in a search

<numform> numerical date format

<occs> number of occurrences

<pageno> number of the printed page

<parts> total number of record parts within the
current record

<rid> number of the record in the database

<ris> number of the record in the search

<rname> record name

<subrid> number of the record part being output

within the record

<substring>

substring isolated from a given element;
also used to produce right-justified output

<timeform> time format
<weight> rank of a record after a fuzzy search, or
the number of hits after a non-fuzzy
search
Table 6-6 Text string functions

Note:

For a detailed presentation of each function, refer to the ‘Output Format

Reference Guide’ at the end of this chapter.

Building on the previous example, we have chosen to output the field scomp
(Sender’s company) rather than rname in Box Two, and added the <RID>
function to the text insert that prefaces each printed record. This will output

the database record number of the record being printed:

<

<box 1 at b(*)+2,2

<t=** Record No.

<s.p=/ >

content

>

<rid> **/>

Page 131 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<box 2 at b(l)+2,2 size *40 scomp>
<box 3 at t(2),40 size *40 sname>

>

Here is the output for record numbers one, three and five using the altered
format:

** Record No. 1 **
Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows:
the central modules of the system are completed and work on
the user interface is underway. We will exhibit the system
in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

The first version of the system is, as you know implemented
on a VAX in Pascal. He will make the system portable to other

machines, e. g. IBM, in the near future.
Hoping that you can hold out a little bit longer, I remain

Yours sincerely,
Mats G. Lindquist

Marketing Manager
Paralog AB Mats G. Lindquist
** Record No. 3 **

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW
AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE
SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

The Sparkler Institute Mr. Ron Smith
** Record No. 5 **
Dear Mr. Smith,

3RIP runs only on DECl10 and DEC20. A system for VAX under VMS,
called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.
Best regards,
Mats G. Lindquist

PARALOG AB Mats G. Lindquist

Field-Dependent Text Functions

The ‘t=" functions listed previously may be used either as text or conditional
(field-dependent) functions. In addition, there are six conditional or <For>
loop functions whose use is dependent on field content, as listed in the table
below:

Page 132 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<For> Loop Function Returns:

<fieldname> field name, in capital letters

<fieldtype> data type

<fieldnumber> number of the field within the record

<subfieldnumber> number of the subfield within the field

<paragraphnumber> number of the paragraph within the
field

<sentencenumber> number of the sentence within the
paragraph

Table 6-7 Field type-dependent functions
Note:

The above functions can only be used in headers, trailers and separators,
not in text inserts.

The lengths of output functions of all types may be made consistent, as
shown in this example:

<h.field=<fieldname (10)>>

This format writes the field name left-aligned, followed by as many spaces as
are needed to make the item ten characters long, and trims it if it is longer
than ten characters.

Sample Output Format

We can construct a report that can be used with any TRIP database by using
many of these functions. To make the format independent of particular fields,
we will use data type names rather than field names to output field contents,
as seen below:

<

<box at b(*)+4,2

<t=//Record No. <rid>>
<h.field=//<fieldname> (type <fieldtype>):/>
<h.s=/<paragraphnumber>.<sentencenumber>: >
<s.field=/><s.p=/>

<h.sub= <subfieldnumber>: ><s.sub=, >

text phrase number date time

>

>

This format prints all non-empty fields of a record, each headed by its name
and field type. The fields are output in the order given by the list of data types
(TExt fields first, then PHrase, etc.), and in ordinal field number order within
data type.

Here, record number one in Corr is shown in the new format:

Page 133 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Record No. 1

CONTENT (type TExt):

1.1:
Dear Mr.
1.2: Smith,

Thank you for your telex.

1.3: The status of TDBS is as follows:

the central modules of the system are completed and work on
the user interface is underway.

1.4: We will exhibit the system

in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

2.1: The first version of the system is, as you know implemented
on a VAX in Pascal.

2.2: He will make the system portable to other

machines, e. g.

2.3: IBM, in the near future.

3.1: Hoping that you can hold out a little bit longer, I remain

Yours sincerely,
Mats G.
3.2: Lindquist

Marketing Manager

RNAME (type PHrase):

1: Mr. Ron Smith

RCOMP (type PHrase):

1: The Sparkler Institute

RADDR (type PHrase):

1: 16 Sparkling Road, 2: Sparkletown

RCOUNTRY (type PHrase):

1: UsA

SNAME (type PHrase):

1: Mats G. Lindquist

SCOMP (type PHrase):

1: Paralog AB

SADDR (type PHrase):

1: Box 2284, 2: 103 17 STOCKHOLM

SCOUNTRY (type PHrase):

1: Sverige

MODIFIED (type PHrase):

1: SYSTEM, 2: SYSTEM, 3: VIOLA

DAY (type DAte):

1: 15-Jun-84

MODDATE (type DAte) :

1: 17-Aug-93, 2: 17-Aug-93, 3: 18-Jun-93

Page 134 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

MODTIME (type TIme):

1: 10:50:44, 2: 10:50:18, 3: 11:51:42

Since there is only one box, all fields share the headers and separators,
which in the specification are placed before the single text insert and the data
type names that signal the output of field contents. Every sentence (TExt
fields only) is headed by its paragraph and sentence numbers, and every
subfield (all other data types) is headed by its subfield number. The fields as
well as the paragraphs are separated by a single line feed, and the subfields
by a comma and a space.

Box Functions

These standalone functions affect either the manner in which data is output in
boxes and/or box groups or the information that is output by the entire box or
box group.

Function Output

<at_end> causes output generated by its host box to be
printed only once, after the last record

<case> outputs values that are dependent on the

value of an element

<if-changed>

causes output only if the value to be output
has changed since the record was last printed

<if-empty>

causes output only if the appropriate element
is empty

<if-nonempty>

causes output only if the appropriate element
is not empty

<if- causes output only if the value to be output

unchanged> has not changed since the record was last
printed

<indent> indents all lines except the first by n number of
characters

<link> causes output from a secondary database
depending on the value of a given field in the
current database

<noorig> suppresses the default output layout

<once> causes output generated by its host box to be
printed only once, before the first record

<orig> returns text field output to its original layout

<trace> gives search history preceding the search
result being output

Table 6-8 Box and box group functions

Page 135 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Format Functions

These functions have a global effect on the format, and all except <noff> and
<nolf> work on the record level.

Function Effect

<text defined on a per-record basis as a

variables> placeholder for later record output

<call> allows pre-output modification of
record content (in memory)

<debit> sets minimum and maximum unit
cost for any output created with a
format

<noff> suppresses automatic FF in printed
output

<nolf> Suppresses automatic line planning

<sortfields> defines fields to be used as sort keys

Table 6-9 Format functions
<For> Loops

General Structure

<For> loops allow the user to define a variable to run using either a range or
a list of values where:

e the default is one up to the maximum number of parts or subfields
being output by the box(es) in the loop

¢ the maximum value is dictated by the use to which the variable is put
within the boxes in the loop.

Note:
Be careful to use a variable ONLY for subfields OR parts, NOT both.
<For> loops use this general syntax:
<For <variable>
. boxes ...
>

The <For> construct enables looping through the record components in
records with record parts, and is also useful for outputting field elements.
<For> is analogous to a box group in that headers, separators, trailers and
box group functions can be used outside of boxes within a <For> loop. A
control variable associated with <For> may either cycle through all the
components of a record, or only those located via search.

Page 136 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Function Effect

<loop represented by any alpha character

variables> from A to Z and used to denote the
current loop index

<append> prevents positioning of the box to be
executed from the second through
the nth loop

<hitlist> causes the list of values for the FOR
loop to be restricted to those part
records located by the search being
output

Table 6-10 FOR loop functions

Page 137 of 416

PART 2:
CHAPTER 6:

Examples

Forms
REPORTS

The first example is taken from the head/part demonstration database Carroll,
the structure of which is outlined in the figures below.

Example 1:
In Carroll, the field person is a head field and speaker and txt are part fields.

This format outputs the chapter and book names, persons acting in each
chapter, speakers in the text, verse and text of each part record:

<

<box 1 at b(*)+1,1
<t=Chapter >

chaptnr

<t=, '>

chapter

<t=' from ">

book

<t=">

>

<box 2 at b(*)+2,3
<s.sub=, />

<h.field=Persons in Chapter : >
<indent (21)>

person

>

<for <a>

<s.s= ><s.p=/ >

<box 3 at b(*)+2,3
<s.sub=, />

<h.field=Speakers on Page : >
<indent (21)>

.a.speaker

>

<<s.s= ><s.p=/ >

<box 4 at b(*)+2,3 .a.txt>
<box 5 at b(*)+2,3 .a.verse>

<box 6 at b(*)+2,3 .a.txt2>

Page 138 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

The first and part of the second subfield of Record 1 are shown below in the
new format:

Chapter 1, 'Down the Rabbit-hole' from "Alice's Adventures in Wonderland"

Persons in Chapter : Alice's sister
White Rabbit
Alice's family

Dinah
Speakers on Page : White Rabbit

Alice was beginning to get very tired of sitting by her sister on the bank,
and of having nothing to do: once or twice she had peeped into the book her
sister was reading, but it had no pictures or conversations in it, "and what
is the use of a book," thought Alice, "without pictures or conversations?"
So she was considering, in her own mind (as well as she could, for the hot
day made her feel very sleepy and stupid), whether the pleasure of making a
daisy-chain would be worth the trouble of getting up and picking the daisies,

when suddenly a white rabbit with pink eyes ran close by her.
Speakers on Page : White Rabbit

There was nothing so VERY remarkable in that: nor did Alice think it so VERY ..

Example 2:

The fictional database in the next example contains results from the Olympic
games. The head record contains the event location and dates, and there is
one record part for each event and its winners.

The structure of hypothetical database Olympic_Games is shown below:

Field Type Part | Comment

name

Place PHrase N | Location of games
When DAte N | Date of event
Event PHrase Y Name of event
Medal PHrase Y | Medal awarded
Winner PHrase Y | Winner's name
Nation PHrase Y | Winner’s nation
Result PHrase Y | Winner’s score

Table 6-11 Structure of Olympic_Games

This format prints the name of each Olympic event, the medal won, the
winning score and the name and home country of each medal winner.

<

<box 1 at b(*)+1,1

<t=0lympic Games, <dateform(when.1,15,//)> at >
place

>

<for <x>

Page 139 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<box 2 at b(*)+2,3
<t=In the

.X.event

>

<for <y>

<box 3 at b(*)+1,3>
<box 4 at t(3),
<box 5 at t(3),
<box 6 at t(3),

>

>

>

Note:

.x.medal.y>
.X.result.y>

.X.winner.y

40 <t=from >.x.nation.y>

Only one index variable may be used for all part loops in a format (i.e.
constructs of the type .x.event).

The record for the summer games of 1976 has been output using this format
as shown below:

Olympic Games,

In the Men’s Basketball

Gold

Silver

Bronze

In the Women’s Basketball

Gold

Silver

Bronze

In the Men’s Archery

Gold 2571.2 D. Pace
Silver 2502.3 H. Michinga
Bronze 2495 G. Ferrari
In the Women’s Archery

Gold 2499.2 L. Ryon
Silver 2460.3 V. Kovpan
Bronze 2407 Z. Rustamova

15/Jul/1984 at Montreal,

Canada

from
from

from

from
from

from

from
from

from

from
from

from

USA
Yugoslavia

Bulgaria

USSR
USA

Bulgaria

USA
Japan

Italy

USA
USSR

USSR

Page 140 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Example 3:

This example prints the location and date of the games, and the medal and
winning country for each event.

<

<box 1 at b(*)+1,1
<t=0lympic Games at >
place.l

<t=, >

when.1

>

<for <x>

<box 2 at b(*)+2,3
<t=In the >
.X.event

<t=/>

>

<for <y>

<box 3 at b(*)+1,5>
<append>

<s.field= - >
<s.sub= / / >
.x.medal.y>
.X.winner.y
.x.nation.y

.X.result.y

Vo v V Vv

Page 141 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Sample output for the 1976 summer games is given below:
Olympic Games at Montreal, Canada, 1-Jun-1976
In the Men's Basketball
Gold - USA // Silver - Yugoslavia // Bronze - Bulgaria
In the Women's Basketball
Gold - USSR // Silver - USA // Bronze - Bulgaria
In the Men's Archery
Gold - D. Pace - USA - 2571.2 // Silver - H. Michinga - Japan - 2502.3 //
Bronze - G. Ferrari - Italy - 2495
In the Women's Archery
Gold - L. Ryon - USA - 2499.2 // Silver - V. Kovpan - USSR - 2460.3 //

Bronze - Z. Rustamova - USSR - 2407

Page Control

Page Level Boxes

Up until now we have been considering output only as a continuous stream,
however TRIP makes provision for the arrangement of paged output, for
example, printing a trailer at the bottom of a hard-copy page.

! FLGE ELNNEER
|
RO lines || [Eext [Bex 2]
|
i
i
!
|
i
i
i
g0 Columns

Figure 6—7 Paged output

Headers and footers can be defined for an output page using header_box
and trailer_box constructs. Page headers and trailers are not output if the
format is used when FOcus is active.

Header_Box

A header_box is output at the top of each page. If the box contains any
record-specific information, the data of the top record on the page is used.
For example, this code,

<header box size 1*11 <t=Page Header>>

Page 142 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

results in the text ‘Page Header’ being printed at the top of each output page.
Note:

TRIP does not recognize or act on positional information (i.e. at 1,1) used in
header or trailer boxes.

This code from database Carroll,
<header box size 1*80 <t=Book: > book>

results in the text string ‘Book:’ and the contents of the field book being
written on the first line of each output page.

Note:

In this instance, when the value of book changes and the record that
institutes the change begins printing on any line on the page after the first
one, the previous value will be output. To avoid this, use <if-changed> and
<FF> statements in the box definition.

Trailer_Box

A trailer_box is output at the bottom of each page. If the trailer_box contains
any record-specific information, the data of the bottom record on the page is
used. For example,

<trailer box size 3*40 <t=/End of Page/Page
Number <pageno>>>

reserves three lines for the trailer_box at the bottom of each page. The first
line will be empty, the second one will contain the text ‘End of Page’, and the
third line the text ‘Page Number’ and the page number.

Page Size

The default page size for Print or hard-copy formats is the normal screen
size, twenty-four lines by eighty columns. To change to something more
suitable for a printer, include a size specification at the start of the format, as
in the following example:

<page size 72*60

<box at b(*)+2,2

<s.p=/ >

<t=** Record no. <RID> **/>
content

>

<box

<h.field=/ >

scomp

>

>

This page size will be disregarded when the format is used with a Show
order, which uses the default size. The product of the number of lines and
number of columns must not exceed 8192 (8K).

Page 143 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Note:

If you are using header_box or trailer_box constructs, you must define a
page size, or these will be output using the default page size specification.
This will cause two or three headers and/or trailers to be printed on every

page.
Columnar Output

You may have the output printed in columns by giving the page size as
“1*c/k’, where 1 is the number of lines on the page, c is the number of
characters in the line, and k is the number of columns on the page. Here is an
example of a format for printing the address labels from Corr in two-character
wide columns:

<page size 60*80/2

<box 1 at b(*)+1,1 size 8%*40
<s.sub=/>

rname

rcomp

raddr

rcountry

>

>

Output Formats for Database Clusters

When a user starts searching in a database cluster the default formats of the
individual databases are used. If a DEfine Format order is given, calling up a
new format, the system will look for this format for all the databases open,
and if it does not exist for one of them, the previous format will remain in use
for that database.

If the page size has been defined for one report in a cluster database, the
same page size must be defined for all databases in the cluster. An
alternative to this is to specify the page size in the print control file.

When the formats for the individual databases are uncoordinated, the user
can easily become confused, therefore we recommend that you keep this in
mind when constructing and naming formats for databases that are meant to
be searched and shown together.

Page 144 of 416

PART 2: Forms
CHAPTER 6: REPORTS

Related CCL Commands

To view a list of all the existing reports for a database, give the order:

SHOW format

The Show window looks like this:

,

[BASe=databasename]

File Edit
Database: ALICE owner: SYSTEM -
--—- Erroneous formats are marked with an * -—- B
Format Creator Revised Description |i|
1 SYSTEM 1694-03-02 12:24
2 SYSTEM 1694-03-02 12:24
FULL SYSTEM 1994-03-02 12:24
SHORT SYSTEM 1994-03-02 12:24
I
Database: ALICE_DEMO_HLP owner: SYSTEM
--- Erroneous formats are marked with an * --—- I
Format Creator Revised Description
DEFAULT SYSTEM 1994-03-02 12:31 '
patabase: CARROLL owner: SYSTEM
--- Erroneous formats are marked with an * ---
Format Creator rRevised Description
ALL SYSTEM 1994-03-02 12:13]
FPALL SYSTEM 1694-03-02 12:13
PHIT SYSTEM 1694-03-02 12:13
SUBBOX SYSTEM 10094-03-02 12:13 |
w | e ||
— ——— =

Figure 6-8 The Show Format window

Page 145 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

Output Format Reference Guide

Each item in this section has been provided with a general description, a
scope of action, proper syntax, known side effects and examples.

<APPEND>

Description

If placed in a box within a <for> loop, this function directs the reporter to
ignore that box’s positioning clause for the second through nth iteration of the
loop. Positioning of elements is thus controlled by header/separator/trailer
usage rather than by box layout.

Scope
Layout box or box group function

Syntax
<append>

Side effects

o Allfields to be output by the <for> loop being affected by the <append>
function must be contained within a single box.

e Trailers can be used in for loops containing <append>
Examples
Example 1:
<for <y> ! Subfield loop
<box 1 at b(*)+3,1
<append>
<s.field= - >
<s.sub= \\ >
fieldl.y
field2.y
>

>

In this example, the positioning clause for box 1 (b(*)+3,1) would only be
obeyed for the first subfield output by the ‘y’ <for> loop. In all other cases, the
field separator would be used to position each field within the box, while the
subfield separator would be used to position each new instance of the loop.

Considering a record containing field values of :
Field1l:a,b
Field2:d, e, f

Page 146 of 416

PART 2: Forms
CHAPTER 6: REPORTS

we would see the output :
[]
[]
a-d\\ b-e\\ £
where the empty brackets [] indicate empty lines inserted by TRIP.

Page 147 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<AT_END>
Description

If placed in a layout box, that box will only appear once in the resulting
output, during the display of the last record.

Scope
Layout box or box group function
Syntax

<at_ end>

Side effects
None

Examples
Example 1:

To output a summary page for printed output:
<

<box at b(*)+1,1
<at end>

<t=This print was produced on <curdate>.>

>

Page 148 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<BASE>

Description

Returns a string containing the name of the physical database from which the
record being output originates.

Scope
Text string function

Syntax
<base> or <base (n)>

where n is the width of the string to be returned. If the actual string length is
less than that specified by n, the string is padded with blank space characters
(ASCII 32).

Side effects
None

Examples

Example 1:
<box at b(*)+1,1

<t=This record is from database <base>.>
>

which would result in output such as:
This record is from database ALICE.

Page 149 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<CALL>-Format

Description

Directs the report formatter to place a call to a user-written subroutine before
attempting to format the record about to be output.

Scope

Format function

Syntax

<call (ase name, literal)>
where ase_name is the name of the user-written subroutine to be called, and
literal is a quoted string such as ‘abc’, which is passed without modification to
the user-written subroutine.
Side effects

The record which is about to be formatted for output is contained in the
system record control structure, to which a handle may be retrieved by calling
TdbCurrentltem(). The contents of this structure may be modified in memory
(this is the intended function of the format level <call> function), but no
attempt should be made to write the modified record back to the originating
database.

Any attempt to alter the number of parts in a record or the number of
paragraphs in a TExt field will produce no effect in the output, as these values
are computed upon reading the record and cannot be changed during output.

For more information, please consult the Appendix in this manual.
Examples

Example 1:
<

<call (my ase, "") >
<box at b(*)+1,1 fieldl >
>

Assuming that the user-written subroutine ‘my_ase’ alters the value of the
field field1 in some way, the formatter will output the newly altered value
rather than the original value stored in the database.

Page 150 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

This function can be particularly useful when applied to the filling of blank or
dummy fields. Such fields exist in the database design solely for use during
report formatting, for example, to hold a computed value such as a number

field column total:
my_ase is:
total = 0
for each subfield in field values do
total = total + current subfield of VALUES
done
put total into field column_total
which can be used in a report such as:
<
<call(my ase, "")>
<box at b(*)+1,1
<s.sub=/>
values
>
<box at b(*)+1,1
<h.field=--/>
column total
>
>
resulting in (for example):
10
20

30

Page 151 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<CALL>-Text String

Description

Directs the report formatter to place a call to a user-written subroutine
specified, before attempting to format the text string for output. The user-
written subroutine is thus responsible for returning the text insert to be output.

For more information, please consult the Appendix in this manual.
Scope
Text string function

Syntax
<call (ase name, field element[, delay])>

or
<call (ase name, literall, delay])>

where ase_name is the name of the user-written subroutine to be called,
field_element is an element of a field, such as a subfield or sentence, which
is to be passed to the user-written subroutine for processing, literal is a literal
quoted string such as ‘abc’, which is to passed to the user-written subroutine
for processing, and delay is the point in the output at which the user-written
subroutine is to be called:

0 (or omitted) | call immediately

1 call at end of page

2 call when user presses
the graphic key (in
TRIPclassic only;
<Gold><G>).

Side effects
None
Examples

Example 1:
<

<box at b(*)+1,1

<t=The result of MY ASE is <call (my ase,
"", O)>.>

>

>

which, assuming that ‘my_ase’ returns a string such as ‘ZABULON’, would
give the output:

The result of MY ASE is ZABULON

For information concerning the method of argument passing and string return
values, please consult the Appendix in this guide.

A simple example of the use of this type of ASE call is the computing of an
imperial or non-metric measurement from a stored metric measurement, a
conversion from Celsius to Fahrenheit, etc.

Page 152 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<CASE>

Description

The <case> function results in a text string, which is dependent upon the
contents of a particular field element within the record being output. This text
string can be used either directly as output or to load a value into a text
variable.

For instance, if the record contains a simple Yes/No field in Y’ and ‘N’ form,
but users would rather see ‘Yes’ and ‘No’, a case function provides a simple
method of achieving this. Thus:

if the record contains ‘Y’ then
output 'YES’
else if the record contains ‘N’ then
output ‘NO’

Scope

Layout box or box group function

Syntax

<case (field element, list)>

where field_element is the component of the record, typically a field plus
subfield combination, that is used as the ‘selector’ of the <case>, and list is a
comma-separated list of selector/value pairs that defines the output for a
given selector.

The format of the list is:
selectorl : valuel, selector2 : value2, ..., [selectorn] : valuen

where the omission of the last selector (selectorn) signifies that when the
field_element value does not match any given selector, the last value (valuen
) will be output.

Note:

both selectors and values should be surrounded by single quotation marks
if they are to be interpreted as literal values. If not, they are interpreted as
field names.

Side effects
None

Page 153 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Examples

Example 1:

This example uses <case> instead of a field name for direct output:
<box at b(*)+2,10

<case (yesno.1l,

'Y':"Yes',
'N':'NO',

: "Maybe') >
>

which, depending on the value of the first subfield of the field yesno, will
output either ‘Yes’, ‘No’, or ‘Maybe’.
Example 2:

This example uses <case> to assign a value to a text variable, where the
value to be assigned originates in a different subfield of the current field than
that which is being used as the selector:

<

<l=<case(selector.1,

'0':selector.2,

'l1':selector.3,

'2':selector.4,
:selector.b)>>

<box at b(*)+1,1 <t=<1>>>

>

If the field selector had values as shown below (where the comma delimits
subfields):

Record 1 0, Hello

Record 2 1, xxx, my

Record 3 : 2, xXx, XXX, name is
Record 4 3, XXX, XXX, XxXx, Jim

the output would be:
Hello
my
name is

Jim

Page 154 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<CHR>

Description
In order to use unprintable characters in a report (such as the escape
character <Esc> or ASCII 27), you must use the <chr> function, which allows
any number of ASCII character values to be inserted into the output stream.
Scope
Text string function
Syntax

<chr (list)>
where list is a comma-separated list of ASCIl decimal values that signifies the
unprintable characters to be output.
Side effects

If the format using <chr> is to be used for Show output, you must ensure that
the characters being used will not adversely affect the state of the user’s
output device, e.g. his or her terminal. Inserting an XOFF character within the
output, for example, would effectively lock the terminal from accepting input.

A <chr> character does take up a character position, thus influencing the
number of characters on a line.

Examples

Example 1:

The DEC printer escape sequence for enabling the ‘Bold’ character attribute
uses the ASCII escape value 27 (<Esc>[1m):

<t=<chr (27)>[1m>

Page 155 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<CLASS>
Description

Retrieves the name of the class that has been associated with the currently
active record (if any). For more details on classification see "Appendix B —
Classification Schemes" on page 354 of this manual and the CCL Command
reference, "Display CLASS()" command.

Scope

Text string function

Syntax
<class>

Side effects

None

Examples

Example 1:

To list the category for the current record:
<t=CATEGORY: <class>>

Page 156 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<CURDATE>

Description

Returns a string containing the current date in the format defined by the
user’s profile.

Scope
Text string function
Syntax

<curdate>

Side effects

This function may also be used in the date or time formatting functions
<dateform> and <timeform> to produce the current date or time in a particular
format. See the descriptions of <dateform> and <timeform> for more
information.

Examples

Example 1:
<box at b(*)+1,1

<t=The date is <dateform(<curdate>,15,--)>/>
<t=The time is <timeform(<curdate>,1)>>
>
which could result in the output:
The date is 7-Nov-93
The time is 19:30:57

Page 157 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<DATEFORM>

Description

The <dateform> function is used to modify the output form of a date value,
specified either by a DAte field or by using the <curdate> function to return
the current system date. The <dateform> function supports seventeen
different date formats:

Numbered Date Sample Date
Form

1 1993-05-01
2 1993-5-1
3 93-5-1

4 1993-May-1
5 93-May-1
6 05-01-1993
7 5-1-1993
8 5-1-93

9 May-1-1993
10 May-1-93
11 01-05-1993
12 1-5-1993
13 1-5-93
14 1-May-1993
15 1-May-93
16 19930501
17 930501

Table 6-12 Date formats
Scope
Text string function

Syntax
<dateform(value, format, separators)>

or
<dateform(value, format)>
or
<dateform(value, 0, separators)>

where value is the DAte value to be output by the function. This value can be
specified as a DAte field, with or without subfield, or as the current system
date by using the <curdate> function.

Page 158 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Format is an integer value between 1 and 17 (as outlined in the previous
table), where each value specifies a unique date format.

Separators are two literal characters which specify the separators to be used
between the date elements, i.e. the year and the month, and the month and
the day. If none are specified, the date separators are taken from the user’s
profile. Valid values for each separator character are slash [/], hyphen [-],
period [.], and colon [:].

0 (zero), which, when used as the format argument, specifies that the
function should use the format specified by the user’s profile. This is intended
to allow the format to output the user’s preferred date type, but with the
format designer’s preferred date separators.

Side effects

None

Examples

The <dateform> function can be used to output a date value in a specific
form, output the current date in a specific form or modify the date separators
in the user’s preferred date form:

Example 1:
<t=<dateform(my date.2, 15, //)>>

Format the second subfield of the field my_date using date format 15, and
separators [//]. Assuming that the value of my_date.2 is 2nd October, 1993,
the output would be

2/0ct/93
Example 2:
<t=<dateform(<curdate>, 15,-/)>>

formats the current system date using date format 15 and dash [-] and slash
[/] separators:

25-Nov/93
Example 3:
<t=<dateform(<curdate>, 0, ::)>>

formats the current system date using the user’s preferred date format, but
modifies the date separators to the double colon [::]. Assuming that the user
has a preferred format of 5:

93:Nov:25
Example 4:
<t=<dateform(my date,15)>>

formats the first subfield of the field my_date using the date format 15, taking
the date separators from the user’s preferred settings (as specified in his or
her user profile). Assuming the separators to be double dashes [--] and
my_date to hold 1st October, 1993:

1-0Oct-93

Page 159 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<DEBIT>
Description

When a database has an attached accounting function (as specified by a cost
for any of the fields of that database), the output cost of any record within that
database may be controlled by using the <debit> function. This function
allows the specification of a minimum and maximum value for record output,
for instance, to specify that each record will incur at least a unit cost of 5, but
never more than 15, regardless of the individual field costs specified in the
database design.

Scope
Format function

Syntax

<debit (minimum, maximum) >

where minimum specifies the minimum unit cost and maximum defines the
maximum unit cost that will be incurred for each record output by using this
report.

Side effects
None

Examples

Example 1:
<

<debit (5, 15)>
<box at b(*)+1,1 fieldl>

>

Sets the minimum cost of record output to 5, and the maximum to 15.

Page 160 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<FF>

Description

Either fills the output page with blank space (during Show), or forces a hard
page throw (during PRint) by outputting a form feed character (ASCII 12,
<FF>). This function can be useful in many cases, from forcing a new page
when a value used in a page heading changes to protecting a user from
involuntary viewing of chargeable material.

Scope
Text string function
Syntax

<FF>
Side effects
None
Examples
Example 1:

Using the <ff> function to throw a page whenever a specified field value
changes:

<
<header box size 3*80

<t=/--—--- > author <t=----- />

<box at b(*)+1,1
<if-changed (author)>
<t=<FF>>

>

>

which will begin a new page whenever the author field changes value. For
more detail on the use of <if-changed()>, consult its reference section later in
this chapter.

Page 161 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Example 2:

Using <FF> to protect unwilling output of chargeable material:
<
<box 1 at b(*)+1,1
<t=Author's name: >
author
>
<box 2 at b(*)+1,1
<t=Document title: >
title
>
<box 3 at b(*)+2,1
<t=The viewing of the content of this >
<t=document incurs a cost.\ >
<t=In order to avoid this cost, use the >
<t=command "Next".\ >
<t=To view the content of the document, >
<t=use the command "More"\.>
<t=<FF>>
>
<box 4 at b(*)+1,1
content
<t=<FF>>
>

>

which might result in output as follows:
Author's name: Slartibartfast
Document title: "Earth" - A Design Experiment

The viewing of the content of this document incurs
a cost. In order to avoid this cost, use the
command "Next". To view the content of the
document, use the command "More".

Page 162 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<FOR> Loops

Description

The purpose of a <for ...> loop is to direct the report formatter to loop over the
individual elements of the entities included within the loop, either subfields or
part records. This allows the report designer some control over the order and
placement of the subfields of a field, or over the part records from a meta-
record without having to know in advance how many subfields or part records
there are likely to be in a given record.

Using the standard entity addressing nomenclature of the report formatter,
any individual subfield, paragraph, sentence or part record can be output
using:

Element Example Explanation

subfield field_name.4 | fourth subfield of any non-TExt
type field, such as PHrase,
NUmber, etc.

paragraph | field_name.2 | second paragraph of any TExt
type field

sentence | field_name.2 | fourth sentence of 2nd

A4 paragraph of any TExt type

field

part .2.any field | second part record of the

current meta-record

In most cases this type of addressing will be inadequate, as the number of
the subfields or parts, to be output will not be known at the time of report
design. The <for> loop allows the designer to treat the entire conglomerate of
elements as a single case, rather than having to write output code for each
subfield or part record.

Thus, when looping over part records in a meta-record, the part records to be
output are addressed using the construct:

.x.field name
while an individual subfield within a field is addressed using a suffix construct:
field name.x

where x in the above nomenclatures is the name given to the index of the
<for> loop, and has bounds from 1 to the maximum number of subfields or
parts which make up the entity being output.

For instance, if the meta-record being output in the first example had three
part records, then x would have bounds of 1 to 3. If the field being output by
the second example had 28 subfields (any of which may be blank), the
bounds of x would be 1 to 28.

The <for> loop construct can be used to output fields in a tuple, fields from a
part record, fields in a tuple from fields in a part record, etc.

Scope
Conditional function

Page 163 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Syntax
<for <idx>
... boxes containing element output code ...
>

where <for> loop name idx is a single alphabetic character between ‘a’ and
‘Z’, and represents the current index of the loop.

Side effects

The <for ...> construct doubles as a box group, so any functions which have
group scope will also work correctly within a <for> loop. You can also nest a
box group within a <for> loop.

You should not use the same index name more than once in the same
format, as the results are unpredictable.

Examples

Example 1:

A typical use of a <for> loop is to control the output of fields, which have been
declared as belonging to a tuple on a data entry form. The output of such
fields must be controlled by a loop in order to stop the report formatter from
suppressing the output of blank subfields, which would destroy the integrity of
the tuple.

<for <a>

<box 1 at b(*)+1,1 given name.a>
<box at t(1l),30 surname.a>

<box at t(l),60 middle init.a>

>

This example uses the loop index ‘a’ to control the output of the subfields
from the fields given_name, surname and middle_init. This could result in
output such as:

Value of a: | Given_Name | Surname Middle_Init

1 Gwyn Fisher
2 Al Burgasser J
3 Slarti Bartfast X

Page 164 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

As you can see, the position of the middle initial for ‘Al J. Burgasser’ is
maintained even though subfield 1 for field middle_init is empty. If this same
information had been output using:

<

<

<s.sub=/>

<box 1 at b(*)+1,1 given name>
<box at t(1l),30 surname>

<box at t(1l),60 middle init>
>

>

the results would be:

Given_Name | Surname Middle_Init
Gwyn Fisher J

Al Burgasser X
Slarti Bartfast

which, as you can see, does not respect the blank subfield in middle_init.

Page 165 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<HITLIST>

Description

When used as a modifier to a <for> loop variable, the <hitlist> function directs
the formatter to only output those part records which have been hit by the
search set being output. If the search being output only hit the head records,
or was a record search such as:

BASe xyzzy
or

Find R=FRom 1
or

Find
no part records will be output.

This function has no effect on the output of subfields in a tuple being
controlled by a <for> loop.

Scope
For loop function

Syntax
<for <x:<hitlist>> ... >

where X is the loop variable being used to control output of part records.
Side effects

None

Examples

Example 1:

The following format will only output the speaker field from those parts which
are hit by a search in the TRIP demonstration database Carroll. None of the
head fields will be output, but each record is marked by a banner to signify
the start of said record:

<

<box at b(*)+1,1
<t=Record <rid> from database CARROLL>
>

<for <a:<hitlist>>
<box at b(*)+1,1
<t=Part <subrid> :->
>

<box at b(*)+1,3
<s.sub=/>

.a.speaker

>

>

Page 166 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

<box at b(*)+1,1 <t=/> >
>
A search sequence such as:
S=1 <24> BASe CARROLL
S=2 <3> Find hatter
might result in:
Record 6 from database CARROLL
Part 17 :-
Cheshire Cat
Part 22 :-
Record 7 from database CARROLL
Part 1 :-
March Hare
Mad Hatter
Part 3 :-
March Hare
Mad Hatter
Part 4 :-
March Hare
Mad Hatter
Dormouse
etc.
Alternatively, the search sequence
S=1 <24> BASe CARROLL
S=2 <3> Find PERSON=hatter
would result in the following output:
Record 6 from database CARROLL
Record 7 from database CARROLL
Record 11 from database CARROLL

as person is a head field and thus no part records would be hit by the search.

Page 167 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<HITS>

Description

Returns a text string containing the number of records hit by the search being
output.

Scope
Text string function

Syntax
<hits>

or
<hits (n)>

where n is the maximum number of characters that the string returned should
contain. If the string to be returned is shorter than n, the string is padded with
blank space (ASCII 32) characters.

Side effects
None

Examples

Example 1:
<

<box at b(*)+1,1
<t=The search being output consists of >
<t=<hits> records.>

>

>
which could result in:
S=n <10> Find XYZZY

The search being output consists of 10 records.

Page 168 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<IF-CHANGED>

Description

Controls the output of a box or box group depending on whether the contents
of a field, or a number of fields, have changed since the last record output.
Optionally, the function can fail if this is the first record being output.

Note:

This function cannot be used to test whether a given subfield has changed;
thus, all tests are performed on the first subfield or sentence of the field(s)
in question.
Scope
Layout box or box group function
Syntax
<if-changed(field name[, field name...][, flags])>
where field_name is the name of a field or a list of comma-separated fields

whose contents are to be tested against their values during the last record
output, and flags is an optional integer which can take the following values:

1 Instead of applying an AND operation between the fields given, the
report formatter will use an OR. That is, if any of the fields listed have
changed, the function succeeds. If this is the first record being output,
the function will not succeed.

2 If this is the first record being output, the function will not succeed, i.e.
the box or group which the function controls will not be output for the
first record. If this is not the first record being output, all fields listed
must have changed in order for the function to succeed.

3 The report formatter uses an OR operation between the listed fields,
and succeeds if this is not the first record being output.

Side effects

This function can be applied in conjunction with any other conditional
function, such as <if-unchanged()>. The operator between the different
functions is always AND.

Examples

Example 1:

This example stops the output of a box unless the field well_name has
changed. As we are outputting a <ff> function if the function succeeds, we do
not want this to fire for the first record being output.

<box at b(*)+1,1
<if-changed(well name, 2)>
<t=<ff>>

>

Example 2:

This example outputs the name of a company (in field company) and the
corporate contact associated with it if either has changed.

<box at b(*)+1,1

Page 169 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<if-changed (company, contact, 1)>
company <t= / > contact

>

Page 170 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<IF-EMPTY>

Description

Controls the output of a box or box group, depending on whether a field or a
set of fields is empty. If so, the box or box group will be output. If any of the
fields listed have content, the box or box group will not be output.

Scope
Layout box and box group function
Syntax
<if-empty(field name[, field name...][, 1])>

where field_name is the name of a field or a comma-separated list of fields
whose contents are to be checked for emptiness. Each field name can be
qualified using subfield and/or part record nomenclature such as:

.2.field name.5.2

which would test the emptiness of the second sentence of the fifth paragraph
of the field in the second part record.

‘1" is an optional flag which directs the formatter to apply an OR operation
between the fields, rather than the default AND. If this flag is given, any of the
fields being empty will result in the function succeeding.

Side effects

This function can be combined with any of the conditional or <for> loop
functions within a single box or box group. In this case, the operator between
the various functions is always AND.

Examples

Example 1:

This example suppresses the output of a box if the field speaker has content.
<box at b(*)+1,1
<if-empty (speaker)>
<t=Speaker is empty...>

>

Example 2:

This example produces the following box if speaker, person or chapter are
empty.

<box at b(*)+1,1

<if-empty (speaker, person, chapter, 1)>

Page 171 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<IF-NONEMPTY>

Description

Controls the output of a box or a box group, depending on whether a field or
a set of fields has content. If so, the box or box group will be output. This
function is the logical complement to the <if-empty> function.

Scope
Layout box or box group function
Syntax
<if-nonempty(field name[, field name...][, 1])>

where field_name is the name of a field or a comma-separated list of fields
whose contents are to be checked for non-emptiness. Each field name can
be qualified using subfield and/or part record nomenclature such as:

.2.field name.5.2

which would test whether the second sentence of the fifth paragraph of the
field in the second part record had content.

‘1" is an optional flag which directs the formatter to apply an OR operation
between the fields, rather than the default AND. If this flag is given, any of the
fields having content will result in the function succeeding.

Side effects

This function can be combined with any of the conditional or <for> loop
functions within a single box or box group. In this case, the operator between
the various functions is always AND; i.e. all of the conditions being tested
must succeed for the box or box group to be output.

Examples

Example 1:

This example suppresses the output of a box if the field speaker does not
have content.

<box at b(*)+1,1

<if-nonempty (speaker) >

<t=Speaker has the following content.../>
speaker

>

Example 2:

This example produces the following box if speaker, person or chapter have
content.

<box at b(*)+1,1

<if-nonempty (speaker, person, chapter, 1)>

Page 172 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<IF-UNCHANGED>

Description

Controls the output of a box or box group, depending on whether the
contents of a field or a list of fields have changed since the previous record
output. If said field contents have changed, the box or box group is
suppressed. Optionally, the first record being output can count as unchanged
or as changed (see flags).

Note:

This function does not support subfield comparisons; thus all tests for
difference are performed upon the first subfield or sentence of the field.
Scope
Layout box or box group function
Syntax
<if-unchanged (field name[, field name...][,flags])>
where field_name is the name of a field or a list of comma-separated fields

whose contents are to be tested against their values during the last record
output, and flags is an optional integer which can take the following values:

1 Instead of applying an AND operation between the fields given, the
report formatter will use an OR,; that is, if any of the fields in question
are unchanged, the function succeeds. If this is the first record being
output, the function will not succeed.

2 If this is the first record being output, the function will succeed; i.e. the
box or group which the function controls will be output for the first
record. If this is not the first record being output, all fields listed must
be unchanged in order for the function to succeed.

3 This flag uses an OR operation between the listed fields, and
succeeds if this is the first record being output.

Side effects

This function can be used in conjunction with any of the other conditional or
<for> loop functions within a single box or box group. In this case, the
operator which is applied between the various functions is an AND operation,
i.e. all of the functions must succeed in order for the box or box group not to
be suppressed.

Examples

Example 1:
<

<box at b(*)+2,1
<t=Person= >
person

>

<box at b(*)+1,1
<t=Speaker= >

speaker

Page 173 of 416

PART 2: Forms
CHAPTER 6: REPORTS

>
<box at b(*)+1,1

<if-unchanged (speaker,person, 2)>

<t= Record <rid> --- speaker and person didn't
change.>

>

>

This example shows all fields for speaker and person. If there was no change
to either person or speaker since the previous record output, a comment to

that effect is provided.

Page 174 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<INDENT>

Description

Directs the report formatter to indent the second through nth lines in the
current box or box group by a certain number of columns. This can be useful
when the box being output includes a label plus field content. If the field
content stretches to two or more lines, these subsequent lines should be
output so that their content lines up with where the content started on line 1—
i.e., after the label.

Scope
Layout box or box group function
Syntax

<indent (n) >

where n is the number of columns by which the second through last lines are
to be indented from the side of the box.

Side effects

If a TExt field which has been stored with ‘Layout Retained’ is output in a box
which makes use of the indent function, the <noorig> function should also be
used. If not, the data being output will be wrapped in the same way as it
appears in the BAF, which could be very confusing, or at least unattractive.

Examples

Example 1:

This report:
<
<box at b(*)+1,1
<indent (8)>
<t=Label : >
field content
>

produces results such as:

Label : This is the field's content. As you can
see, 1t stretches over a single line. However, the
second and subsequent lines do not start flush
with the left hand side, but rather are indented
by eight columns.

Example 2:
This report is for the demonstration database Alice:
<
<box at b(*)+2,1
<t=Record <rid> content 'txt' in ALICE:>
>
<box at b(*)+1,1

<indent (6) >

Page 175 of 416

PART 2: Forms

CHAPTER 6: REPORTS

<t=TXT : >
txt
>

>

and produces an output like this:

etc.

Record 1 content 'txt' in ALICE:

TXT : Alice was beginning to get very tired of
sitting by her sister on the bank, and of having
nothing to do: once or twice she had peeped into
the book her sister was reading, but it had no
pictures or conversations in it, "and what is the
use of a book," thought Alice, "without pictures
or conversations?"

Page 176 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<LINK>

Description

The report filter <link> provides an easy way to load data from another
database.

Scope

Layout box or box group function

Syntax

<link (link fld.x, database, src fld.y, sea mode,
dum_ f1d)

where link_fld.x represents the field and subfield in the current database,
which will be used as the record name for the lookup in the source
database—hence identifying the required record. Database represents the
source database, and src_fld.y the field and subfield in the source record to
be picked up and displayed here.

Link databases without record name fields

In order to access a link database without record name field and to load a
PHRASE field, a non-exact search has to be made in the link database. This
is indicated by a fourth argument (sea_mode) with the following values:

0 : Search in the record name field in the link database
(default)

1 : Search in all TEXT fields

2 : Search in all TEXT/PHRASE fields

3 : Search in all PHRASE fields

13 : Search for an exact match in all PHRASE fields

field_name : Search in the specified field field_name
‘field_name’ : Search for an exact match in the field field_name
Retrieving a TEXT field

In order to load a TEXT field from a link database, a dummy TEXT field in the
target database must be defined and passed to the link filter as a fifth
argument (dum_fld). The link filter must also be called at the very start of the
report template (output format), i.e. before all box definitions. The dummy
TEXT field will be loaded with the complete TEXT field from the link database
and can then be output by the report generator in the usual manner.

Retrieving data from all records hit by a search

When retrieving several subfield hits the filter writes the data from all hits into
a dummy field in the database record being formatted, much like the handling
of getting the full TEXT field content from a link database. In order to use this,
you have to define such a field for the database that is being output.

A problem is how to handle the transfer of data from the link database if the
field to retrieve data from has a) many subfields or b) is a TEXT field. If this is
the case, this dummy field must be a "part field”. Otherwise, only the first (or
single) subfield from the link database will be loaded.

E.g. <link(F1,linkdb,load_fld,L1,dummy1)> will load data from all hits.

Page 177 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

If the dummyl field is a "part field", all the data from the load_fld of the first hit
will be stored in the dummy1 field of the first part record. If the dummy1 field
is a regular field only the first subfield of load_fld will be loaded into the first
subfield of the dummy1 field.

The data from the second hit will be stored into part record two, and so on.
To summarize retrieving hits from several record hits:
— Needs a dummy field to store the data

— If the source field is TEXT or has several subfields, the target dummy
field must be a part field of the same type.

— Target dummy field is not a part field

— Data from each record found is stored in each subfield
— Target dummy field is a part field

— Data from each record found is stored in each part

— Use standard formatting features to show the contents of the dummy
field, either looping over subfields or both parts and subfields

Side effects
None

Examples

Example 1:
<box at b(*)+1,1
<link (speaker.l,linkbase,anyfield.1l)>
>

This example performs a record name search in database Linkbase for the
content of the first subfield of speaker, and then outputs the content of the
first subfield of anyfield from the record found in Linkbase (if any).

Example 2:

Use the <link> filter to search for the content of field F1 in the L1 field of a link
database:

<
<box at b(*)+1,1
<link(F1l,1link db,locad fld,Ll1l)>
>
>

Example 3:

Use the <link> filter to search for the content of field F1 for an exact match in
the L1 field of a link database:

<
<box at b(*)+1,1
<link(F1l,1link db,locad fld,’L1l’)>
>
>

Page 178 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

Example 4:

Use the <link> filter to search for the content of field F1 for a match in all
TEXT and PHRASE fields of a link database:

<
<box at b(*)+1,1
<link(F1l,1link db,load fld,2)>
. _ _
>

Example 5:
Using the <link> filter for a TEXT field:

Assume an existing dummy TEXT field of name dummy1 exists in the target
database. Note:

Exact matching using a field name has been chosen in the following
example.

<
<link(F1,linkdb,load fld,’L1’,dummyl)>
<box at b(*)+1,1
<t=Hello world!>
>
<box at b(*)+1,1
<t=Here comes the text from the link database../>
<s.p=/>
dummyl
>
>

Page 179 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<NOFF>
Description

This function turns off the automatic formfeed printed when page size has
been defined. Form feeds specified using <T=<FF>> will still work.

Scope
Format function
Syntax

<noff>
Side effects

<noff> must appear at the beginning of the report specification, before the
first box definition. It will not affect a page size definition stored in a printer
definition file; it will affect only the page size within the report itself.

Examples

Example 1:
<page size 60*132
<noff>
<box ..
>

>

Page 180 of 416

PART 2:

Forms

CHAPTER 6: REPORTS

<NOLF>
Description
This function turns off the automatic line planning.
Scope
Format function

Syntax
<nolf>

Side effects

<nolf> must appear at the beginning of the report specification, before the
first box definition.

Examples

Example 1:
<nolf>

<box at ..
>

>

Page 181 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<NOORIG>

Description

If a TExt field has been declared in the database design as being ‘Layout
Retained’ (i.e. all spaces, blank lines etc. are maintained in the BAF), the
<noorig> filter can be used to force stripping of such elements during output.
This can be especially useful if the output box is to be smaller than the data
entry box, or if the <indent()> function is used.

Scope
Layout box or box group function
Syntax
<noorig>
Side effects
None
Examples

Example 1:

This example outputs a layout-retained TExt field if using <indent()>. If
<noorig> is not used:

<

<box at b(*)+1,1
<indent (8) >
<t=Label : >
field content

>

>
and the data is, for example:

The fat cat from Jubaliyah's called up to Slim Jim
with an epithet of animalistic intent on his lips:

Hey lazy dog, call your sister for me.
then the output could look like :
Label : The fat cat from Jubaliyah's called up
to Slim
Jim with an epithet of animalistic
intent on
his lips:
Hey lazy dog, call your sister
for me.

As you can see, the original line breaks and spaces are maintained in the
output - to the detriment of the appearance of the data. Whereas, using the
<noorig> function:

<

<box at b(*)+1,1 size* 46

Page 182 of 416

PART 2:

Forms

CHAPTER 6: REPORTS

<noorig>
<indent (8) >
<t=Label : >
field content

>
>

the output would be:
Label : The fat cat from Jubaliyah's called up
to Slim Jim with an epithet of
animalistic intent on his lips:

Hey lazy dog, call your sister for me.

Page 183 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<NUMFORM>

Description

This function edits NUmber and INteger values. Headers, separators, and
trailers apply as if the fieldname was entered alone.

<Numform> takes several arguments:
o field name, with or without a subfield number
e length in characters
¢ number of decimal positions
e a character specifying a formatting convention.

The first argument is the name of the field containing the value to be
formatted.

The second argument can be zero, or any integer from one to the maximum
page width. If zero is used, TRIP adopts the current box size as the length in
characters.

The third argument can be any number from zero to the maximum page
width.

The fourth argument is a value of one to three or the character ‘e’. If this
argument is an odd number (one or three), the output will be divided into
groups of three, each group separated either by a comma [,] or full stop [.]. If
the argument is an even number (two) or an alpha character (‘e’), the output
will not be grouped.

The default setting outputs ungrouped digits using the decimal point, for
example, -12345.67.

Each number is output right-adjusted. If there is output overflow, where the
number to be output is too long for its specified string, the string is filled with
pound or number signs [#]. An empty subfield produces an empty string.

Scope
Text string function

Syntax

<numform(fieldname[.x],length[,precision[, format]]
) >

Side effects
None
Examples

Example 1:
<

<box at b(*)+1,1
<numform(nl, 4)>
<numform(nl,4,0)>
<numform(n2.3,8,3)>
>

>

Page 184 of 416

PART 2:
CHAPTER 6:

Forms
REPORTS

The first two are equivalent, where the integer values of the NUmber field n1
are output right-justified in strings that are four characters in length. The third
example outputs the value of the third subfield of the NUmber field n2 in
strings of eight characters, with three decimal positions.

Assuming the value of ‘N2.3’ to be -12345.67, several examples are listed
with the output they produce in the table below.

<Numform> Statement Output Effect of Fourth
Argument

<numform(n2.3,10,2,e)> | -1.23E+4 E denotes output in
normal scientific
notation

<numform(n2.3,10,2,1)> | -12,345.67 | 1 causes output of
integers in groups of
three digits, using the
decimal point

<numform(n2.3,10,2,2)> | -12345,67 | 2 specifies no grouping
of output, using the
decimal comma rather
than decimal point

<numform(n2.3,10,2,3)> | -12.345,67 | 3 causes output of
integers in groups of
three digits and
specifies the use of the
decimal comma rather
than decimal point

Table 6-13 Samples of <Numform> output

Page 185 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<OCCS>
Description

Returns a text string containing the number of hit occurrences produced by
the last search performed.

Scope
Text string function

Syntax
<occs>

Side effects
None

Examples
Example 1:
To output the number of hits in a search:
<
<box at b(*)+1,1
<t=The last search had <occs> hit terms.>
>
>
giving output of, for example:
The last search had 2578 hit terms.

Page 186 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<ONCE>
Description

If placed in a layout box, that box will only appear once in the resulting
output, during the display of the first record.

Scope
Layout box or box group function
Syntax

<once>

Side effects
None

Examples
Example 1:

To output a cover page for printed output:
<

<box at b(*)+1,1
<once>

<t=This print was produced on <curdate>.>

>

Page 187 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<ORIG>

Description
Gives an override in an individual box for a box group level <noorig>. Thus, if
one TExt field out of many being output by a box group is to be output using
its ‘Layout Retained’ feature, you should use <orig> in a specific box for that
field.
Scope
Layout box or box group function
Syntax
<orig>
Side effects
None

Examples

Example 1:

To output three TEXxt fields which are all ‘Layout Retained’, but only one of
which should be output in such fashion.

<

<

<noorig>

<box at b(*)+2,1
<indent (8) >
<t=Label : >
text field 1

>

<box at b(*)+2,1

<orig> ! Override <noorig>
text field 2

>

<box at b(*)+2,1
<indent (8) >
<t=Label : >
text field 3

>

>

>

which might output such as:

Label : This is data which was stored with the
Layout Retained attribute, but is being output
with that attribute suppressed.

This is data from a Layout Retained TExt field
which is being output with that attribute still in
place

As you can see, blank lines and

Page 188 of 416

PART 2: Forms
CHAPTER 6: REPORTS

spaces are maintained.

Label : This is more data from a Layout Retained
TExt field which has its layout attribute
suppressed.

Page 189 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<PAGENO>
Description

Returns a text string containing the current page number, relative to the start
of the current output.

Scope

Text string function

Syntax
<pageno>

Side effects

None

Examples

Example 1:

To output the page number at the top of every page:
<
<header box size 2*15
<t=Page # <pageno>./>
>
>

which might give output such as:
Page # 1.

actual data

<ff>
Page # 2.

actual data

Page 190 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<PARTS>

Description

Returns a text string containing the number of part records which are
associated with the meta-record currently being output.

Scope

Text string function

Syntax
<parts>

Side effects

None

Examples

Example 1:

To output a simple count of part records:
<box at b(*)+1,1
<t=There are <parts> part records.>
>

which might give output such as:

There are 5 part records.

Page 191 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<RID>
Description

Returns a text string containing the unique record number of the current
record being output.

Scope
Text string function

Syntax
<rid>

Side effects

None

Examples

Example 1:

Output the number of the current record:
<box at b(*)+1,1
<t=This is record number <rid>.>
>

which might give output such as:

This is record number 42.

Page 192 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<RIS>

Description

Returns a text string containing the index of the current record within the last
search performed. This index is an ordinal number between one and the
maximum number of records hit by the last search.

Scope
Text string function
Syntax

<ris>
Side effects
None
Examples

Example 1:

Output the number of the current record and its index within the last search
performed:

<box at b(*)+1,1
<t=Record # <rid> is <ris> within search.>
>
which might give output such as:
Record # 32658 is 5 within search.

Page 193 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<RNAME>
Description

Returns a text string containing the unique record name of the current record,
if applicable.

Scope

Text string function

Syntax
<rname>

Side effects

None

Examples

Example 1:

Output the name of the current record:
<box at b(*)+1,1
<t=This is record: <rname>.>
>

which might give output such as:
This is record: CY93/1234

Page 194 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<SORTFIELDS>
Description
Allows a sort order to be embedded within the report itself. This sort order
consists of a comma-separated list of field names from the database being
output.
The <sortfields()> option must be placed before the first box is specified.
Scope
Format function
Syntax
<sortfields(field name[, field name...])>
Side effects

This function effectively disables the SORt modifier in CCL. Any attempt to
use Show or PRint SORt will result in an error message. If data is being
output from a database cluster, the data cannot be merged unless the user
issues a DEfine MERGe command.

Examples

Example 1:

A statement to sort output on the contents of the Corr fields day, rname and
raddr:

<sortfields(day, rname, raddr)>

Page 195 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<SUBRID>
Description

Returns a text string containing the unigue number of the current part record
being output.

Scope
Text string function

Syntax
<subrid>

Side effects
None

Examples

Example 1:

To output the current part record’s unique number:
<box at b(*)+1,1
<t=This is part record # <subrid>.>
>

which might give output such as:
This is part record # 32.

Page 196 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<SUBSTRING>

Description

Returns a string extracted from a field, or subfield, where the extraction is
defined by a start position and a length.

Scope

Text string function

Syntax
<substring(field name, start position, length

[, justification])>

where field_name is the field or subfield from which the string is to be
extracted, e.g. rname.1.

Start_position is the position within the field or subfield from which the
extracted string should begin. This position is based on 1 being the first
character in the field, or subfield.

Length is the number of characters to extract from the field or subfield in
question. If start_position + length is greater than the available data, the
resultant string will be padded with blank (ASCII 32) characters. If length is
zero (0), the extracted string will contain all characters from start_position to
the end of the field or subfield in question.

Justification is an optional argument, and can only take a single value, the
case-insensitive r. This argument specifies that the extracted string should be
right-justified within the output. For example, if length specifies twenty but the
available data only stretches to ten characters, those ten characters would
occupy positions eleven through twenty in the resultant string.

Side effects

None
Examples

Example 1:
<substring(pl,10,20)>

If p1 is a PHrase field, this function will create a string of twenty characters
from the first subfield of p1, beginning with the tenth character of the subfield
and padding the string with spaces to the right (if the subfield is less than
twenty-nine characters long).

Example 2:
To create a field header using substring:
<h.field=<substring(pl.2,10,0>>

Whatever information is contained in the second subfield of p1 from the tenth
to the last character will be output in the field header.

Example 3:
To create a text variable using substring:
<2=<substring(tl.2.3,1,8)>>

Supposing t1 to be a TExt field, the first eight characters of the third sentence
of its second paragraph will be loaded into the text variable <2>.

Page 197 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<Text Variables>
Description

A text variable can hold any number of characters, and can be used in any
place where you can use a text string. The text variables are <0>, <1>, <2>,
<3>, <4>, , <6>, <7>, <8> and <9>

Scope
Format function
Syntax
<variable=content>
<t=This is a use of a text variable : <variable>.>

where variable is an ordinal number between zero and nine inclusive, and
content is any text string, which may contain any text string scoped function.

Side effects

The text variables must be assigned before any boxes are coded within the
format, otherwise their use will be ignored by the formatter.

Examples
Example 1:
Loading, and using, a text variable:
<
<1=TRIP Systems International, Inc.>
<box at b(*)+1,1 <t=<1>... Yo!>
>
which would give output such as:

TRIP Systems International, Inc.... Yo!

Example 2:

Loading a text variable using a text string scoped function:
<
<l=<substring(fieldl.2, 10, 10, r)>
<header box size 1*80
<t=The contents of fieldl are ... <1> >
>

>

which might have output such as:
The contents of fieldl are ... «¢cy93/1234

Page 198 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<TRACE>
Description

This function causes the search history leading to the last performed search
to be output as it would appear in the search history window. This is useful for
tasks such as producing print job cover sheets.

Scope
Layout box or box group function

Syntax
<trace>

Side effects

None

Examples

Example 1:

To print a sample cover sheet:
<
<box at b(*)+1,1
<trace>
<t=<ff>>
>

>
which could produce output such as:
S=1 <475> BASe ALICE
S=2 <28> Find mad hatter

Page 199 of 416

PART 2: Forms
CHAPTER 6: REPORTS

<TIMEFORM>
Description
Returns a string containing a time value formatted as specified by the time
format argument.
Scope
Text string function
Syntax

<timeform(time value, time format)>

where time_value is the value which is to be formatted by the function. This
value can either be field content, or the function <curdate>, which will yield
the current time in twenty-four hour notation.

Time_format is an integer value with the following meanings (default is 1):

Time Format 1 If the time value does not include minute or hour segments,
they will appear as zeros, e.g.:

Time Value Sample Output
1hr, 10min 1:10:00

59 seconds 0:00:59

Time Format 2 If the time value does not include an hour segment, the
output will also not include an hour segment; i.e. only the minutes and
seconds will be output by the function. If the time value does not include a
minute segment, it will appear as a zero:

Time Value Sample Output
1hr, 10min 1:10:00
59 seconds 0:59

Time Format 3 If the time value does not include an hour or minute
segment, the output will not include them:

Time Value Sample Output

1hr, 10min 1:10:00
59 seconds 59
Side effects
None
Examples
Example 1:

Output the current time:

<

<box at b(*)+1,1

<t=The time is <timeform(<curdate>,1)>.>
>

>

which will produce output such as:
The time is 15:20:35

Page 200 of 416

PART 2:

Forms

CHAPTER 6. REPORTS

<WEIGHT>
Description

Returns a text string containing the value that the relevance rank engine has
associated with the current record, with assigned rankings normalized to a
percentile range. This function has nho meaning unless the report in which it is
used is invoked following a fuzzy logic search (FUZz).

Scope
Text string function

Syntax
<weight>

Side effects
None
Examples

Example 1:
To output the rank of the current record:

<box at b(*)+1,1
<t=Record <rid> has weight <weight>.>
>
which would produce output such as:
Record 36 has weight 97.

Page 201 of 416

PART 2: Forms
CHAPTER 7: SEARCH FORMS

Chapter 7:
Search Forms

The search form is an easy and straightforward alternative to CCL searching
that does not require knowledge of command language syntax. It is a single
page form where the user types the search expressions into search fields,
which the search form then uses to generate a search order for TRIP to
perform. The hit record counts of all the fields combined are shown in the
form report line. There may also be individual hit record counts shown for
each field. A database administrator may create several search forms for one
or many databases, which can be linked together.

To view the existing search forms in TRIP, select the ‘Search Forms’ icon in
the mmc window. A list of search forms will then appear.

T A R —— Y
By File Action View Window Help _=&
@@= |7 0lc=H
TRIP Servers Search Form Mame Last Medified Owner Description
<& Y;°mbp”te’ B Alice_Demo 1994-02-08 SYSTEM
» 1 Databases B3 Alice_Demo? 1994-02-08 SYSTEM
> % Classification Schemes

@ Search Forms
> m Users and Groups

. 8% My Profile

Figure 7-1 Search forms for a TRIP installation

Selecting a search form and choosing ‘Properties’ from the action menu, will
list the properties for that form.

(Alice_Deme Properties M |
Name: Alice_Demo
Creator f Owner: SYSTEM
Created: 1993-05-23 22:42:57
Last modified: 1994-02-08 14:24:49

Description:

:

Figure 7-2 Properties for search form ALICE_DEMO

Page 202 of 416

PART 2: Forms
CHAPTER 7: SEARCH FORMS

Creating and Modifying TRIPclassic Search Forms

Unfortunately, TRIPmanager currently has no means of carrying out these
operations. It is hoped to include this functionality in a later release. For now,
consult the TRIPclassic user guide for details of how to carry out these tasks.

Copying TRIPclassic Search Forms

To copy a search form, click on ‘Search Forms’ in the chosen TRIP server
sub-tree, select the form to copy and select ‘Copy’ from the action menu.
Next, click anywhere in the right-hand pane of the mmc window to deselect
the currently selected search form and select ‘Paste’ from the action menu.

Il%JTRIPManager vt o Seee® P poen » e > -LLI—M: LE

E] File Action] View Window Help - | =
|l Quen. |
4 rie All Tasks b learch Form Name Last Modified ~ Owner Description
<5 g cut 2 Alice_Demo 1994-02-08 SYSTEM
g = gAIi(E_DEMDE 1994-02-08 SYSTEM
> % Copy
E Delete
g a Rename
3|
Properties
Help

Copies the current selection.

Figure 7-3 Copy a Search Form

A dialogue will appear as below, in which you may enter the name for the
new copy of the Search Form and click on the ‘OK’ button to confirm the
action.

Choose Name for Copy

P |-
Copying: Alice_Demo ol |
Cancel

To: |

Figure 7-4 Name Search Form Copy

the new Search Form creation confirmation will then appear.

7 N
TRIP Message - Search Forms @

Ijoi Search form ALICE_DEMO3 created.

|

Figure 7-5 Search Form copy confirmation

Page 203 of 416

PART 2: Forms
CHAPTER 7: SEARCH FORMS

Clicking on the ‘OK’ button will clear the confirmation. The copy of the form

has now been created.

Deleting TRIPclassic Search Forms

To delete a data entry form, click on ‘Search Forms’ in the chosen database
sub-tree, select the form to copy and select ‘Delete’ from the action menu.

nﬁ] TRIP Manager

= 5 [|

All Tasks

Cut
Copy

'ﬁnfila Action | View Window Help

CCL Query...

|

- &=

-

earch Form Name
4 Alice_Deme
o Alice_Demo2

7 Alice_Demo3

Last Modified
1994-02-08
1994-02-08

Owner

SYSTEM
SYSTEM
SYSTEM

Description

Delete

Renamne

Properties

Help

Deletes the current selection.

Figure 7-6 Delete a Search form

A ‘Yes/No’ confirmation dialogue will appear. Click the ‘Yes’ button to confirm
the action, or the ‘No’ button to cancel it.

==

Confirm
b - —

| Are you sure you want delete Alice_Demo3?

No

Figure 7-7 Delete Search Form confirmation

Clicking on ‘Yes’ will cause a deletion confirmation to appear.

==

TRIP Message - Alice_Demo3

:I Search form ALICE_DEMO3 deleted.

Figure 7-8 Search form Deleted

Clicking on the ‘OK’ button will clear the confirmation. The selected form has
now been deleted.

Page 204 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 3:

Batch Update

Page 205 of 416

PART 3:

BATCH UPDATE

CHAPTER 8. GLOBAL UPDATING

Chapter 8:
Global Updating

Note:

The command “UPDate SCope” cannot be found in this section because,
despite having a similar name, it is not connected with global updating. For
more information on this particular command, see “Appendix B — Scope
Search Facility”, on page 358 of this manual and also the relevant section
of the CCL Command Reference.

Global updating is a means of making identical changes to a group of
records, using a single updating order from the CCL command line. Using a
set of records that have been identified either by a CCL search or a record
number list, it is possible to:

e insert, delete or replace a field, subfield, sentence or paragraph

o delete or replace a string referred to by a search result in all the
records of that search result, or insert a word or several words before
it

¢ delete entire records, both those referred to by a search result and
those identified by a list of record numbers.

As with manual data entry, update orders affect only the BAF of the
database—the index files BIF and VIF remain unchanged until the database
is indexed. Since searches are made using the index files and Show orders
use the BAF records, if the BAF has been modified and remains unindexed,
the user of the database will get conflicting results when searching in and
showing the changed records.

Among other things, FOcus and Highlight may behave incorrectly when BAF
records have been modified.

Command Overview

An order for global updating has four main elements:

“Do this” the type of update
to

“This constituent” | the target of the update

with
“This value” the information to be
changed
and

“These records” the records to be
changed

as outlined below.

Page 206 of 416

PART 3: BATCH UPDATE
CHAPTER 8: GLOBAL UPDATING

Command Update Type | Update Target | Update Value | Update Domain
Element
Explanation | What should | What portion or | What data or Which records
be done? constituent of value is will be altered?
each record needed?
will be
changed?
Examples INSert, Field, Subfield, XYZ, 123, etc. WHere R=521,
UPDate or Word, Sentence 687, 688, 1023,
DELete etc. 2190, 2349 or
WHere S=3
Table 8-1 Anatomy of a global update command

In TRIPclassic the maximum expanded order length is 400 characters. A
longer order will lead to an error message. In applications created using the
newer TRIPjxp and TRIPnxp APIs, there is no such limit.

Notes:

e |tis also possible to avoid the 400 character limit when using the latest
versions of TRIPjtk and TRIPclient; however any new TRIP session
must be started using the newer TRIPcom Session object Open
method, or the TRIPjtk Session interface startSession method.

e Details on how to use the relevant methods can be found in the
documentation accompanying each API.

Only one database at a time can be open for updating, and referring to
search results obtained from more than one database in the same update
order is not permitted. You will need to index a globally-updated database
before making local modifications or proceeding with another global update.

Updating Using Record Numbers
Command Structure

The four main elements of a global update by record number are summarized
in the table below. Each is discussed separately in the sections that follow.

Upda'[e Update Target Upda'[e Update
Type Value Domain
INSert Record aaabbbcc | R=record
UPDate Fieldname.Subfield 112233 number
DELete Fieldname.Paragraph
Fieldname.Paragraph.Senten
ce
Part.Fieldname.Subfield
Part.Fieldname.Paragraph
Part.Fieldname.Paragraph.Se
ntence
Table 8-2 Structure of a global update using record
numbers

Page 207 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

Update Type
The three commands used are:

INSert (short form: INS) to add a unit to the records
DELete (short form: DEL) to remove a unit from the records

UPDate (short form: UPD) to replace a unit, or, if the unit referred to is
empty, add a unit.

INSert Orders

INSert expands both structure and content of records. When a subfield,
paragraph or sentence is inserted, the numbering sequence of any subfields,
paragraphs or the sentences which follow is advanced by one position. For
example, if a new ‘Subfield 1’ is inserted in a field, the existing ‘Subfield 1’
becomes ‘Subfield 2’, ‘Subfield 2’ becomes ‘Subfield 3’, and so on.

UPDate Orders

UPDate takes the same arguments as INSert, replacing the unit referred to.
Be very careful to provide complete specifications when using UPDate, to
avoid errors such as replacing the contents of an entire field with a single
phrase.

UPDate operates as an INSert order when there is nothing to replace.

DELete Orders

DELete is somewhat different from INSert and UPDate orders, in that it is
possible to delete the contents of entire records, part records and fields.

When a subfield, paragraph or sentence is deleted, the numbering sequence
of any subfields, paragraphs or the sentences which follow recedes one
position. For example, if you delete ‘Subfield 1’, ‘Subfield 2’ will become
‘Subfield 1’, and so on.

Note:

To avoid the accidental deletion of the complete contents of a database, the
global record delete has a default maximum value of 100 records that can
be deleted in one go. This maximum value can be redefined: For more
details, see the ‘Define — Delete’ section of the CCL Command Reference.

Update Target

When the records you want to make changes in are identified by a list of
record numbers, your order must state by name and number what component
of the record you want to change.

The shortest forms of the generic update targets are listed below.

Target Shortest Form
Record R
PART PART

Table 8-3 Generic update targets

Update Value

There are several basic restrictions regarding values that may be written to a
field during global updating. The source and target field types must match,

Page 208 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

I.e. it is not possible to insert text into a NUmber field. If the reserved word
‘where’ appears in the string to be introduced, the entire string must be
enclosed in double guotation marks—we recommend the use of quoted
strings as a matter of course for all TExt and PHrase target fields.

Update Domain

The update domain consists of TRIP’s reserved word WHere (short form:
WH) followed by a series of record numbers (short form for Record: R) or a
search result pointing to a subset of the records in the database (short form
for Search Result: S). The domain in the first case consists of a sequence of
record numbers, which follows the same rules as do other lists of numbers in
TRIP. Numbers and number intervals must be separated by commas, must
be listed in ascending order and cannot overlap.

There are three ways to state an interval:
e TO a number
e anumber TO a number
e FRom a number

The first option, “TO a number’ must appear first in a mixed-interval CCL
statement, and the third, ‘FRom a number’ must appear last to prevent record
number overlap.

The order part stating which records to edit has the same form for INSert,
DELete and UPDate and refers to the record numbers in the database itself.
These take the format ‘R=’ followed by a list of record numbers or record
number intervals, as seen in the examples below.

Example 1:
WHere R=to 10, 15, 20

which locates the first ten records in the database, as well as records fifteen
and twenty.

Example 2:
WHere R=3, 5, 7 to 9
which locates record numbers three, five and seven through nine.
Example 3:
WHere R=FRom 1
which locates all the records of the database.

INSert Examples Using Record Numbers

As before, most examples use the demonstration database Corr, and only
one database is open at a time.

Example 1:
INSert rcomp="Paralog U.K." WHere R=70 to 74

appends a new subfield containing the phrase ‘Paralog U.K.’ to Corr’s field
rcomp in records seventy to seventy-four.

Example 2:
INS rcomp.l="Paralog U.K." WH R=75

Page 209 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

inserts a new first subfield containing ‘Paralog U.K.’ to the field rcomp in
record seventy-five. Existing data in the field will be moved one subfield
forward.

Example 3:
INS content.3.1="1I told you so." WH R=FR 95

inserts a new first sentence to the third paragraph of the TExt field content of
records ninety-five upwards in the database. Existing sentences in the
paragraph will be moved one step forward.

UPDate Examples Using Record Numbers
Example 1:

UPDate scomp="Paralog U.K." WHere R=70 to 74

replaces the contents of the field scomp, (even if it contains several subfields)
in records seventy through seventy-four with a single subfield containing the
phrase ‘Paralog U.K.".

Example 2:
UPD scomp.l="Paralog U.K." WH R=75

replaces the contents of the first subfield of scomp with ‘Paralog U.K." in
record seventy-five.

Example 3:
UPD content 3.1="I told you so." WH R=fr 95

replaces the first sentence of the third paragraph of TExt field content with ‘|
told you so.” in records numbered ninety-five and above.

DELete Examples Using Record Numbers
Example 1:

DELete R WHere R=to 3, 6, FRom 98
deletes records one through three, six and ninety-eight and above.
Example 2:
DEL saddr WH R=7 to 10
deletes the field saddr from records seven through ten.
Example 3:
DEL scomp.l WH R=75
deletes the first subfield of scomp in record seventy-five.
Example 4:
DEL content.3.1 WH R=FR 95

deletes the first sentence of the third paragraph of content from record ninety-
five onwards.

Updating Using a Search Result

Command Structure

The four main elements of a global update by search result are summarized
as before.

Page 210 of 416

PART 3: BATCH UPDATE
CHAPTER 8: GLOBAL UPDATING

Update | ypdate Target Update Update
Type Value Domain
INSert Record aaabbbccc S=search
UPDate Part (for use with DELete only) 111222333 | number
DELete Field

Subfield

Paragraph

Sentence

Word

Fieldname.Subfield
Fieldname.Paragraph
Fieldname.Paragraph.Sentence
Part.Fieldname.Subfield
Part.Fieldname.Paragraph
Part.Fieldname.Paragraph.Sentenc
e

Table 8-4 Structure of a global update using a search result

Update Type

As with updates using record numbers, the commands are INSert, DELete
and UPDate.

Update Target

When the records to be changed are referred to by a search result, the
search result itself refers to a specific portion of the record. It is therefore not
necessary to identify them by name and number, but only by their level of
organisation (field, subfield, paragraph, sentence or word) within the record.

Target Shortest Form
FIEId FIE
SUBField SUBF
PARagraph PAR
SENtence SEN
WORD WORD

Table 8-5 Record update targets

Update Value
The same restrictions apply here as for global updates with record numbers.

Update Domain

The order part stating which records to edit has the same form for INSert,
DELete and UPDate, and takes the form ‘S=’, followed by the number of a
single search result:

WHere S=2

INSert Examples Using Search Results
Example 1:

INSert content.3.1="I told you so." WHere S=4

Page 211 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

inserts a new first sentence to the third paragraph of the TExt field content of
records located in search number four. Existing sentences in the paragraph
will be moved one step forward.

When inserting in the records of a search, you can refer to the position of the
hits of the search, instead of referring to a field by name, as shown by the
following examples.

If you are in any doubt about what positions a search refers to, you should
look at its record first, using highlight. The highlighted units are the ones that
your editing orders will use as reference points.

Example 2:
INS SENtence="I told you so." WH S=5

The phrase ‘| told you so.’ is inserted before each sentence that the search
number five has found.

Example 3:
INS WORD="John" WH S=2

The word ‘John’ in either TExt or PHrase fields is inserted before each word
that the search result two has detected.

Example 4:
INSert SUBField="John Smith" WH S=3

The phrase ‘John Smith’ is inserted as a new subfield before each subfield
that search number three has found.

UPDate Examples Using Search Results
Example 1:

UPDate content.3.1="I told you so." WHere S=4

replaces the first sentence of the third paragraph of the TExt field content with
‘| told you so.’ in the records of search number four.

Example 2:
UPDate SENtence="I told you so." WH S=5

replaces each sentence that search number five has located with ‘I told you

SO.
Example 3:
UPDate WORD="John" WH S=2

Replaces each word that search result two has found (in TExt or PHrase
fields) with ‘John’.

Example 4:
UPDate WORD="John Henry" WH S=2

replaces each word that search two has hit (in TExt or PHrase fields) with
‘John Henry'.

Example 5:
UPDate SUBField="John Smith" WH S=3

Page 212 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

replaces the contents of each subfield of a PHrase field pinpointed by search
result three with the phrase ‘John Smith’.

Example 6:
UPDate SUBF=1993-03-01 WH S=7

replaces the contents of each subfield located by search seven with the date
1993-03-01 (the hits are intended for a DAte field, but the contents would be
accepted for a PHrase field as well).

Example 7:
UPDate PARagraph="Yours truly" WH S=5

replaces each paragraph that search number five has found with the words
‘Yours truly’.

Example 8:
UPDate price.1=30 WH S=8

In a database containing a NUmber field named ‘Price’, the value in its first
subfield will be changed to 30 for all records located by search eight.

DELete Examples Using Search Results
Example 1:

DELete content.3.1 WHere S5S=4

deletes the first sentence of the third paragraph of the TExt field content from
the records in search number four.

Example 2:
DELete content.4 WH S=4

deletes the fourth paragraph of the TExt field content from the records in
search number four.

Example 3:

DELete R WH S=5
deletes the records found in search number five.
Example 4:

DELete FIEld WH S=6

deletes the fields hit by the search number six from the records of that
search.

Example 5:
DELete SUBField WH S=7

deletes the subfields located by search number seven from the records of
that search.

Example 6:
DELete (name, addr, phone) .SUBF WH S=2

deletes a tuple, in this case the contents of those subfields of fields name,
addr, and phone that have the same number as the tuple subfield found by
search number two.

Page 213 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

Example 7:
DELete PARagraph WH S=2

deletes the paragraphs located by search two (in TExt fields) from the
records of that search.

Example 8:
DELete SENtence WH S=8

deletes the sentences pointed to by search result eight (TExt fields) from the
records of that search.

Example 9:
DELete WORD WH S=3

deletes the words hit by search three (in TExt or PHrase fields) from the
records of that search.

Global Updating of Part Records

Global updating may also be used to delete, insert or update part records or
portions of part records.

If a search result contains hits in part fields, use
DELete PART WHere S=2

to delete the record parts found in search result number two. If the search
has detected only records containing head fields, nothing will be deleted.

Note:

You must provide the word ‘Part’ in its entirety; otherwise TRIP may
interpret it as an action on a PARagraph.

You may use DELete, UPDate and INSert orders to edit the contents of part
fields or their subfields or sentences pinpointed by search results as well.

To edit the contents of a field in a single record part, refer to the record part
by its number in the record. For example,

UPDate 2.name.l="John Smith" WH R=10 to 20

will substitute ‘John Smith’ for the contents of the first subfield of name in the
second record part of records numbered ten to twenty.

Copying With Global Update

Records modified in global updating may be inserted in a database other
than their database of origin, or be appended to the end of the source
database. This is done by inserting the modifier Copy directly after the
command word of an INSert, DELete or UPDate order.

Copying is done in the same manner as for EDit Copy orders, i.e. fields with
the same names must be of the same field type in both target and source
databases. Fields that exist in the source database but not in the target
database will be discarded during copying.

Examples:

Example 1:

Page 214 of 416

PART 3:
CHAPTER 8:

BATCH UPDATE
GLOBAL UPDATING

BAS corr
DEfine COPY=corrl

The first order opens the copy source database Corr, while the second opens
Corrl as the copy destination.

Example 2:
INSert COPY WHere R=10,15 to 18, FRom 95

This order, following the two previous orders, copies the Corr records ten,
fifteen through eighteen and ninety-five and above to Corrl.

Example 3:
Find taiwan (creates search result S=2)
UPDate WORD="china" WH S=2
UPDate COPY WORD="china" WH S=2

Both UPDate orders modify records that contain the word ‘Taiwan’, but the
first of them stores the modified records in the source database Corr, and the
second inserts them in the copy destination database Corrl.

Example 4:

INS COPY content="Copy extracted from CORR."
WH S=2

This order inserts a new paragraph containing ‘Copy extracted from Corr.’ in
the field content of every record of search number two and writes the updated
records into database Corrl.

Example 5:
DELete COPY=corr2 rname WH s=2

This order deletes the field rname from the records of search result two and
adds them to copy destination Corr2. Corr itself remains unchanged.

Example 6:
DEfine COPY=corr
DELete COPY rname WH R=30 to 33
DELete sname WH R=30 to 33

Here the DEfine order makes the current database Corr the copy destination
as well. The first DELete order deletes the field rname and appends records
thirty through thirty-three to the end of the database as new records. The

second order deletes the field sname from records thirty through thirty-three.

Case Sensitivity

In some situations, global updating will convert lower-case letters to upper-
case. If the character string in the updating order contains only lower-case
letters and spaces, the following will occur:

e If the word hit consists of upper-case letters only, the string will be
converted to upper-case before the exchange.

Page 215 of 416

PART 3: BATCH UPDATE
CHAPTER 8: GLOBAL UPDATING

o If the first letter of the word hit is an upper-case letter, and the
following letter is in lower-case, the first letter of the replacement
string will be converted to upper-case.

The Log File

An updating order puts a batch process in the queue, after some preliminary
error checking. The resulting log file name is and
GUdatabasename_uniquelD.log.

It should be noted that while an updating job is placed in the queue
immediately, a Print order (without a NOW, NO HOLD, or WAIT modifier)
submits the job to the queue when the user leaves TRIP. This is important if
you request a printout of records that you are going to delete in the same
session.

Error Checking

A great part of the checking of an order’s correctness is done by the batch
process, not by TRIP itself. This is meant to save the user time, because a
single order may involve a lot of checking.

TRIP checks that the user has write access to the database, that the order is
syntactically correct, and that it involves no immediate type clash (that is, that
the changes intended for the first of the records referred to in the order are
possible). An impossible change could be, for example, inserting a text string
in a NUmber field.

Further error checking is done by the batch process, and the results are
recorded in the log file mentioned above. If, for example, you make a mixed
search order that found hits in both TExt and NUmber fields, and you attempt
to delete a word from the fields found during that search, an error message
will be written to the log file and no changes will be posted to the BAF.

The only mixed search result accepted in editing orders is one consisting of
both TExt and PHrase references used in an editing order where words are
inserted, updated or deleted.

This restriction is intended for error prevention; all checking is done before
writing to the BAF.

Page 216 of 416

PART 3:

BATCH UPDATE

CHAPTER 9. LOADING, INDEXING AND REINDEXING

Chapter 9:
Loading, Indexing and Reindexing

TRIP provides three utilities for automated data entry (loading) and database
indexing (making the data searchable), ‘Index’, ‘Load/Index’ and ‘Load'. All
three utilities submit jobs to be executed in background mode in both UNIX
and Windows.

Index

Indexing renders data searchable by updating the index files BIF and VIF so
that they conform to any changes (additions, alterations or deletions) that
have been made to the BAF since the latest updating. This may be done by
anyone who has write access to the database. To ensure that the index files
are updated regularly, you may wish to organize the indexing if several
persons are to be updating the database.

Choose ‘Index’ if you are using manual data entry to write information to the
BAF.

To perform an index, highlight the database to be indexed, then select ‘All
Tasks’ then ‘Index’ from the Action menu.

(= [B [t |
Bﬁ] TRIP Manager - ~ - > n e e
‘B File | Action | View Window Help _ =
= = | Modify Fields Collection...
SN R Nr Type Pat Mandatory Indexed
S i 1 PHrase v v
All Tasks 3 Moedify Fields Collection...
MNew Window from Here A=
CCL Query...
Copy v
Index v
Rename : v
REfen Reindex
I ErpoTE Load TForm...
B Error Check...
Compress...
Help
> B Tdbserr Clone...
>k Tdbshlp Export...
. b Thesali
> % Classification Schem drngpliasEe
@ Search Forms
> 33 Users and Groups
e e s e e
“ 1 ¢ 4 1 ¢
Index medifications to the database since the last index update

Figure 9-1 Indexing the Database TestThes

The CCL command INDex may be used instead of the method above: E.g.,
the order:

INDex thesali

given in the CCL command window, or as part of a TRIP procedure, begins a
process which indexes the database Thesali.

Page 217 of 416

PART 3: BATCH UPDATE
CHAPTER 9: LOADING, INDEXING AND REINDEXING

Load and Load/Index

Loading uses records from a file in TRIP’s entry format TForm to update the
BAF.

With ‘Load/Index’, automated data loading to the BAF is immediately followed
by the updating (indexing) of the BIF and VIF.

To perform an TForm load, highlight the database into which the TForm is to
be loaded, then select ‘All Tasks’ then ‘Load TForm...’ from the Action menu:

% TRIP Manager =R X
‘B File [(Action | View Window Help -[=
= | Modify Fields Collection...
S Nr Type Pat Mandatory Indexed
Cel - 1 PHrase v v
All Tasks » Medify Fields Collection...
New Window from Here NS
CCL Query...
Cony ‘
Index v
Rename
Refresh Reindex v
Ex;;ort List Load TForm...
I T Error Check...
B Compress...
i Help
> [Tdbserr Clone...
I > [Tdbshlp Export...
- | b Thesali
, % Classification Schem ARl Ny
@ Search Forms -
, m Users and Groups
e s e e
4] » 4 [0 3
'|Load a TFerm file and opticnally index the database

Figure 9-2 Load a TForm file into database TestThes

which will result in the appearance of the ‘Specify File Name’ form:

(Bt File o "]

Nome: | [o |
[~ Update index after loading file m

[Reindex the database

S

Figure 9-3 Load TForm Specify File Name form

To perform a simple ‘Load’, just enter the file path and file name into the
‘Name’ entry box and click on the ‘OK’ button.

If you wish to perform a Load/Index, check the ‘Update index after loading
file’ checkbox.

Checking the ‘Reindex the database’ checkbox as well, will cause a reindex
to be performed, rather than just a normal index.

Note:

For more details on reindexing, see the section ‘Reindexing a Database’
later in this chapter.

Page 218 of 416

PART 3: BATCH UPDATE
CHAPTER 9: LOADING, INDEXING AND REINDEXING

Checking the Results

When a batch job is submitted, a log file is created containing the results of
each step in the procedure. The log files are named as follows:

Operating Log File Name
System

UNIX/Windows | IXdatabasenameunique ID.log

Lidatabasenameunique ID.log

LDdatabasenameunique ID.log
Table 9-1 Operating systems and log file names

The log files will be placed in the directory from which the job was initiated.
However, these can be rerouted to a different directory by defining the logical
name TDBS LOG.

Remember to delete the log files, or set up a batch procedure to remove
redundant log files.

Error Logging

Error logging is the process of segregating all records which do not match the
database design (contain illegal dates, patterns etc.) in a designated log file
called ERRLOG_databasename.TFO. If a record in a TForm file is not written
to the BAF during loading, it contains an error and is written to the error log
file in TForm instead.

The ERRLOG_databasename.TFO file is normally placed in the area pointed
to by the logical name TDBS_LOG. If TDBS_LOG is undefined, then
ERRLOG_databasename.TFO will be stored in the current directory, and if
the area pointed to is not accessible, nothing will be added to the database.

Note:

Some small deviation from the original format may appear in records written
to the error log file. This is caused by intermediate storing in an internal
format, and does not generally interfere with normal functioning.

Reindexing a Database

Under certain extreme conditions, it may become necessary to force the
complete reindexing of a database in its entirety, rather than indexing only the
most recent changes made. These include:

e modifying the indexing options for one or more fields in the database
design; for example, from ‘Index’ to ‘No Index’

e anindex job has failed, the database has become corrupted and
indexing is no longer possible; for example, not enough disk space
has been allotted for temporary index file storage

If it becomes necessary to reindex all the records in the database, the BAF
‘Indexed’ markings may be removed by:

¢ Running the index command line program with the option “--reindex”
that performs a bafini style initialization of the database prior to
performing the actual indexing operation.

Page 219 of 416

PART 3: BATCH UPDATE
CHAPTER 9: LOADING, INDEXING AND REINDEXING

Note:

Type ‘“index --help” for to get more information.

Operating System | Command
UNIX $TDBS_EXE/index --reindex

Windows Index --reindex

¢ running a utility called BAFINI in the following manner:
Note:

Type “bafini --help” to get more information.

Operating System | Command
UNIX $TDBS_EXE/bafini

Windows bafini
Table 9-2 Running the BAFINI utility

This places another marker in the BAF to notify TRIP that the database
should be completely reindexed.

When Batch Jobs Fail

On UNIX and Windows systems

Success and failure log files are written to the location pointed to by
TDBS_LOG (See page 292 of this guide for more details). If TDBS_LOG is
undefined, any log files will be saved to the application’s current working
directory, not the directory from which the application was started.

On UNIX systems only

TRIP will generate e-mail messages when a batch job fails to complete. The
message is sent to the initiator of the batch job, unless the logical name
TDBS_ ERRMAILST has been defined (refer to Chapter Twelve of this
manual, ‘Environment Setup’, for more information). The content of the
message will describe the location of the log of the failed job.

Page 220 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 4:

Database Security

Page 221 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

Chapter 10:
User Privileges

TRIP’s internal Access Privileges

When not using external logon verification, TRIP employs four levels of user
privilege; the system manager, the database administrator (file manager) and
user manager, the user group and the individual user.

The TRIP System Manager

Each TRIP installation has only one system manager, user identity SYSTEM.
This person has complete system access privileges and rights, file and user
manager as well as individual user.

The system manager creates the first user identities. You must be either the
system manager or a user manager to give users or groups of users access
to the TRIP system, and only SYSTEM can assign database or user
managerial rights; that is, create a database administrator or user manager.
SYSTEM is also the owner of all database administrators and user
managers, regardless of their original creators.

The TRIP ‘Superman’ Logical Name

This logical name gives the TRIP system manager, SYSTEM, complete
access to all TRIP objects. For more details see; Chapter 12, Environment
Setup.

TRIP File and User Managers
File Manager
The database administrator (or file manager, abbreviated FM) creates
databases and assigns users and user groups access to them.

When a user is given manager rights, the ownership of this user is
automatically transferred to SYSTEM.

There can be an unlimited number of database administrators per TRIP
installation.

User Manager

The user manager (abbreviated UM) creates new users and user groups.

A user identity can be deleted only by the user manager (or system manager)
who created that identity.

There is no limit to the number of user managers an installation may have.

The TRIP User Group

The user group concept enables the database administrator to give access
rights to databases collectively. User groups are intended to simplify the
administration of database access rights, and represent collections of users
which have been granted a common and identical set of access rights to one
or more databases.

Page 222 of 416

PART 4:

DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

For example, if one hundred users are registered in a TRIP installation, and
ninety-three users must be able to read and write to five database fields while
the remaining seven need the same access to all fifty fields of the same
database, rather than create one hundred sets of individual access rights, an
administrator can create two user groups.

A database administrator may grant access rights to his or her databases for
individual users as well as groups. The creator of a group (the UM) may grant
membership in the group to any individual user, regardless of whether this
UM created the user in question or not. The combined access rights of each
user are defined by the union of his or her individually-granted rights and the
rights of the groups to which the user belongs.

Creating a group adds a new record to CONTROL, as does creating a new
user. This record contains the group’s access rights and the user names of its
members.

Only a group’s owner/creator may add a member to or delete a member from
that group; however, the new member may have been created by another
user manager.

Group membership is recorded in the user record of the individual user as
well as that of the group. A group, like a user, can only be deleted by the UM
who created it.

The Individual or End User in TRIP

The number of possible users depends on the system site license purchased.

Page 223 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

Creating a New TRIP User

To create a new user, open the ‘Users and Groups’ sub-tree, then select ‘My
users’. Next, select ‘New User...” from the action menu.

[‘% TRIP Manager — -.', - Ll_léj‘:' = |
nﬁ] Eile gctlon] View Window Help — [
@ @ | New User...
L Gy Real Mame Rights Owner Last Modified
New 3 SYSTEM 2008-11-21
All Tasks 3

MNew Window from Here

Refresh
Export List...

Help
> k4 Thesali
> %y Classification Schem| _
i E@ Search Forms i
4 m Users and Groups
!ﬁ My Users
> !ﬁ Public

> m My Profile |

It\ i |

|Create ONE OF MOre NEW USErs

Figure 10-1 Creating a New User

this will cause the New User details form to appear:

New User M
Username: | | Creale |
Password: | Close
Confirm: | Help
Full Name: |

I [Ignore password if TRIP and O/S users are the same
Date format: |1983-05-01 ¥ | Field separators:

Privileges: [User can create and manage users and groups

Session parameters

Start module: — -

Legin procedure: |

f
||
i
i [User can create and manage databases
L]
L
i
f

Company information

Name: |

Phone: |

Address: |

Figure 10-2 The create New User form
The minimum information required, is the username and password.
Note:

Both user name and password may have a maximum of thirty-two
characters.

The password is not echoed (displayed to the screen), and the verification
must match whatever has been entered as the password.

The other details that can be entered at user creation time are:

Page 224 of 416

PART 4:

DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

e Full Name
e Ignore Password if TRIP and O/S users are the same
(See 'Appendix B: Local System Validation' for more
details)
e Date Format
e Privileges
e Session Parameters
e Login Procedure
e Company Information
These items are covered in greater detail in the User Properties section of
this chapter and in Appendix B: Local System Validation.

Once all desired details have been entered, you then create the user by
clicking on the ‘Create’ button, causing the user created confirmation dialog
to appear:

TRIP Message - My Users @

L

f . User FRED has access to the system.
W' User profile medified.

Figure 10-3 The User created confirmation dialog

This results in a new user record in CONTROL, where the access rights to
databases, group membership, and manager privileges of the new user are
stored. Whenever a user attempts some action within TRIP, his or her rights
are checked against this user record, which determines what he or she will be
allowed to do within the system.

Deleting a TRIP User

To create a new user, open the ‘Users and Groups’ sub-tree, then select ‘My
users’. Next, select the user to delete and choose ‘Delete’ from the action
menu.

ﬁ] TRIP Manager =ARC X
r%] Eile [Action] View Window Help — || &
@ @ | Reset Password...

TRIP Rl T B e RealName Rights Owner Last Modified
Y=) CCL Query... in_... SYSTEM 2008-11-21

All Tasks 3 SYSTEM 2013-06-02

Copy
Delete

Bl A o

Rename

Properties

Help

Deletes the current selection.

Figure 10-4 Deleting the user ‘Fred’

Page 225 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

A Yes/No confirmation dialogue will then appear:

Confirm l’ a3 "'I

Figure 10-5 The Delete User Confirmation

Clicking on ‘Yes’ will delete the user, resulting in the confirmation shown
below, whilst clicking on ‘No’ will abort the operation.

TRIP Message - Users and Groups @

a N
|0I User FRED has lost access to the system.

Figure 10-6 The Deleted User Access Loss Confirmation
Notes:
e The user SYSTEM cannot be deleted.
e Only the creator of a user can delete that particular user

e When a user is deleted, all database access rights and privileges for
that user are also removed. Therefore, if the user to be deleted is a
Database Administrator or a User Manager, you must transfer all of that
particular user’s holdings before they can be deleted.

Page 226 of 416

PART 4:
CHAPTER 10: USER PRIVILEGES

User Properties

DATABASE SECURITY

To obtain the ‘User Properties’ window, open the ‘Users and Groups’ sub-
tree, then select ‘My users’. A list of users will be displayed.

Next, select the desired user and choose ‘Properties’ from the action menu.

‘& TRIP Manager E@g
B Eile | Action | View Window Help HER
Reset Password...
Sty ame Real Name Rights Cwner Last Modified
All Tasks b iltin SYSTEM 2008-11-21
:derico FREDERICO.. UM,FM SYSTEM 2013-06-02
Copy
Delete
Rename
Properties
>
Help

Opens the properties dialog box for the current selection.
=

Figure 10—-7 Opening Properties for the User, FREDERICO

The specific user’'s

properties form will be displayed:

Frederico Properties

=

General |Procedures I Groups I Access Rights |

Full name:

Privileges:

Date format: I 1988-May-1

—Session parameters

Start module:

Login procedure:

I FREDERICO FREDRIKSSON

|v Ignore password if TRIP and O/S users are the same

;I Field separators: I

v User can create and manage users and groups

¥ User can create and manage databases

=

Marme:

Fhone:

—Company information

Address: |Fj'érde Bassangvagen 15

|'I'|E1JJ Sweden AB

| +46104810000

| sE-11583 Stockhalm

[

oK] [Cancel

1

Apply

Figure 10-8 The user FREDERICO'’s user Properties form

The user manager who has created a user identity may enter data such as
name and address, as well as some other TRIP defaults in the user’s
properties. These properties are covered in more detail overleaf.

Page 227 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

User Properties (1) — General
Full Name

This is a descriptive entry to enable the user to be clearly identified. It will
only be displayed in the administrator’s console and may be a maximum of
255 characters in length.

Full name: | Frederico FREDRIKSSON

Figure 10-9 Date Format selection box

Ignore Password

A user may be permitted to enter TRIP without supplying a password,
provided that their operating system and TRIP user names match. This,
allows for the use of system logon validation in place of TRIP’s own
validation.

[V Ignore password if TRIP and O/S users are the same

Figure 10-10Ignore TRIP password checkbox
To grant this privilege, check the checkbox shown above in Figure 10-8.

Date Form

Both the format and the separating characters of a user’s current date form
may be changed here. The date form in use is shown to the right of the
phrase ‘Date form:’.

To change the date form, use the drop-down selection box on the ‘General’
tab of the user’s properties form:

Date format: | 1988-May-1 L]

Figure 10-11 Date Format selection box

and select your desired date format:

Date format: |May-1-1988 j

05-01-1283 o

5-1-1983 !

5-1-33 '

" May-1-88

01-05-1283 I~
1-5-1938

- 1-5-53
1-May-1283
1-May-88
19380501 £

830501 -

TTETH SAErer OF

-

m

=)

1

Figure 10-12 Date Format Selections

To change the digit separator characters for a date, use the ‘Field separators’
entry box, to the right of the date format selection list:

Page 228 of 416

PART 4:

DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Field separators: l

Figure 10-13 Changing the date digit separator

and enter the desired separator character, which should be one of the
following: a hyphen [-], slash [/], full stop [.] or full colon [:].

The current date form is recognised in search orders (in addition to the
system default), and output by the system in STatus lists and in the output of
records. A report may, however, specify some other date format.

Management Privileges

This is where you can decide to grant or deny File and/or User Manager
privileges to the user.

Privleges: [V User can create and manage users and groups

[V User can create and manage databases

Figure 10—-14 Management privilege settings

Selecting the top checkbox, ‘User can create and manager users and
groups’, in the ‘Privileges’ section on the ‘General’ tab of the ‘User Privileges’
form, will grant ‘User Manager’ privileges to the user. Selecting the bottom
checkbox will grant ‘File Manager’ privileges.

Session Parameters

These are the parameters automatically used by the user's TRIP session
when it starts at user logon time.

Session parameters
Start module: | ﬂ

Login procedure: |

Figure 10-15 Session parameter settings

There are two parameters:

Start Module

This is only useful for users of the TRIPclassic product. Choose the
appropriate value from the drop-down or leave it at its default value.

Selecting the Start module as ‘CCL Search’ deposits the user directly in the
search order window after login, while ‘Search Form’ opens the default
search form defined for a database.

Login Procedure

This value defines the name of a procedure (optionally qualified by the name
of a group) that will be automatically executed whenever a TRIP application is
run. Typically such procedures are used to establish defaults and aliases for
common commands and modifiers.

Page 229 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

Company Information

These fields are strictly informational and have no bearing on the well-running
of a TRIP system. Use them for whatever seems appropriate.

Company information

Mame: | Tieto Sweden AB

Phone: | +46104810000

Address: | Fjarde Basséngvégen 15

| SE-115 83 Stockholm

Figure 10-16 Company information entry area

These (and other fields) are available for use by client applications via the
TRIPclient and TRIPjtk 'User' object and also in the TRIPnxp and TRIPjxp
‘TdbUser" class.

User Properties (2) — Procedures

This property page is accessed by clicking on the ‘Procedures’ tab of the
User properties form and is purely information as TRIP does not allow one
user to modify the procedures of another user.

Frederico Properties m
- Procedures | Groups IAocess Rights

Procedure Mame |
AIc_Dsp_Hatter
Zlalc_Find_Hatter

o) Camm) [o

Figure 10-17 Procedures for user FREDERICO

Page 230 of 416

PART 4:

DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

User Properties (3) — Groups

Clicking on the ‘Groups’ tab of the User Properties form will display the
groups to which the particular user belongs.

Frederico Properties @Ié]

| General I Procedures | Groups |Access Rjghts|

Group Mame |
mTea_Drinkers
mUsermanagers

| Add... |

o) Lo) o0

Figure 10-18 Group membership for user FREDERICO

The user, ‘Frederico’, being inspected above is already a member of
‘Tea_Drinkers’ and ‘Usermanagers’.

To remove a user from a group of which they are already a member, simply
select the group name in the list and click on the ‘Remove’ button, which will
no longer be greyed out.

To add the user to a new group simply click on the ‘Add..." button, then select
the desired group from the drop-down list on the ‘Add To Group’ form that
appears:

Add To Group... R—— m
Group Name: [T R |

Cancel

Figure 10-19 The Add To Group form
Clicking on the ‘OK’ button confirms your selection.

Page 231 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

User Properties (3) — Access Rights

Use this dialog to inspect and modify the individual (as opposed to group-

inherited) access rights that one of your users maintains.

Frederico Properties M
| General I Procedures | Groups | Access Rights |
Database Name | Read | Write
[C8 Alice v
[C@Corr v
i
[
[
I | g |
Coc) Comm) (om0
| — . — - -—

Figure 10—20 Access Rights for user FREDERICO

In order to add access to a new database, click the "Add..." button. To
remove access to an existing database, select the database in the list and

click the "Remove" button.

For more detail on access rights, see Chapter 11 of this guide.

Creating a User Group

To create a new Group, select the ‘Users and Groups’ icon, then select

‘New’, ‘New Group...” from the action menu.

= = | Mew Group...

— .
TRIP Manager - E@ﬂ
) Eile [Action | View Window Help _ ==

TRIP CCL Query.. Owner Last Modified
a E‘ L New ,
g g All Tasks , SYSTEM 1992-10-01
i g = g.. SYSTEM 2013-06-02
| ‘é LeaWinicibomible: = ers SVSTEM 2013-06-02
| Refresh re SYSTEM 2013-06-02
| Export List...
i
Help
- €5 Safe_Drivers
| - [#7 My Profile

> E' Local TRIP as Frederico

Create one or mare new groups

Figure 10-21 Creating a New Group

Page 232 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

The ‘New Group’ name dialogue will be displayed:

New Group m
Name: I | oK I

Figure 10—-22 New Group dialogue

Enter the name of the new group to be created, then click on the ‘OK’ button.
Creation of the new group will be confirmed with success message:

TRIP Message - Users and Groups ﬂ

| Group SURSTROMMING_LOVERS created.

Figure 10—-23 New Group Created Confirmation

Deleting a User Group

To delete a Group, select the ‘Users and Groups’ icon, then select the group
to be deleted. Next, select ‘Delete’ from the action menu.

Bﬁ] TRIP Manager Elﬂlﬂ
‘% Eile | Action | View Window Help - &%
4= =p | Grant Access...
TRIP Change Manager... Name Owner Last Modified
a 3L CCL Query... cers
| ’ g All Tasks » jic SYSTEM 1992-10-01
[l ’ E manag... SYSTEM 2013-06-02
W0 Copy Drinkers SYSTEM 2013-06-02
| Delete \Drivers SYSTEM 2013-06-02
Rename G . SYSTEM 2013-06-02
Refresh
' Help

> ﬁ Surstrémming_Love
- F#7 My Profile
> % Local TRIP as Frederico

e [|

Deletes the current selection.

Figure 10—24 Deleting a group

Page 233 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

A Yes/No’ confirmation box will then appear:

p .
Confirm ' —

Ee; No |

Figure 10-25 Confirming deletion of a group

Clicking on ‘No’, will leave the group untouched, while clicking on ‘Yes’ will
confirm deletion of the selected group, after which a confirmation dialog will
appear. The confirmation dialog can be cleared by clicking on its ‘OK’ button.

Adding a Group Member

First, click on the ‘My Users’ sub-tree of the ‘Users and Groups’ icon to
display the users managed by you

rﬁ TRIP Manager— S

“fy File Action View Window Help HE
@920/ a8

TRIP Servers Username Real Name Rights Owner Last Modified
4 b Local TRIP a5 SYSTEM i Builtin_... SYSTEM 2008-11-21

. E| Databases
> % Classification Schemes
@ Search Forms
4 Users and Groups
ﬁ My Users
> € Public
> !ﬁ Usermanagers
y !ﬁ Tea_Drinkers
y !ﬁ Safe_Drivers
> 43 My Profile
> E‘ Local TRIP as Frederico

Frederico Frederico F... UM, FM SYSTEM 2013-06-02

Figure 10-26 The ‘My users’ sub-tree

Next, drag and drop the selected user, from the right hand window to the
desired group in the left hand window. A confirmation dialog box will appear
to verify the action:

TRIP Message - Tea_Drinkers Iéj

| User FREDERICO is now a member of group TEA_DRINKERS.

Figure 10-27 The Add Group Member confirmation

When a user is added to a group, he or she inherits any access rights
assigned to the group as a whole.

Page 234 of 416

PART 4:

DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

Deleting a Group Member

Select the desired group from which to delete the user; then select the user
and chose ‘Delete’ from the action menu.

A Yes/No’ confirmation box will then appear:

Confirm

P~ . .
[e_l Are you sure you want to remove Frederico from Tea_Drinkers?
L *

Figure 10-28 The Delete Member confirmation

Selecting “Yes’ will confirm the removal of the user from the group and a
confirmation dialog will appear. The dialog can be cleared by clicking on its
‘OK’ button.

Note:

The user will not be removed from the system. For details on how to
remove a user, see the section entitled, ‘Deleting a User’.

Transferring User Responsibility

A user manager may transfer the management of his or her users and/or user
groups to another user manager in the system. This is done by selecting the
user or group in question and choosing ‘Change Manager...” from the action

menu.

ﬁ] TRIP Manager

B [|

"%y Eile [Action | View Window Help

 kad

Y TrRIP
A%L

Jl [T o

Grant Access...

- &

Change Manager...
CCL Query...

All Tasks 3
MNew Window from Here

Copy
Delete
Rename
Refresh
Export List...

Help

ne Real Name

Rights Owner

There are no items to show in this view.

Last Modifie|

<

1

Change the user manager for the user / group

Figure 10—-29 The Change Manager option

the ‘Change Manager’ selection box will appear:

Page 235 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

-

Change Manager

Cancel

Figure 10—-30 Change Manager Selection box

Select the desired new manager from the drop-down selection and clock on
the ‘OK’ button to confirm your choice.

The choice will be confirmed in the usual way, with a confirmation dialogue:

TRIP Message - Safe_Drivers ﬂ

:] UM changed to FREDERICO for SAFE_DRIVERS.

Figure 10—-31 Change Manager Confirmation

The system manager may transfer any user or group to another user
manager, regardless of their owners/creators, except for the group PUBLIC
and the ‘Change Manager...’” option will not appear on the action menu if the
action is not possible.

Page 236 of 416

PART 4: DATABASE SECURITY
CHAPTER 10: USER PRIVILEGES

Related CCL Commands

Show
A user manager may use the order:

Show USer

to view a list of all of the users created by him or her with their database
access rights, group membership and possible manager privileges

To obtain the corresponding information about groups, use the command:
Show GRoup

To list information regarding a particular user or user group, add the name of
that user or group to the Show statement as follows:

Show USer R=George
Show GRoup R=Sales

These Show statements request information about the user ‘George’ and the
group ‘Sales’.

A non-managerial user may obtain information in this way only for
themselves, not for another user identity. The system manager can request
an overview of all the users and groups in existence with the addition of
R=ALL.

Print
Use the corresponding Print orders to send the output to a file or printer:

Print user r=username .
Print group r=groupname

Page 237 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

Chapter 11.:
Access Rights

Read and write capabilities or access rights to a particular database may be
granted only by the owner of that database; that is, its Database
Administrator. Read access encompasses viewing rights only, while write
access implies read access and includes append, alter and delete
capabilities.

Access rights may be assigned not only to entire databases but to selected
fields and/or selected records as well.

To assign access rights to a database, select the required database in the
Databases tree, then select *Grant Access...” from the action menu:

“&TRIPManager_- B Y . = &M
) Eile [Action | View Window Help N =
& Modify Fields Collection...
4 é Emotieeess e Type Records Last Modified Owne *
CCL Query... DEMO 475 2013-05-16 SYSTE
1 All Tasks y b DEMO 27 1994-02-08 SYSTE
USER 625 2013-05-29 SYSTE
Copy DEMO 24 2013-05-16 SYSTH
Rename 1 USER 0 2013-05-28 SYSTE
Refresh 2 USER 0 2013-05-28 SYSTE =
; 3 USER 0 2013-05-28 SYSTE
HREE= 4 USER 0 2013-05-28 SYSTE
Help 5 USER 0 2013-05-28 SYSTE
> E Lo U SYST.. 473 2008-10-14 TDES
. 3 Db_Cluster d Corr DEMO 99 2013-05-16 SYSTE
H @ Megacluster @Db_CIuster USER 0 2013-05-28 SYSTE
> [New_Db_Design EiMegacluster USER 625 2013-05-29 SYSTE
> | Shellerr d Mew_Db_Desi.. USER 0 2013-05-28 SYSTE
> i Shellhlp i Shellerr SYST... 223 2001-11-03 SYSTE _
] |%| r < 1 | P
Madify the access rights for this database

Figure 11-1 Granting Access to Database CARROLL

The Access Level form will appear, allowing you to set the access for the
database,

Page 238 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

Access Level . &I&J
Database: |Ca|'|'|3|| Save |
User [Group: Builtin_Guest 4 Close

Acress Type: |Read j Help

Field restrictions

(" Unrestricted access Chapter

" Only selected fields Chaptrr
Person

(% Mo Access Speaker
Tt
Verse |
Txt2 |
Book

Record restrictions

Scope: -

Figure 11-2 The Access Level Form
Notes:

e The system checks that you are the owner of the database; if you are
not, then the ‘Grant Access...’ option will not appear on the action menu.

¢ You need not be a user manager or the owner of the user group in
guestion to grant them access to a database. You must, however, be
the author or creator of that database.

Database Access Rights Definition

Database
At the top of the Access Rights form, is the Database name selection box:

Database: |C arroll _]

Figure 11-3 Database Name Selection

The database name will be automatically filled in on the access form and
hence is not selectable.

User / Group

Use this selection box to set which user or group you that wish to define
access for.

User / Group: [Buitin_Guest |

Figure 11-4 Database Name Selection

General Field Access
Field access is defined using a combination of the ‘Field restrictions’ and
‘Record restrictions’ sections on the lower half of the Access Restrictions
form:

Page 239 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

Field restrictions

" Unrestricted access
" Only selected fields

* No Access

Record restrictions

Scope:

Figure 11-5 Field and Record Restrictions

Clicking on one of the tree available radio buttons in the ‘Field restrictions’
section will allow you to set, or clear the current user, or group’s, access
settings.

If it is desired to further restrict access at the record level, enter the required
access scope into the ‘Scope’ box in the ‘Record restrictions’ section of the
form.

A user may be assigned almost any combination of the following access
rights. These combinations are detailed in the tables overleaf.

The following Field Access combinations are possible:

Type of Access

Effect in Database

Access Type: READ

Field restrictions: Unrestricted access

Allow read access
to all fields

Access Type: READ

Field restrictions: No Access

Disallow all read
access

Access Type: READ
Field restrictions: Only selected fields

Allow read access
to chosen fields

If Read Scope is set

Allows read access
to chosen records

Access Type: WRITE

Field restrictions: Unrestricted access

Allow read and
write access to all
fields

Access Type: WRITE

Field restrictions: No Access

Disallow write
access

Access Type: WRITE

Field restrictions: Only selected fields

Allow read and
write access to
chosen fields

If Write Scope is set

Allows write access
to chosen records

Table 11-1 General field access rights

Page 240 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

The following combinations are not possible:

Read Access Write Access

No Access Unrestricted access
No Access Only selected fields
Only selected fields | Unrestricted access

Table 11-2 Unsupported combinations of access rights

The access form always shows the current state of the user’s rights to a
database.

Note:

If an option is unavailable, it will be rendered unselectable.

Only Selected Fields Access

If ‘Only selected fields’ radio button is set, the fields list in the right hand pane
will be available for the selection of specific fields. Those fields that are
SELECTED will have their access set to the same access type that has been
selected in the ‘Access Type’ box.

Holding down the <Ctrl> key on the keyboard whilst selecting, will allow
multiple fields to be selected with the right mouse button.

Any or all fields and their contents can thus be hidden from view or protected
from alteration by any or all users.

Record-Level Access

You may restrict read and write privileges to selected records of the database
by entering the arguments of a search order in the entry field ‘Read Scope’
(for read access) or ‘Write Scope’ (for write access) at the bottom of the
‘Database Access Rights Definition Form’. The read scope (for searching and
showing) and/or write scope (for data entry and modification) on the record
level can be restricted using record numbers or field content.

For example, with READ access type selected, entering the CCL command
fragment ‘walrus OR carpenter’ into the ‘Read restrictions’ ‘Scope’ box,
allows the user to read only those records containing the terms ‘walrus’
and/or ‘carpenter’ (a positive read scope):

Page 241 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

Access Level - lilg
Database: ICarroII =l Sa_lve
User [Group: IFrederico ﬂ Close |
Access Type: IRead LI Help |

i r—Field restrictions
% Unrestricted access Chapter
" Orly selected fields Chaptnr
Person
I " Mo Access Speaker
Tt
Verse
Txt2
Book
—Record restrictions
il Scope: | walrus OR. carpenter| it
|
I v
_—

Figure 11-6 Record-level READ rights for ‘FREDERICO’

and, with WRITE access type selected, entering the CCL command fragment
walrus or (carpenter AND alice) into the ‘Record restrictions’
‘Scope’ box allows modification of only those records containing ‘walrus’ or
‘carpenter’ and ‘Alice’:

Access Level - lilg
Database: [carl o [|
User [Group: IFrederico LI Close |
Access Type: IWrite ﬂ Help |

i r—Field restrictions
% Unrestricted access Chapter
" Only selected fields Chaptnr
Person
Il | © Mo Access Speaker
Tt
Verse
Txt2
Book
—Record restrictions
| | Secope: | walrus br (carpenter AND alice) B
|
I v
h

Figure 11-7 Record-level WRITE rights for ‘FREDERICO’

Page 242 of 416

PART 4:

DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Using the examples above, to restrict access to only those records which do
not contain either ‘walrus’ or ‘carpenter’ (a negative read/write scope), prefix
the command fragment with ALL NOT; i.e.

ALL NOT walrus OR carpenter

And
ALL NOT walrus or (carpenter AND alice)

You may restrict write access to selected records independently of record-
level read access.

When you have completed the forms for this user, click on the ‘Save’ button
to save the access settings. The user’s access rights to the database will be
stored in that user’s properties.

When the user opens a database that he or she has restricted access to and
the result of the BASe order is written in the search history window, the
number of records is given as the records of the hidden read scope. Every
search order is limited to those records in the same manner as in the DEfine
SCope order.

The Hierarchy of Access Rights

If a user is granted access to a database not only as an individual, but as a
member of one or more user groups, then his or her user rights will be the
union (rather than the intersection) of what is granted.

For example, one patrticular user has been assigned SELECTED access to
the demonstration database Corr, with the ability to read five fields and write
to none. This user has also been made a member of User Group 1, which as
a group has read/write access to twelve fields, User Group 2 with access to
three fields, and User Group Public, with full read/write access. This user will
in actuality possess complete read and write privileges to Corr regardless of
the access rights assigned on the individual level, as the most liberal and
inclusive combination of access rights possible always prevails.

A second user has been given SELECTED read access to fields one and two
and group read access to fields three and four. His or her total (cumulative)
access will be to fields one through four.

Database Cluster Access

Access to a database cluster is granted in the same manner as with
individual databases, with one important exception; at this level, a database
administrator can only allow a user to know of the existence of the database
cluster by granting ‘READ - All' access. All other read and write access
privileges must be assigned at the level of the individual database.

About Read-Protected Fields

A ‘hidden’ or read-protected field is one to which a user has no read access.

Hidden Fields and Searching

Scope checking during searching is bi-level, encompassing both pre- and
post-search lookups.

To activate pre-search checking, the user must call a hidden field by name in
his or her search order. If a read-protected field name is not so specified, the

Page 243 of 416

PART 4:

DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

search is performed, read privileges are checked and the now-filtered list of
fields and their contents is presented to the user.

When the user searches in a database where some of the fields are hidden
from him or her, a STatus order will show only the fields he or she may read.
The names of any hidden fields will not be recognized by the system if he or
she uses them in a Find, Show, or DEfine order.

Not only is the user restricted from performing a search in the hidden fields by
using their field names, but by default the results will contain no hits in the
hidden fields when searching in the default Vilew, i.e. TExt and PHrase fields.

Although a user who is restricted from viewing certain fields will not know of
their existence, he or she may be aware of lengthened response times for
some searches. This time delay will be obvious, however, only if the search
contains no target field in which to search, for example:

Find white rabbit 4

Hidden Fields and Output Formats

A user can never read the contents of hidden fields by giving a CCL Show, a
Print or a Print Local order. The predefined reports are at his or her disposal,
but they will output only the fields that he or she is allowed to see. This
applies also to run-time definition of personal reports.

A database administrator should keep in mind that users may have limited
read access to a database when designing reports.

Text inserts will always be output wherever they are positioned in the format,
even if they pertain to a box containing hidden fields. The headers of hidden
fields may thus appear, confusingly enough, in a format applied by a user
with no read access to those fields. This can be avoided if such information is
defined as headers of fields rather than text inserts.

Hidden Fields and Data Entry

A user will be unable to delete records unless he or she has write privileges
to the entire database. Fields for which the user has no write access will be
blocked from data entry.

Page 244 of 416

PART 4:

DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Transferring Database Ownership

To transfer manager responsibilities from your own databases to another
database administrator, select the database that you wish to transfer and
select ‘All Tasks...’, then ‘Change Manager’ in the action menu:

ERIP Manager l =NACN X
“®) File [Action | View Window Help _=
@ = | Modify Fields Collection...

Pl NGRS e Type Records Last Modified Owne *
LUy DEMO 475 2013-05-16 SYSTE
Ll All Tasks 3 Madify Fields Collection... SYSTE
T Grant Access... SYSTE
I L SYSTE
Rename CCL Query.. SYSTE
Refresh Index SYSTE|E
Properties L ST
: Load TForm... SYSTE
Help SYSTE
> EJ Lorr KO Error Check... TDBS
> @ Db_Cluster Compress...
Ll » £ Megacluster [5Db_Cluste SYSTE
- [) New_ Db Design || GMegaclusy ~ Clone- SYSTE
Shellerr i New_Db_C Export... SYSTE
> Shellhl]
o -.—;.....F_j ik Shellerr e — SYSTE _
14 [| » 4| m +
Change the file manager for the database

Figure 11-8 The Change Manager action menu option

A selection box will appear, allowing you to chose the new manager from a
drop-down list:

Change Manager M |
New Manager: [T R |

Cancel I

Figure 11-9 Change Manager Selection

Select the name of the new database administrator then click on the ‘OK
button to confirm your choice. A pop-up confirmation will then appear.

The user SYSTEM may transfer the ownership of any user’s database to
anyone else using this form.

Related CCL Commands

Show
To display an overview of the access rights to your own databases, use the
order:
Show ACcess
or

Show BASe ACcess J

Databases are given alphabetically, while users and groups are listed
chronologically within that database according to their user creation date.
‘ALL’, ‘NONE’ or ‘SELECT access information for read and write is provided
for each user and user group.

Page 245 of 416

PART 4: DATABASE SECURITY
CHAPTER 11: ACCESS RIGHTS

To list the access privileges for an individual database, use

Show ACcess R=databasename .

which produces an output like this:

File Edit

Database: CARROLL Owner: 5YSTEM

User /Group Read access Write access

SYSTEM ALL ALL

PUBLIC ALL NONE I
SAFE_DRIVERS SELECT SELECT

Figure 11-10 Carroll’'s Show ACcess screen

Print
To send the listing to a printer or write it to a file, use the corresponding Print
orders
Print ACcess J
Print BASe ACcess
Print BASe ACcess File=filename
and

Print ACcess R=databasename
Print ACcess R=databasename File=filenamed

Page 246 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 5:

The Environment

Page 247 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Chapter 12:
Environment Setup

The Configuration File tdbs.conf

Location of tdbs.conf
The system wide configuration file, t dbs.conf, is located in the conf directory
of the TRIPsystem installation. On UNIX, a link to the conf directory of the
current TRIPsystem installation is created as:

/usr/local/trip/sys/conf

The tdbs.conf file was hamed TRIPrcs in earlier versions of TRIP and located
in the root directory of the file system (in the root of the C:\ drive on
Windows). The older configuration file name and its location are no longer
used by TRIP.

Configuration File Lookup on Windows

TRIPsystem will under Windows load its configuration from the file
tdbs.conf located in the conf directory under the TRIPsystem installation.

Add-on products (e.g. TRIPview, TRIPxml and TRIPsql) will locate the
TRIPsystem configuration by looking up its installation directory from the
registry. The registry key

HEKY LOCAL MACHINE\SOFTWARE\Tieto\TRIPsystem

contains a value named TDBS_HOME that is automatically set to the current
TRIPsystem installation directory. This value is present in two copies; one in
the 64-bit location of the registry and one in the 32-bit location. This means
that an application or TRIP module on Windows will be able to locate the
TRIPsystem installation directory by looking up this registry value whether or
not the application or module is 32-bit or 64-bit.

Configuration File Lookup on UNIX

TRIPsystem will under UNIX use the
/usr/local/trip/sys/conf/tdbs.conf file to load its configuration
from.

Effects on System Administration

The change from TRIPrcs may have consequences for existing system
administrations and installation procedures. Custom scripts and tools that
currently read from, or write to, the TRIPrcs file need altering so that the
tdbs.conf file is accessed instead.

Effects on Installation Procedures

If a custom installation procedure has been or will be implemented, the
changed location of the configuration file must also be taken into account.

Notes:

Page 248 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

When performing a custom installation of TRIPsystem, writing a
TRIPrcs file instead of the required tdbs.conf file will result in undefined
behaviour when attempting to run it. A failure to correctly install add-on
products such as TRIPview, TRIPxml and TRIPsql will also occur.

On UNIX, the directory /usr/local/trip/sys/conf is actually a
symbolic link to the installation directory. If you are writing a custom
installer, you must create this link yourself.

Page 249 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Batch Setup

Printer Queues and Printer Control Files

Notes:

¢ In Windows, only one printer definition is permitted in the tdbs.conf file,
therefore in a TRIP installation on a Windows system, there are no
printer queue, definition or control files.

¢ If you do wish to install a printer on a TRIP for Windows server, consult
the TRIPsystem Installation guide, section entitled, "Configuring a
Printer for Windows"

For UNIX, the printer definition files are used as detailed in this chapter.

Print output in UNIX is, by default, sent to the printer queue indicated by the
UNIX logical name TDBS_PRINT. However, output may be redirected to
other printer queues using CCL orders such as:

DEfine PRINTEr=PTR1
Print PRINTEr=PTR2

The first order sends the output of later Print commands (without a
destination modifier e.g. Flle or TForm) to the printer queue specified in the
file ‘PTR1.PRN’, and the second command sends its output to the queue
specified in the file ‘PTR2.PRN’, regardless of the prior DEfine instruction.

To use a printer in such a manner, first create a printer control file called
‘printername.PRN’ in the directory specified by the logical name TDBS_PRC.
Unless these printer control files have been defined, all print will be sent to
the queue designated by TDBS_PRINT by default.

TRIP uses a printer control file called TDBS_PRC/PTR1.PRN to execute the
first order, and another printer control file, TDBS_PRC/PTR2.PRN for the
second. Each line of text within these control files consists of a keyword, a
colon [;] and a value, as shown below:

Page 250 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

Keyword Legal Values Function
CHAR SET* ENGlish, GERman, Any CHAR SET choice will override
LAtin 1, LAtin 2, whatever character set was previously
MULtinational, specified in TRIP.
NORwegian, ROMan,
SWEdish
HIGHLIGHT OFF any printable character Whatever is specified here will be printed
or set of characters after each hit term, for example, using an
escape sequence to deactivate a print
attribute such as bolding. Literal text
strings or characters must be enclosed
within single quotes.
HIGHLIGHT ON any printable character Whatever is specified here will be printed
or set of characters before each hit term, for example, using an
escape sequence to activate a print
attribute such as bolding.
Highlighting will work for an order such as
Print Highlight, where the printer control
file in use provides highlighting. Literal text
strings or characters must be enclosed
within single quotes.
INIT any printable character A printer initialization sequence is always
or set of characters printed or executed first, for example,
literal text, or escape sequences such as
changing from portrait to landscape
printing. Literal text strings or characters
must be enclosed within single quotes.
PAGE SIZE rows, columns This keyword overrides any previous
format specification up to the maximum
printer page size.
QUEUE UNIX print queue name Specifies the batch queue to be used for
print preparation.
TRANS TAB the filename portion of a Contains a translation table specifying how
file called filename.PRC. characters being output will be presented
Filename.PRC is located to the printer.
in TDBS_PRC.
Table 12-1 Keywords for printer control files
* . .
The default value for CHAR SET is LAtin 1.
For example:
QUEUE: LP1
CHAR SET: ROM

PAGE SIZE: 60, 80

Specifying Non-Printable Characters

To specify an escape sequence (ASCII character 27) in a control file, type
‘esc’, followed by the escape sequence surrounded by quotes. To include a
control character, enter the caret [*] followed by the single-letter acronym of
the desired control sequence, for example, *P. See the printer control files

given previously for an illustration.

More About Translation Tables

A translation table consists of 16 lines with 16 hexadecimal codes. Each code
position (two characters) read from left to right, downwards, represents the
number of a character before its translation, and the code in that position is

the number of the character it will be translated to.

Page 251 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

The following example table is supposed to be stored in the file
TDBS_PRC:DECSWE.PRC and maps multinational characters onto the
Swedish 7-bit ASCII code:

2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

3 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

4 40 41 42 43 44 45 46 47 48 49 4A 4B 4c 4D 4E 4F

5 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

6 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

7 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D TE TF

8 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

9 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A A0 Al A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B BO Bl B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

c 41 41 41 41 5B 5D 5B 43 45 40 45 45 49 49 49 49

D 20 4E 4F 4F 4F 4F 5C 5C 5C 55 55 55 5E 59 20 53

E 61 61 61 61 7B 7D 7B 63 65 60 65 65 69 69 69 69

F 20 6E 6F 6F 6F 6F Ic Ic e 75 75 75 TE 79 20 20

Table 12-2 Sample translation table

When a translation table is used, a table character is substituted for a
multinational character, and the numeric value of the multinational character
acts as an index to its translation in the table. For example, in the table above
the code ‘C4’ is being translated into ‘5B’.

Translation tables may also be referred to by TRIP orders such as:
DEFINE PCODE=decswe
DEFINE LPCODE=decswe

Both the orders specify that printed output is to be processed with the
translation table in TDBS_PRC/DECSWE.PRC. The first order affects normal
Print output (without the destination modifiers Flle or TForm), and the latter
affects Print Local output.

Note:

This function has been largely replaced by the CHAR SET keyword. It is
currently maintained in support of printers not compatible with TRIP’s
character sets.

Page 252 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Logical Names

The logical names supported by TRIP provide mechanisms for database
administrators to customize their users’ environments. Those names or
variables prefixed by ‘TDBS’ are used by the TRIP engine, whereas those
prefixed by “TRIP’ are used by the TRIPclassic user interface.

Many of TRIP’s functions can be influenced by setting variables in the user’s
environment, such as the location of the CONTROL file, the amount of
accounting which is performed, the language with which the system will
communicate with the user, the character set that the system is expecting
data to be presented with, etc.

These variables are set differently for the different operating environments in
which TRIP is present.

UNIX

TRIP searches for logical names in the system wide TRIP configuration file,
tdbs.conf, then in the [NonPrivileged] section of a user’s local copy of
tdbs.conf and finally for environment variables in the user’s own environment.

In most cases, a setting in the user’s environment will override any setting in
the configuration file; however, TRIP will search for certain logical names in
the tdbs.conf file first to prevent users disabling secure system functions,
such as accounting.

Windows

As in UNIX, logical names are searched for in the system wide configuration
file, tdbs.conf and then in the [NonPrivileged] section of a user’s local copy of
tdbs.conf; however user and system environment variables have no effect.

The priority of logical names set in the user’s local tdbs.conf [NonPrivileged]
section, over those of logical names set in the system wide tdbs.conf file
[NonPrivileged] section, follows that of UNIX.

Page 253 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TRIPsystem Logical Names Reference (TDBS)

Most of these logical names are defined with defaults when TRIP is installed.
Special notice is given where defaults are not defined.

ACCDIR
Function
Specifies a directory to hold accounting files.
Usage

TDBS_ACCDIR

Looked for in
Privileged section

Defined by default?
No

Default value
None

Valid values
Fully specified directory (path) name

Examples
TDBS ACCDIR=/usr/users/mydir

Depending on the setting of the variable ACCFLG, TRIP will attempt to create
accounting files in the directory specified by ACCDIR. If this directory does
not exist, users will be unable to login to TRIP. Normal users cannot override
the setting of ACCDIR, thus stopping the redirection of user accounting logs.
Log files are named according to the setting of ACCFLG.

Page 254 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

ACCFLG

Function
Specify various options concerned with the system accounting
function.

Usage

TDBS_ACCFLG

Looked for in
Privileged section

Defined by default?
No

Default value
None

Valid values
A positive integer between 1 and 255

Examples
TDBS ACCFLG=127

This variable defines both how much accounting is to be performed by the
system, and where the results of that accounting should be reported. By
default, the system logging file is located in the directory pointed to by the
SYS variable, and is called DEBIT.LOG.

The value specified by the ACCFLG variable is a bitmask, where each of the
bits 0 through 7 have a defined meaning. The different bits can be defined by
simply adding the bit values together. For example, to set bits 0, 3, and 5, the
value of ACCFLG would be 41 (1 + 8 + 32).

A full definition of the various meanings of this variable is given in Chapter
Four of this manual, ‘System Logging Functions’.

Page 255 of 416

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Table 12-60 ‘Bit flags for Accounting’, gives a brief overview.

Meaning

Set the name of the log file to the TRIP username with extension
*.LOG'. If neither this bit, nor bit 1 is set, the log file used is the
system default DEBIT.LOG.

Set the name of the log file to the filename portion of the SIF
variable with the extension ‘.LOG’. If neither this bit, nor bit 0 is
set, the log file used is the system default DEBIT.LOG.

Use the filename portion of the SIF variable as the user identifier
within the log file, rather than the TRIP username.

Log find, frequency, measure orders and opening clusters, in
addition to the defaults.

Do not accumulate database statistics until logout, but write
statistics every time the open database changes name.

Write output statistics every time a new show order begins, rather
than waiting until the database changes, or until logout.

Log show focus orders as well as normal show orders.

Prevents output of records from searches performed against
databases which are no longer open.

Bit Value
0 1
1 2
2 4
3 8
4 16
5 32
6 64
7 128
Table 12-3

Bits flags for accounting

Page 256 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

ASELIBS

Function

Specifies a list of shareable libraries to be searched when calling
ASE functions from within TRIPsystem.

Usage
TDBS_ASELIBS

Looked for in
Non-privileged section

Defined By Default?
No

Default value
None

Valid values

A comma separated list of library file names.
Examples

TDBS ASELIBS=mylibl,mylib2,mylib3

Where mylibl, mylib2, etc. may be other logical names mapping
to each individual ASE i.e.:

mylibl=c:\mylibs\mylibl.d1l1,
mylibl=c:\mylibs\mylib2.d1l1,

etc.

Page 257 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

AUTH_PROVIDER

Function
To establish LDAP as the authentication provider, set this variable to
LDAP. The default behaviour of the system in the absence of such a
setting is to fallback to using CONTROL for all authentication
requests.

Usage
TDBS_AUTH_PROVIDER

Looked for in
Privileged section

Defined by default?

Yes
Default value:

Use CONTROL for all authentication requests
Valid values

LDAP

Examples:
TDBS AUTH PROVIDER=LDAP

Page 258 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

AUTO_SAVE

Function
Specify that the current record should be stored in the BAF file
whenever a part record is modified or inserted.

Usage
TRIP_AUTO_SAVE

Looked for in
Non-privileged section

Defined by default?
No
Default value
None
Valid values
Y (yes) or N (no)
Examples
TRIP AUTO_ SAVE=Y

Page 259 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

BAFFIT_SECURITY
Function

Usage

Prevents the loading of records from outside TRIP.

If BAFFIT_SECURITY is set to Y the loading of TFORM files into
TRIP databases must be done from inside TRIP. (The name of the
logical name reflects the fact that all such loading of TFORM files
always involves the running of the TRIP utility BAFFIT.)

This is to say that the standard method of executing cannot be used
directly for the loading of TRIP records. If BAFFIT_SECURITY is not
set at all or set to something other than Y then BAFFIT may, just as
was always possible in earlier TRIP versions, be run directly or
executed from a script file.

If a custom-built script file is presently used for loading of TFORM
files, then it may be adapted to do so even if BAFFIT_SECURITY is
set to Y. The part of it which presently causes the loading must be
replaced by a sequence running TRIP (this requires the script file to
have access to a TRIP user / password combination, of course) - in
which sequence the CCL command LOad is given.

TDBS_BAFFIT_SECURITY

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

Y (yes) or N (no)

Examples

TDBS BAFFIT SECURITY=Y

Page 260 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

BAFFRE_TIMEOUT
Function

Specifies the time the TRIP system utility BAFFRE will wait to get an
exclusive lock on the BAF file when releasing old records after an
index job.

Usage
TDBS_BAFFRE_TIMEOUT

Looked for in
Privileged section

Defined by default?
Yes

Default value
300 seconds (5 minutes)

Valid values
Any positive integer value

Examples
TDBS BAFFRE TIMEOUT=600

Sets the timeout period for BAFFRE to 10 minutes.

Page 261 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

BOLD_COLOR (Windows only)
Function
When using TRIPclassic from a Windows command prompt, the
window retains the background and text colours that you setup for it.

You can also specify a colour for the Bold text attribute by setting
the logical name TRIP_BOLD_COLOR in the TRIP configuration file
(tdbs.conf).

Usage

TRIP BOLD COLOR=x

Supported values for x are:

B = Blue

C =Cyan

G = Green
M= Magenta
R = Red

Y = Yellow

Looked for in
Privileged section

Defined by default?
No

Examples
TRIP BOLD COLOR=Y

Sets the Bold colour in a TRIPclassic for Windows session to yellow.

Page 262 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

BUT _LOCATION

Function
Specifies the location (name and path) of the temporary BUT file
used by the indexing programme. (Used only when indexing is done
via the index script)

Usage
TDBS_BUT_LOCATION

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
Full path and name of file.

Examples
UNIX: TDBS BUT LOCATION=/trip/tmp/db2.but
Windows: TDBS BUT LOCATION=C:\trip\tmp\db2.but

Page 263 of 416

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

CHARS
Function

Specifies the default character set to be used by TRIP.

Usage

TDBS_CHARS

Looked for in

Non-privileged section
Defined by default?

Yes
Default value

LA1
Valid values
Value | Meaning Bit Width
LA1 | ISO LAtin1 8 bit
LA2 | ISO LAtin 2 8 bit
LA3 | ISO LAtin 3 8 bit
UTF8 | Unicode encoding 8 bit
CHI | GB-2312-80 CHInese 16 bit
GBK | Superset of GB 2312-1980 16 bit
Chinese

EUC | Extended Unix Code 16 bit
SJIS | Shift-JIS 16 bit

Table 12-4 CHARS valid values

Examples:

TDBS CHARS=LAl

The value of the CHARS variable is used for initialising the translation tables,
which TRIP uses to map characters between different character sets. The
value specified here is the default, but can be overridden by explicitly

declaring the character set, for example in a TForm file.

Notes:

e Unicode enabling of databases can only be done with TRIPmgr

e TRIP can handle a mixture of Unicode and non-Unicode databases
provided there is only one type of encoding for the non-Unicode

databases.

¢ TRIP will continue to be backward compatible with the current methods of
text handling, i.e. anyone wishing to stay with a LATIN-1 database can

continue to do so without the need to convert to Unicode.

e TRIPclassic will remain Latin-n and GBK enabled only

Page 264 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

CHIVOC
Function
Specifies file containing data for Chinese word segmentation.
Usage

TDBS_CHIVOC

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
Fully specified file name (including path)

Examples
UNIX: TDBS CHIVOC=/disk3/trip/chinese/chivoc.dat

Windows: TDBS CHIVOC=C:\trip\chinese\chivoc.dat

The specified file should contain data for use with algorithm for Chinese word
segmentation.

Page 265 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

CLS
Function
Specifies a path to a directory where classification scheme files will
be located.
Usage
TDBS_CLS

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
Path name

Examples
UNIX: TDBS CLS=/disk3/trip

Windows: TDBS CLS=C:\trip\

Page 266 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

CODEPAGE (Windows TRIPclassic only)

Function
Specifies what code page to use in the TRIPclassic user interface.

Usage
TRIP_CODEPAGE

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
A code page number valid on the current operating system. For
example, 437, 850, 858, 865 or 1252.

Examples
Windows: TRIP_CODEPAGE=858

The code page that TRIPclassic will use for its display of text and window

borders is the system's default codepage. A typical codepage on western
Windows systems is 850.

The TRIPsystem installer will set the TRIP_CODEPAGE variable to 858.
Other code pages suitable for this are 437, 850, 865 and 1252, all of which
except 1252 supports semi graphics.

For more details on this setting, please refer to the TRIP for Windows
Installation Guide.

Page 267 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

COM

Function
Specifies a directory containing user written command scripts.
Usage
TDBS_COM
Looked for in
Privileged section
Defined by default?
No
Default value
None

Valid values
A fully specified directory (path) name

Examples
UNIX: TDBS COM=/usr/users/myscripts
Windows: TDBS COM=C:\Tieto\scripts

Whenever a user invokes an external command script using the CCL
command ‘@’, the system will look for the named script in the directory
pointed to by the TDBS_COM logical name.

If TDBS_COM is not defined AND the name of the script does not include a
path definition, the system will attempt to locate the named script in the user’s
current working directory, first by name alone and then with the extensions
".com" and ".cmd" (in that order).

If, however, the CCL command contains a path definition, the system will
simply attempt to execute the script using that path.

For example:
CCL: @myscript

will look in COM and, if such is not defined, in the user’s current working
directory, while

CCL: Q@mydisk: [myscripts]myscript.com
will only look in ‘mydisk:[myscripts]’ for ‘myscript.com’.

Related commands:
TDBS_SPAWN, TBS_AT_CCL

Page 268 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

CONFLATOR_LANG

Function
Specifies the language TRIP will use when stemming for
classification and non-Boolean search.

Usage
TDBS_CONFLATOR_LANG

Looked for in
Non-Privileged section

Defined by default?
Yes

Default value
ENG

Valid values
Any three-letter code taken from the table below :

Code | Meaning
ENG | ENGlish
FIN | FINnish
GER | GERman
NOR | NORwegian
SWE | SWEdish

Table 12-5 CONFLATOR_LANG valid values

Examples
TDBS CONFLATOR LANG=GER

TRIP uses the value of the CONFLATOR_LANG logical name when indexing
and searching fields that are marked as included in non-Boolean calculations
as well as when training the classifier and when classifying records.

Page 269 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

CONFLATORS

Function
Specifies a file containing functions called when stemming for
classification and non-Boolean search.

Usage
TDBS_CONFLATORS

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
TRIP-installation-directory/TRIPversion/bin/tripstem.so(or .sl or .dll)

Valid values
Fully specified name (including path) of file containing callable
functions

Examples

UNIX:
TDBS CONFLATORS=/disk3/trip/v511/bin/tripstem

.SO

Windows:
TDBS_ CONFLATORS=C:\trip\v511\bin\tripstem.dll

The file installed with TRIP currently contains Porter stemming routines for
the languages accepted by the TDBS_CONFLATOR_LANG logical name.

If you want to replace any of the default functions with your own, add the path

to the file with your functions before the default file, separated by a “,” , e.g.:
UNIX: TDBS_CONFLATORS=
/home/mystem.so, /disk3/trip/v511/bin/tripstem
.SO
Windows: TDBS CONFLATORS=

X:\home\mystem.d1ll,C:\trip\v511l\bin\tripstem.dll

Page 270 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

CTL

Function
Specifies the location of the system schema dictionary, CONTROL.
Usage
TDBS_CTL
Looked for in
Non-privileged section
Defined by default?
Yes

Default value
The SYS directory in the TRIP tree

Valid values
A fully specified directory (path) name

Examples
UNIX: TDBS CTL=/usr/local/trip/v700/sys
Windows: TDBS CTL=C:\Tieto\trip\v700\sys

TRIP locates the schema dictionary, CONTROL, using the variable CTL. This
allows application developers to maintain parallel environments simply by
redefining the CTL variable for their process. This has many advantages,
primarily integrity and security.

Take care, however, when making copies of the CONTROL database, as this
database must be upgraded by the TRIP installation procedure when the
TRIP version changes. Before creating such an environment, consult your
local TRIP representative about the MODCON procedure.

Page 271 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

DEFATTR (UNIX only)

Function
Specifies a BOLD alternative for VT-terminal clones that doesn’t
include a definition for a BOLD variant.

Usage
TRIP_DEFATTR

Looked for in
Non-privileged section

Defined by default?
No
Default value
None
Valid values
B (bold), U (underline) or R (reverse)

Examples
TRIP DEFATTR=R

Page 272 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

DEMO
Function
Specifies the location of the demonstration databases.
Usage

TRIP_DEMO
Looked for in
Non-privileged section
Defined by default?
Yes
Default value
The ‘demo’ directory in the TRIP tree

Valid values
A fully specified directory (path) name

Examples
UNIX:
TRIP DEMO=/usr/local/trip/v700/demo
Windows: TRIP DEMO=C:\Tieto\trip\v700\demo

Included with every TRIP system are a number of demonstration databases:

Database | Contents

ALICE Contents of Alice in Wonderland and
Through the Looking Glass

CARROLL | Same content as ALICE, but arranged using
head and part records

CORR Correspondence to and from Paralog staff
members

THESALI | Thesaurus for use with ALICE and
CARROLL

Table 12-6 TRIP’s demonstration databases
All of these databases are located using the DEMO variable.

Page 273 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

DISALLOW_GUEST

Function
By default, if a user using an external authentication provider, such
as LDAP, provides a valid set of credentials for that authentication
provider, but the user is unknown to TRIP, the user will be logged
into TRIP as a guest user (under the BUILTIN_GUEST account). To
disable this functionality set this variable to True.

Usage
TDBS_DISALLOW_GUEST

Looked for in
Privileged section

Defined by default?
Yes

Default value:
BUILTIN_GUEST account allowed

Valid values
True

Examples:
TDBS DISALLOW GUEST=True

Page 274 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

DISPLAY_ORIG
Function

Specifies that displayed data should be fetched from the BAF file
instead of the BIF file.

Usage

TDBS_DISPLAY_ORIG
Looked for in

Non-privileged section

Defined by default?
Yes

Default value
N

Valid values
Y (yes) or N (No)

Examples
TDBS DISPLAY ORIG=Y

Page 275 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

EDIT (TRIPclassic only)

Function
Specifies which editor is to be used during creation/modification of
formats.

Usage
TDBS_EDIT

Looked for in
Non-privileged section

Defined by default?

No
Default value
UNIX: Value of UNIX EDITOR environment variable;
normally vi
Windows: Windows Notepad

Valid values
Any valid and installed editor command name.

Examples
UNIX: TDBS_ EDIT=emacs
Windows: TDBS_EDIT=write

In TRIPclassic only, whenever a user attempts to create or modify a report or
a procedure/macro, or use an external editor for data entry with <Gold><E>,
the TRIP kernel will invoke one of the system editors for the user.

The EDIT variable allows the user to specify which editor is to be used.

Page 276 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

ERRMAILST (UNIX only)

Function
Specify to whom mail should be sent in case of error.
Usage
TDBS_ERRMAILST
Looked for in
Non-privileged section
Defined by default?
No
Default value
Current working user
Valid values
Any username, or list of comma-separated usernames
Examples
TDBS ERRMAILST="USER1, USER2, USER3"

Whenever an error occurs during a batch job (such as INDEX), the TRIP
system generates a mail message to send to either the user who submitted
the job or to all of the people listed in the ERRMAILST variable.

Here is an example of a mail message:

xR KK Error when indexing database ALICE [during

SCIFFIT]
**%% Please consult the log file :-
xR KK /TRIP/LOGS/INDEX_ALICE.LOG

**** for more detail

Page 277 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

EXE
Function
Specifies the location of the TRIP executables and scripts.
Usage

TDBS_EXE

Looked for in
Privileged and non-privileged section

Defined by default?
Yes

Default value
The ‘bin’ directory in the TRIP tree structure

Valid values
A fully specified directory (path) name

Examples
UNIX!/: TDBS EXE=/usr/local/trip/v700/bin

Windows:
TDBS_EXE=C:\Tieto\TRIPsystem700\bin

When a command script is running, such as INDEX or LOAD, the
executables (programs) that it attempts to invoke are found using the EXE
variable. It can be very useful to maintain two separate environments,
particularly when developing ASE routines, by reassigning the EXE variable
for your programmers.

Page 278 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

FIND_TIMEOUT

Function
Specifies the time, in seconds, before retrying a search when a
record is found to be unsearchable due to indexing.
Usage
TDBS_FIND_TIMEOUT
Looked for in
Non-privileged section

Defined by default?
Yes

Default value
One second
Valid values
Any integer.
Examples
TDBS FIND TIMEOUT=5

Searching a database at the same time as the database is being indexed can
result in a message stating that the database is not available for searching at
that moment.

This can happen when a search is made for a term that is currently being
modified in the indices and the data blocks involved have not yet been
completely flushed to the index files.

Before issuing the error message TRIP makes another try to re-execute the
search after one second, but sometimes this time delay is not sufficient

This time-out option allows the TRIP administrator to set to a value that is
acceptable to the users.

Page 279 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

GLBUPD_OPEN _DB_ONLY

Function
GLBUPD will normally act upon all databases that have been
opened during the current TRIP session. Setting this variable to
‘True’ will make GLBUPD act only upon those databases opened by
the last BASE command.

Usage
TDBS_GLBUPD_OPEN_DB_ONLY

Looked for in
Non-privileged section

Defined by default?
Yes
Default value:

All databases opened in the current session will be acted upon by
GLBUPD

Valid values
True

Examples:
TDBS GLBUPD OPEN DB ONLY=True

Page 280 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

HOME
Function

This property is automatically defined by TRIP itself to the fully
gualified path to the TRIPsystem installation directory. This value is
defined prior to reading the configuration files, so it can be used as
part of the values of other logical names to avoid specifying hard
coded paths.

Note:

This property must not be set explicitly in the environment or in any
of the configuration files.

Usage

TDBS_HOME
Looked for in

Automatically defined
Defined by default?

Yes

Default value:
The fully qualified path to the installation directory.

Valid values
N/A

Examples:
UNIX: TDBS HOME=/opt/trip/system/v700
Windows: TDBS_ HOME=C:\Tieto\TRIPsystem700

Page 281 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LANG
Function
Specifies the language with which TRIP will communicate with the
user.
Usage
TDBS_LANG

Looked for in
Non-privileged section

Defined by default?
Yes
Default value
Specified during installation

Valid values
Any three-letter code taken from the table below :

Code | Meaning
CHI | CHInese
ENG | ENGlish
FIN | FINnish
GER | GERman
NOR | NORwegian
SWE | SWEdish

Table 12-7 LANG valid values

Examples
TDBS LANG=CHI

TRIP uses the value of the LANG variable to determine which language to
use when reporting errors, defining a CCL dialect or while giving help. If the
LANG variable is defined to a language not specified in the above list, an
English error will result which will stop entry to the TRIP system. If the LANG
variable defines a legal language code, but the message to be output does
not exist for that language, the English message will be output by default.

Page 282 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_ANONYMOUS

Function
In order to find users, TRIP needs to be able to browse the LDAP
repository. If the repository supports anonymous access for
browsing, set this variable to True, otherwise set it to False.

Usage
TDBS_LDAP_ANONYMOUS

Looked for in
Privileged section

Defined by default?
No

Default value:
None
Valid values
True or False

Examples:
TDBS LDAP ANONYMOUS=False

Page 283 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_BASE

Function
When attempting to authenticate a user, the user's identity will
typically be provided as an RDN (Relative Distinguished Name)
rather than a fully specified DN (Distinguished Name). In order to
turn that RDN into a DN for authentication, you must provide this
variable as a base for the authentication by an RDN.

Usage
TDBS_LDAP_BASE

Looked for in
Privileged section

Defined by default?
No
Default value:
None
Valid values
Base part of a DN in a LDAP repository

Examples:
TDBS LDAP LDAP BASE=ou=tox, o=pharma, c=us

Page 284 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_MATCH

Function
Once the user has been found (i.e. their RDN has been
dereferenced to a DN) its record must be turned into a TRIP
username for use within the CONTROL database. The following
variable is used to specify the field from the user record that will
provide this mapping.

Usage
TDBS_LDAP_MATCH

Looked for in
Privileged section
Defined by default?
No
Default value:
None
Valid values
A field name from the user record in the LDAP repository

Examples:
TDBS LDAP MATCH=uid

Page 285 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_MECHANISM

Function
Communication with the LDAP server(s) can take place in two
different ways, either insecure (the SIMPLE mechanism) or via an
encrypted transmission (the SSL mechanism). Set this variable
accordingly.

Usage
TDBS_LDAP_MECHANISM

Looked for in
Privileged section

Defined by default?
No

Default value:
None

Valid values
SIMPLE or SSL

Examples:
TDBS LDAP MECHANISM=SIMPLE

Page 286 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_PASSWORD

Function
If anonymous browse access is not supported, you must provide the
DN (username) and credentials (password) for the user that will be
used to perform browse operations when searching for users to
authenticate. This variable provides the password for this user.
Usage
TDBS_LDAP_PASSWORD

Looked for in

Privileged section
Defined by default?

No
Default value:

None

Valid values
Any string valid as a password in this context

Examples:
TDBS LDAP PASSWORD=Abcdl234

Page 287 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

LDAP_SEARCH

Function
To find a user by RDN, specify an LDAP search pattern using the
%u% substitution string to stand for the user's provided RDN. Any
occurrence of the "%u%" pattern within the string will be replaced
with whatever "username" is provided to TRIP during the login
process.

Usage
TDBS_LDAP_SEARCH

Looked for in
Privileged section

Defined by default?
No

Default value:
None

Valid values
An LDAP search pattern (e.g. as specified in the example)

Examples:
TDBS LDAP SEARCH= (& (objectclass=person) (uid=%u%))

The name of the objectclass is dependent on the organization of your LDAP
repository, and the field searched by %u% is any field in the user records in
this repository.

Page 288 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_SERVER

Function
The LDAP provider needs to know which servers are capable of
authenticating. This variable definition can be a single server, or can
be a list of servers, each of which can optionally state a port
number. In the absence of port numbers, the default port for LDAP
(or LDAP over SSL) will be provided by the system.

Usage
TDBS_LDAP_SERVER

Looked for in
Privileged section

Defined by default?
No

Default value:
None

Valid values
A list of server names optionally including port numbers

Examples:
TDBS LDAP SERVER=pluto

TDBS LDAP SERVER=serverl, server2:3030

Page 289 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_TIMEOUT
Function

This variable provides a maximum number of milliseconds that TRIP
should wait for a response from the LDAP server(s).

Usage
TDBS_LDAP_TIMEOUT

Looked for in
Privileged section

Defined by default?
No

Default value:
None

Valid values
A time in milliseconds

Examples:
TDBS_ LDAP TIMEOUT=3000

This example sets up a maximum response time of 3 seconds.

Page 290 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LDAP_USERNAME

Function
If anonymous browse access is not supported, you must provide the
DN (username) and credentials (password) for the user that will be
used to perform browse operations when searching for users to
authenticate. This variable provides the username for this user.
Usage
TDBS_LDAP_USERNAME

Looked for in

Privileged section
Defined by default?

No
Default value:

None

Valid values
A DN specifying a user in the LDAP repository

Examples:
TDBS LDAP USERNAME=cn=Mg, dc=johnd, dc=com

Page 291 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LOG
Note:

Do not confuse TDBS _LOG with TBS_LOG

Function

Specifies an optional location for all log files produced by TRIP.
Usage

TDBS_LOG

Looked for in
Non-privileged section

Defined by default?
No

Default value
User’s default directory

Valid values
A fully specified directory (path) name

Examples
UNIX: TDBS LOG=/usr/local/trip/log files
Windows: TDBS LOG=C:\Tieto\trip\v700\logs

Whenever a user submits a batch job (such as a print or index request), TRIP
will create a batch log file either in the directory pointed to by LOG if defined,
or in the user’s default directory.

Page 292 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

LONG_PHRASE
Function

Specifies that TRIP should accept entire phrases of any length at
input to the BAF file when value is Y(es). When value is N(0) (which
is the default) entire phrases longer than 256 characters will not be
accepted.

Note:

when the phrase is longer than 256 characters, only the first 256
normalized Wcharacters of the entire phrase are indexed. All
words in the entire phrase are always indexed.

Usage

TDBS_LONG_PHRASE
Looked for in

Non-privileged section

Defined by default?
Yes
Default value
N
Valid values
Y (yes) or N (no)

Examples
TDBS LONG_ PHRASE=Y

Page 293 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

MAX ALLO MEM
Function

Sets max. allocated memory in Megabytes (Mb) during scan phase
of indexing program.

Usage

TDBS_MAX_ALLO_MEM
Looked for in

Non-privileged section

Defined by default?
Yes

Default value
256 Mb

Valid values
Integer giving memory size in Mb

Examples
TDBS LONG PHRASE=1024

Page 294 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

MAX THREADS
Function

Determines the number of threads that TRIP can use to parallelize
search and display operations against database custers. If not
specified, TRIP will by default use 16 threads for such operations.
Parallel execution can be disabled by assigning O (zero) to this
logical name.

Usage
TDBS_MAX_THREADS

Looked for in
Non-privileged section

Defined by default?
No

Default value
16
Valid values
An integer value 4 or larger, or 0 (zero) to disable use of threads.

Examples
TDBS MAX THREADS=32

Page 295 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

NO_GLBUPD_ INDEX
Function

When doing Global Update via the glbupd script, an automatic
indexing is performed by default after the global update is done. To
avoid this, set this logical name to Y.

Usage
TDBS_NO_GLBUPD_INDEX

Looked for in
Non-privileged section
Defined by default?
Yes
Default value
N (no)
Valid values
Y (yes) or N (no)

Examples
TDBS NO GLBUPD INDEX=Y

Page 296 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

OVFBUFSZ

Function
Index tuning logical name for specifying the size of the overflow file
buffer (*.STO and *.TPO).

Usage
TDBS_OVFBUFSZ

Looked for in
Non-privileged section

Defined by default?
Yes

Default value:
4 kilobytes

Valid values
From 2 to 32 kilobytes

Examples:
TDBS_OVFBUFSZ=10

See also:
TDBS_TERMLM and TDBS TRMBUFSZ

The indexing process is tuneable so that it may be biased towards systems
with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained
environments, administrators of large systems will see significant
performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch
updates, etc., it can be extremely advantageous to tune these parameters
generously. For best performance, set all parameters to their maximum
values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP
indexing task, is required in order for the maximum settings to be used
successfully. Setting the parameters to their maximum values on a heavily
loaded, or memory constrained system will be counter productive as the
index task will then execute far more slowly than if the parameters were left at
their default values.

Page 297 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

PRC (UNIX only)
Function
Specifies the location of TRIP printer control files.

Usage
TDBS_PRC
Looked for in
Non-privileged section
Defined by default?
Yes
Default value
The PRC directory in the TRIP tree structure
Valid values
A fully specified directory (path) name

Examples
TDBS PRC=/usr/local/trip/v32/prc

Printer control files are used by TRIP to direct printed output to a correct
printer, and to ensure that such things as the character set, the highlighting
characters, the initialization sequence, etc. are correct for that printer. There
are two types of printer control files :

File File Type
Extension
* PRC Printer character set control
files
* PRN Printer name control files

Table 12-8 TRIP printer control files

The master is the ‘PRN’ file, which may name a ‘PRC’ file to be used for
character translation during the printing process. For details, see the printer
control section in this chapter.

Page 298 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

PRINT
Function
Specifies the printer queue to which hard copy output is to be
spooled.
Usage
TDBS_PRINT

Looked for in
Non-privileged section

Defined by default?
UNIX: Yes

Windows: No

Default value
UNIX: Ip

Windows: None.

Valid values

UNIX: Any valid printer name.
Windows: Any valid printer mountable by the TRIP
Daemon service’s owner.
Examples
UNIX: TDBS PRINT=1p0
Windows:

TDBS_ PRINT=\\ServerName\Printer name

Once print preparation has completed, the hard copy output from the print job
is directed by TRIP to the queue, or device, named by the PRINT variable.
For validity, you should be able to use the name that you specify for the
PRINT variable in the following commands :

UNIX: lpr -P<xyz>
Windows: Print /D:\\ServerName\Printer name
<Xyz>

where ‘xyz’ is the path and filename given to
the PRINT variable.

Note:

For specific details on setting up TRIP printing in a Windows environment,
refer to the section entitled, CConfiguring a printer for TRIP, in the file
“TRIPsystem_Installation_Guide_Win.pdf”, which is included the “doc”
directory of the TRIPsystem installation.

Page 299 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

PRINTUSER (Windows only)
Note:
For specific details on setting up TRIP printing in a Windows environment,
refer to the section entitled, CConfiguring a printer for TRIP*, in the file
“TRIPsystem_Installation_Guide_Win.pdf”, which is included the “doc”
directory of the TRIPsystem installation.
Function
Specifies the user to be granted printer access to the printer defined
by TDBS_PRINT.
Usage
TDBS_PRINTUSER

Looked for in
Non-privileged section
Defined by default?
No.
Default value
None.
Valid values
Any valid printer name

Examples
TDBS_PRINTUSER=DomainName\Username

Page 300 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

PUTBAF_TIMEOUT

Function
Specifies the timeout when writing records to a BAF file.

Usage
TDBS_PUTBAF_TIMEOUT
Looked for in
Non-privileged section
Defined by default?
No
Default value
None
Valid values
Whole number of seconds expressed as an integer

Examples
TDBS PUTBAF TIMEOUT=20

The timeout when writing records to a BAF file can now be set by the logical
name TDBS_PUTBAF_TIMEOUT. The default is now 30 seconds but can be
altered into the required number of seconds.

Note:

The overall timeout in a TRIPjtk application is 60 seconds so, in order not to
cause this to happen during a record write operation, make sure the
TDBS_PUTBAF_TIMEOUT value is less than 60 seconds.

Page 301 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

RESTART

Function
Specifies whether TRIP should attempt to restart from saved SIF.

Usage
TDBS_RESTART

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
Yes/No

Examples
TDBS RESTART=NO

When TRIP starts, it checks to see if there are any old sessions stored in SIF
files. If so, by default it will open the SIF and restore the searches performed
during that saved session. If, however, you do not wish old SIFs to be used,
you can define the RESTART variable to be ‘NO’ and the old SIFs will be
ignored by TRIP.

For SIF locations, see the definition of the SIF variable.

Page 302 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

SCRATCH

Function
Specifies a scratch directory for certain TRIP operations.
Usage
TDBS_SCRATCH
Looked for in
Non-privileged section
Defined by default?
No
Default value
None
Valid values
A fully specified directory (path) name

Examples
UNIX: TDBS SCRATCH=/usr/local/trip/scratch
Windows TDBS SCRATCH=D:\scratch

During the index procedure for a database, TRIP needs to be able to write
certain temporary files that it uses for virtual memory management. These
files are written to the directory specified by the SCRATCH variable. If it is not
defined, the index procedure will temporarily define it to be the user’s current
working directory.

The SCRATCH variable must also be defined whenever you attempt to
invoke the MODCON executable for upgrading the CONTROL database
between different TRIP versions.

Note:

All temporary files will be stored in the scratch area if this variable has been
defined.

Page 303 of 416

PART 5:
CHAPTER 12:

SIF

THE ENVIRONMENT
ENVIRONMENT SETUP

Function
Specifies the optional location of all SIFs.

Usage
TDBS_SIF

Looked for in
Non-privileged section

Defined by default?
No

Default value
Current working directory

Valid values
A fully specified directory (path) name plus an optional filename

Examples
UNIX: TDBS SIF=/usr/local/trip/sif

Windows:
TDBS SIF=C:\Tieto\TRIPsystem700\sif

During the startup of TRIP, the system creates a session index file or SIF for
each user. This SIF is used to record both the searches which are performed
and the results gained, so that a previous session can be restarted without
having to rerun all of the searches involved.

Depending on the searches the user performs, these files can become very
large, and so it can be useful to move them to a location where there is
sufficient room for growth.

When the SIF variable is defined, TRIP will create the SIF using its definition
as either the complete name of the file, or the directory into which to write the
SIF with the name username.SIF, where username is the name of the TRIP
user.

Page 304 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

SORT
Function
Specifies the sorting collation sequence to be used.
Usage

TDBS_SORT

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
Defined during installation (same as LANG)

Valid values
Any three-letter code from the following table:

Code | Meaning
ENG | ENGlish
FIN FINnish
GER | GERman
NOR | NORwegian
SWE | SWEdish

Table 12-9 SORT valid values

Examples
TDBS_SORT=GER

The SORT variable defines the collation sequence which TRIP will use when

sorting data, that is, the order in which diacritically-altered characters (i, 1, &,

0, etc.) will appear. Certain languages expect diacritically-modified characters
to sort differently than their Latin equivalent.

Page 305 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Specifies whether it is possible to exit to the calling shell from a

SPAWN
Function
TRIP application.
Usage

TDBS_SPAWN

Looked for in

Privileged section

Defined by default?

Yes

Default value

Y (yes)

Valid values

Y (yes) or N (no)

Examples

TDBS SPAWN=N

Related commands:

TDBS_COM, TBS_AT CCL

Page 306 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

STO_LOCATION

Function
Specifies the location (hame and path) of the temporary STO file
used by the indexing programme. (Used only when indexing is done
via the index script)

Usage
TDBS_STO_LOCATION

Looked for in
Non-privileged section

Defined by default?
No

Default value
None

Valid values
Full path and name of file.

Examples
UNIX: TDBS STO LOCATION=/trip/tmp/db2.sto
Windows: TDBS STO LOCATION=C:\trip\tmp\db2.sto

Page 307 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

STOP_WORDS

Function
Specifies limits for adaptive stop words used when searching with
the Fuzz CCL command.

Usage
TDBS_STOP_WORDS

Looked for in
Non-privileged section

Defined by default?
No

Default value
No stop words

Valid values
X,y X and y are percentage values, so both must
be
>= 0 and <= 100
Examples

TDBS STOP WORDS=75,10

Here x represents the percentage of records in which a word must occur and
y represents the average number if occurrences, per record, of the same
word, before it becomes a stop word. If the thresholds set by x and y are
exceeded, the word in question will be automatically defined as a stop word.

Note:

This means that setting both x and y to 100 effectively gives no stop words.
The same result is also achieved by unsetting/undefining the
TDBS_STOP_WORDS logical name.

Page 308 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

SUPERMAN

Function

Gives complete access to all TRIP objects to the user SYSTEM
Usage

TDBS_SUPERMAN
Looked for in

Privileged section
Defined by default?

No
Default value

None
Valid values

Y (yes) or N (no)
Examples

TDBS SUPERMAN=Y

Page 309 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

SYS
Function
Specifies the location of the TRIP system files.
Usage

TDBS_SYS

Looked for in
Privileged and non-privileged section

Defined by default?
Yes

Default value
The SYS directory in the TRIP tree structure

Valid values
A fully specified directory (path) name

Examples
UNIX: TDBS SYS=/usr/local/trip/v700/sys

Windows:
TDBS SYS=C:\Tieto\TRIPsystem700\sys

Many of the functions of TRIP make use of system definition files, such as
language-specific message codes, menu labels, etc. All of these files are
located using the SYS variable. Be careful if you are considering reassigning
this variable. Without certain of the files in the SYS directory, the TRIP
system cannot start at all.

Page 310 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TERMINAL (UNIX only)
Function
Specifies the terminal type.

Usage
TRIP_TERMINAL

Looked for in
Non-privileged section

Defined by default?
No

Default value
Value of UNIX TERM environment variable.

Valid values
Any valid terminal identifier.

Examples
TRIP TERMINAL=VT200

In TRIP for UNIX only, the TERMINAL variable points TRIP at a terminal
driver file, located in the TRM directory in the TRIP tree structure called
terminal. TRL. Terminal is the value defined for the TERMINAL variable.

There are several terminal definition files delivered with the TRIPclassic
system, but the one most commonly used is vt200.

The trm files, also in the TRM directory in the TRIP tree structure, contain the
definitions for the escape sequences, for every possible terminal “action”, for a
given terminal type.

To define a new terminal type, e.g. abc123, make a copy of one of the
already existing terminal definition files and modify the new copy to the
requirements of your terminal type; then move it to the <tdbs_trm> directory and
run the utility program <tdbs_exe>/trmmake with “abc123” as its only parameter.
This will “compile” the terminal definition file to a binary format which TRIPclassic
will use to handle your terminal type (see separate instructions on the structure
of the terminal definition file).

Note:
e <tdbs_exe> is the value of TDBS_EXE in the tdbs.conf file
o <tdbs_trm> is the value of TDBS_TRM in the tdbs.conf file

If the TERMINAL variable defines a terminal type that TRIP does not
recognise, the user will be prompted to provide a terminal identifier until an
acceptable response is gained.

Page 311 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

TERMLM
Function
Index tuning logical name for specifying the number of terms held by
the internal indexing structure before it is written to the STO file.
Usage

TDBS_TERMLM

Looked for in
Non-privileged section

Defined by default?
Yes

Default value:
256 kterms

Valid values
From 64 to 16384 kterms

Examples:
TDBS_ TERMLM=1024

See also:
TDBS _OVFBUFSZ and TDBS TRMBUFSZ

The indexing process is tuneable so that it may be biased towards systems
with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained
environments, administrators of large systems will see significant
performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch
updates, etc., it can be extremely advantageous to tune these parameters
generously. For best performance, set all parameters to their maximum
values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP
indexing task, is required in order for the maximum settings to be used
successfully. Setting the parameters to their maximum values on a heavily
loaded, or memory constrained system will be counter productive as the
index task will then execute far more slowly than if the parameters were left at
their default values.

Page 312 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TRM (UNIX only)
Function
Specifies the location of the terminal driver files.
Usage
TDBS_TRM

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
The TRM directory in the TRIP tree structure

Valid values
A fully-specified directory (path) name

Examples
$ DEFINE TDBS TRM $MYDISK/TRIP.V700.TRM

When TRIP is attempting to locate a terminal driver file, it does so using the
value of the TRM variable to specify the directory containing the drivers.

Page 313 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

TRMBUFSZ

Function
Index tuning logical name for specifying the .BUT file buffer size in
kilobytes.

Usage
TDBS TRMBUFSZ

Looked for in
Non-privileged section

Defined by default?
Yes

Default value:
2 kilobytes

Valid values
From 2 to 512 kilobytes

Examples:
TDBS_TRMBUFSZ=500

See also:
TDBS OVFBUFSZ and TDBS TERMLM

The indexing process is tuneable so that it may be biased towards systems
with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained
environments, administrators of large systems will see significant
performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch
updates, etc., it can be extremely advantageous to tune these parameters
generously. For best performance, set all parameters to their maximum
values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP
indexing task, is required in order for the maximum settings to be used
successfully. Setting the parameters to their maximum values on a heavily
loaded, or memory constrained system will be counter productive as the
index task will then execute far more slowly than if the parameters were left at
their default values.

Page 314 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TRIPserver Logical Names (TBS)

ASE
Function
Flag for automatic ASE calls at start/stop of tbserver.

Usage
TBS_ASE

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
0

Valid values
Bit 0 = 1: call server ASE (AseStartTRIPserver) after start of

tbserver
Bit 1 = 1: call server ASE (AseStopTRIPserver) before stop of
tbserver
Examples
TBS ASE=2

Page 315 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

AT CCL
Function
Permission to execute the CCL command @
scripts)
Usage
TBS AT CCL

Looked for in
Privileged section

Defined by default?
Yes

Default value

0 (no)
Valid values

1 (yes) or 0 (no)
Examples

TBS AT CCL 1

Related Commands:
TDBS COM, TDBS SPAWN

... (i.e. to execute OS

Page 316 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

COMFORTER

Function

TRIPserver comforter interval.
Usage

TBS COMFORTER
Looked for in

Non-privileged section
Defined by default?

Yes
Default value

5

Valid values

Time period (integer value in seconds) between calls to comforter; if
set to 0 there will be no comforter calls at all.

Examples
TBS COMFORTER=0

Page 317 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

CONV
Function
Code conversion
Usage

TBS_CONV
Looked for in
Non-privileged section

Defined by default?
Yes

Default value
No conversion

Valid values
KANJI

Examples
TBS CONV=KANJI

Page 318 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

DIR (UNIX only)
Function
Transfer directory.
Usage
TBS DIR

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
Current directory

Valid values
Fully specified directory path

Examples
TBS_DIR=/bigdisk/tbs

Page 319 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

HOSTINI

Function
Path of host-ini-file
Usage
TBS HOSTINI
Looked for in
Non-privileged section
Defined by default?
No
Default value
None, but refer to PLEASE NOTE! below

Valid values
Fully specified path of host-ini-file (MUST NOT include file name)

Examples
UNIX: TBS_ HOSTINI=/trip/server
Windows: TBS_ HOSTINI=C:\trip\server

PLEASE NOTE!

When using TBS_HOSTINI, only the file name should be specified
in the call to the start session routine.

You can specify the full path and file name when calling the start
session routine, and in this case you MUST NOT specify
TBS_HOSTINI at all.

In the host-ini-file you can define values for environment variables. These
values will be added to or replacing those already in the TRIP config (former
TRIPrcs) file. You cannot set or override values in the Privileged section of
the config file in this way.

Page 320 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

LOG

Function
Specifies the generation of an optional logfile for all TBserver
transactions.

Usage
TBS_ LOG

Looked for in
UNIX/Windows: Non-privileged section
Defined by default?
No
Default value
None
Valid values
0 to 3 in increasing levels of verbosity:

0 - nologging
1 - log call of TDB routines only
2 - log parameters too
3 - log communication too
Examples
TBS LOG=3
Notes:

¢ Due to the constant disk access required for updating the logs,
TBserver logging causes a considerable reduction in TRIP’s
performance and is intended for troubleshooting purposes only;
for this reason TBS_LOG is to be set only when it is necessary
to produce a log of the transactions taking place between the
client and server parts of a TRIP client/server application,
usually at the request of TRIP support.

e As soon as the required log files have been produced, either
delete the TBS_LOG logical name, or reset it back to a value of
zero.

e Log files will be produced by all TBserver sessions that
commence once the TBS_LOG logical name has been defined.
Once the TBS_LOG logical name has been deleted, or set to
zero, new TBserver sessions will run without creating logs.

e Any log files produced will be created in the directory specified
by the logical name TDBS_LOG and will have a hame format
similar to ‘TBserver_nnnn.log’; where nnnn is a unique numerical
date/time stamp to avoid file name clashes.

e Care should be taken not to confuse TBS_LOG with TDBS_LOG

Page 321 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

MAP (UNIX only)
Function
Specifies logging of start/stop of thserver in tbserver.map.

Logging level:
0: no logging
1: log only start
2: log stop too
Usage
TBS MAP
Looked for in
Non-privileged section
Defined by default?
Yes

Default value
2

Valid values
0,1o0r2

Examples
TBS MAP=1

Page 322 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

MAP_DIR (UNIX only)
Function
Specifies path to thserver.map.
Usage
TBS MAP DIR
Looked for in
Non-privileged section
Defined by default?
Yes

Default value

TDBS_LOG or TDBS_SCRATCH if defined; otherwise /tmp in UNIX
and %TEMP% in Windows

Valid values
Path to directory

Examples
TBS MAP DIR=/diskl/log

Page 323 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

SCRATCH (UNIX only)
Function
Specifies working directory of tbserver.
Usage
TBS SCRATCH

Looked for in
Non-privileged section

Defined by default?
Yes

Default value
Uses /tmp

Valid values
Fully specified path to working directory

Examples
TBS SCRATCH=/trip/tbserver/tmp

Page 324 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TIMEOUT
Function

Sets TBserver timeout (in seconds)

Usage
TBS TIMEOUT

Looked for in

Non-privileged section

Defined by default?
Yes

Default value
No timeout

Valid values

Timeout integer value in seconds

Examples
TBS TIMEOUT=10

Page 325 of 416

PART 5:

THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

TripDaemonHost (Windows only)

Function
Identifies the machine on which the TRIP Daemon to use is
installed.

Usage
TripDaemonHost

Looked for in
Privileged section

Defined by default?
Yes

Default value
localhost

Valid values
Any machine name or IP-address that refer to the local machine.

Examples
TripDaemonHost=localhost

Page 326 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TripDaemonPort (Windows only)

Function
Identifies the UDP port number at which the TRIP Daemon can be
reached.

Usage
TripDaemonPort

Looked for in

Privileged section
Defined by default?

Yes

Default value
4711

Valid values
Any valid port UDP number not in use by other software on the local
system.

Examples
TripDaemonPort=4712

Page 327 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

TripNetPort
Function
Identifies the TCP port number to which the TRIPnet Daemon
listens for connections at.

This variable (if defined) takes precedence over the definition of the
pctdbs service in the services file.
Usage
TripNetPort
Looked for in
Privileged section

Defined by default?
No

Default value
23457

Valid values

Any valid TCP port number not in use by other software on the local
system.

Examples
TripNetPort=23457

Page 328 of 416

PART 5: THE ENVIRONMENT
CHAPTER 12: ENVIRONMENT SETUP

UNIXLOGIN (UNIX only)
Function
Change tbserver user to specified user (, password)
Usage
TBS UNIXLOGIN

Looked for in

Privileged section
Defined by default?

Yes

Default value
Run as “root”

Valid values
UNIX user[,password]

Examples
TBS UNIXLOGIN=user [, password]

Page 329 of 416

TRIP ADMINISTRATON WITH TRIPMANAGER

Part 6:

Appendix and Index

Page 330 of 416

PART 6: APPENDIX AND INDEX
APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

Appendix A

General Settings, Limits and Defaults

Support for the Euro Currency Symbol
If TRIPclassic is run using a terminal emulator, you will need to make sure
that the emulator supports the Euro symbol and that it can define the host
character set to be Windows Latin-1 (CP1252) or Windows EE (CP1250,
Estonian).

Note:

¢ If your host character set is incorrectly defined to be DEC
supplemental or Latin-1 (ISO 8859-1), then some emulators will
translate the Euro symbol from hex’80’ to hex’A8’ or hex’A4’. This
value will then be transferred to TRIP, which will store it without any
translation.

e The result is that the stored character will no longer be regarded as
a Euro symbol when presented in a TRIPclient application, or when
running the emulator with the correct Euro symbol settings. So it is
important to ensure any terminal emulator is correctly set-up before
entering the Euro symbol into TRIP via TRIPclassic.

Searching for the Euro symbol
If the Euro symbol is to be a searchable character in TRIP then it must be
defined as such in the database design. If it is not, then the Euro symbol will
be ignored during indexing.

Support for the Chinese character set GBK.
TRIP supports the GBK character code. GBK includes more characters than
GB-2312 (the standard Chinese character code in TRIP, defined as CHI) but
the structure is similar. GBK is activated by setting the logical name
TDBS CHARS to GBK.

Existing databases already indexed with CHI need re-indexing to upgrade to
GBK.

Limit to TRIPclassic CCL Command Length
The maximum length of a CCL command in TRIPclassic is 400 characters. In
applications created using the newer TRIPnxp and TRIPjxp APIs including
TRIPmanger, there is no such limit.

Notes:

e |tis also possible to avoid the limit when using the latest versions of
TRIPjtk and TRIPclient; however any new TRIP session must be started
using the newer TRIPcom Session object Open method, or the TRIPjtk
Session interface startSession method.

e Details on how to use the relevant methods can be found in the
documentation accompanying each API.

Page 331 of 416

PART 6: APPENDIX AND INDEX
APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

No Limits to Database and Index File Sizes

TRIP is perfectly capable of reading/writing database and index files of larger
than 2GB, depending on the file system in use.

Note:

If you are unsure as to the maximum single file size supported by your
particular operating system, we recommend that you check in the file
system documentation to ensure that files of larger than 2GB are, in fact,
supported.

Limit to the Number of Search Sets

The theoretical maximum number of search sets in a single session is
65,536. However, certain system limts (e.g. available memory) may be
exceeded before this limit is reached.

Limit to the Number of Open Databases

The limit to the number of simultaneously open databases in TRIPsystem is
250.

Notes:

1 In TRIPclassic, the maximum length of any CCL order is 400
characters, hence any command may not exceed this length when
opening many databases in TRIPclassic.

A workaround for the TRIPclassic 400 character limit in (1) above, is
to use the DEfine command to define clusters of up to 30 databases,
then to open these defined clusters in ‘clusters of (again, up to 30)
clusters’.

2 Whether created using TRIPclassic, TRIPmanager, or via an API, the
total number of databases in a 'cluster of clusters' must never exceed
the 250 limit, otherwise any such oversized 'cluster of clusters' will be
unusable.

3 Certain operating systems' limits may need to be adjusted: E.g.
Maximum number of simultaneously open files limit.

For example, keeping within prescribed limits:
DEfine CLU1=DBI1,DB2,DB3..
DEfine CLU2=DBa,DBb,DBc..

DEfine CLUx=DBi,DBii,DBiii
BAS ALLCLU=CLU1,CLU2, .. CLUx

Defaults for the DEfine command

The default definitions for TRIP can be listed by starting the CCL command
line in a newly started TRIP session issuing the CCL command:

DEfine ?
For ease of reference, the output from the command is shown below.
DEFINE
Highlight = All

Page 332 of 416

PART 6: APPENDIX AND INDEX
APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

Note:

No focus

No merge

No reverse

Hold

Save base

Tstamp update

No stop word
Display no orig
Display freq = merge

Find = no Fuzz

Page

FIND max = No limit
+ max = No limit
DISPLAY max = 1000
SORT max = 1000

MAP max = 1000

DELETE max = No limit

AND = AND.E

MASK = '"#:!&'

TIMEFORM = 1

CENTURY MIN = 1953

FUZZ = 75, 5, 2, 1

ABOUT = 50, No Highlight
VIEW = TExt, PHrase

While the default settings for Display, Sort and Map are 1000, the can be
set at any value up to "No Limit".

TRIPserver Crash Handling (Windows only)

TRIP is known for and has proven to be an extremely reliable, efficient and
stable platform; nonetheless, as can happen in any large and complex
software product, crashes can, albeit rarely, occur. For this reason, in the
unlikely event of a crash, the following behaviour has been designed in to

TRIPserver for Windows:

e Back-traces are dumped to file if it is the server (or any server based

utility/application) that is crashing

e Stack traces are saved in the TDBS_LOG directory in files named
backtrace_nnn.log, where nnn is the process id that has crashed

e Any session is gently terminated, returning a message warning of a

crash

Page 333 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: VERSION AND LICENSE

Appendix B

Obtaining Version and License Information

INFORMATION

TRIPmanager mmc Version Information

In order to find the version information for the TRIPmanager mmc snap-in (for
example when calling customer support), simply select the "TRIP Servers"
node in the MMC tree, and choose the "Version" option from the "Action”

menu:

Bﬁ] TRIP Manager

] [|

1 File [Action | View Window Help

@ New

a E‘ L New
[»
> MNew
a Expo

Help

TRIP Version

Connection...

=

» D as SYSTEM

as Frederico
Window frem Here

rt List...

> B8 My Profil

= o
s @ Tea_Drinkers
> ﬁ Usermanagers

3 a‘ Local TRIP as Frederico

£

Get the version information for the snap-in

Figure B-1 Showing the mmc version
This will produce a dialog similar to Figure B-2 below:

Version Information

=

File Mame:
File Version:
Description:

Copyright:

Other Version Information

C:\Tieto {TRIPmgr {TRIPmmc. dil
7.0.0.0
TRIPmgr MMC Snap-In Module

Copyright (C) 2004-2013 Tieto Sweden AB,

Product Name
= PR -

Name Value -
Comments
Company Mame Tieto Sweden AB =
Internal Mame TRIPmmC
Legal Trademarks

N Original File Mame TRIPmme.dil

TRIPmgr

<

m | »

Close

Figure B-2 TRIPmanager mmc version information

Clicking on the 'Close' button will dismiss the above dialog.

Page 334 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: VERSION AND LICENSE INFORMATION

TRIPsystem Version Information

The TRIP system Version number can be ascertained by first selecting the
TRIPserver node in question in the left-hand pane of the TRIPmanager mmc
window, then selecting the 'Properties' option from the 'Action' menu. When
the TRIPserver Properties dialog is displayed, select the 'Server' tab; the
TRIPsystem version is listed in the "TRIP version ID' box:

My Computer Properties @Iﬂ—hj

General | Server
TRIF version ID: m

Licensed products:

Product Mame -
"?QTRIPsyshem
%5 TRIPhighway
%5 TRIPdient
S5 TRIPview
%5 TRIPxm
%TRIPagent
S5 TRIPjtk
S5 TRIPsql
Y2 TRIPdass S

m

[0K][Cancel] Apply

Figure B-3 TRIPsystem server information

TRIP Product License Information

A list of those TRIP products currently licensed for this particular TRIP
installation is below the TRIPsystem version information (See Figure B-3,
above).

Updating a TRIP Product License Key

Selecting the TRIPserver node in question in the left-hand pane of the
TRIPmanager mmc window and then selecting the 'Set license..." option from
the 'Action' menu:

“E) TRIP Manager = | B)
"2y File View Window Help =
G| CCL Query...
(€] trp| TRIPxpi interaction...
Pl Set license...
) g Hew Window from Here ion Schemes
ms
g Delet Groups
g E Rename
i Refresh
| Export List...
Properties
Help

|| Register a license for this TRIP installation.

Figure B-4 Setting TRIPsystem license information

will produce a dialog where it is possible to enter new TRIP license details
(see overleaf):

Page 335 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: VERSION AND LICENSE INFORMATION

Set License

Expiration date:

dill

)) Cancel
License options:

Registered users:

Concurrent users:

—
—
—
——
¥ Node (CPU) lacked license

License codes:

|
Add Code

Figure B-5 TRIPsystem license entry dialog

Enter the license key details from your 'packing slip’ into the
respective boxes and add the license code to the 'License Codes'
list using the 'Add Code' button; when everything appears correct
press 'OK'.

If incorrect details have been entered, an error message will
appear:

TRIP Error - My Computer ﬁ

Figure B-6 Invalid TRIP license error
If the entered details are OK, a confirmation message will appear.

TRIP Message M

:I License installed.

Figure B-7 License installed confirmation

Page 336 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: USER ACCOUNT VALIDATION

TRIP User Account Validation Methods

Overview

Part of the security of any computer system, or application, lies in controlling
access to it from the 'outside world'; in this respect, TRIP is no different to any
other application.

In order to control access, TRIP has three methods of user account
validation, LDAP, Local System Validation and Standalone TRIP Usernames.
Each is detailed in the following sections.

LDAP

LDAP (Lightweight Directory Access Protocol) is an application protocol for
querying and modifying directory services over TCP/IP.

Configuring TRIP login validation to use an LDAP repository, removes the
need for users' passwords to be maintained in TRIP's CONTROL data
dictionary.

However, in order to allow full control over access levels, a TRIP username
must exist identical to the LDAP username, (See TDBS DISALLOW_GUEST
below, for more details).

Notes:

o LDAP for TRIP is currently supported on the Windows, Linux and
Solaris platforms

e The username SYSTEM is always validated against the local
CONTROL database and is never subject to the directory service
provider model (See 'TRIP Standalone Usernames', below).

Configuring LDAP

The following section explains how to configure TRIP to use an LDAP
repository for authentication; this requires editing the [Privileged] section of
tdbs.conf

Note:
LDAP variables are only ever valid in the [Privileged] section of tdbs.conf

By default, when using an external authentication provider such as LDAP, if a
user provides a valid set of credentials for that authentication provider and
the user is unknown to TRIP, the user will be logged into TRIP as a guest
user (under the BUILTIN_GUEST account). To disable this functionality set
the following variable:

TDBS DISALLOW GUEST=True
To establish LDAP as the authentication provider, set the following variable:
TDBS AUTH PROVIDER=LDAP

The default behaviour of the system in the absence of such a setting is to
fallback to using CONTROL for all authentication requests.

TDBS AUTH PROVIDER=LDAP

The LDAP provider needs to know which servers are capable of
authenticating. The following variable definition can be a single server, or can

Page 337 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: USER ACCOUNT VALIDATION

be a list of servers, each of which can optionally state a port number. For
example:

TDBS LDAP SERVER=serverl, server2:3030, server3

In the absence of port numbers, the default port for LDAP (or LDAP over
SSL) will be provided by the system. TDBS_LDAP_SERVER=pluto

Communication with the LDAP server(s) can take place in two different ways,
either insecure (the SIMPLE mechanism) or via an encrypted transmission
(the SSL mechanism). Set the following variable accordingly:

TDBS LDAP MECHANISM={SIMPLE | SSL}

For example:
TDBS LDAP MECHANISM=SIMPLE

Provide here a maximum number of milliseconds that TRIP should wait for a
response from the LDAP server(s).

TDBS LDAP TIMEOUT=1500

In order to find users, TRIP needs to be able to browse the LDAP repository.
If the repository supports anonymous access for browsing, set the following
variable to True, otherwise set it False.

TDBS LDAP ANONYMOUS={True | False}

For example:
TDBS LDAP ANONYMOUS=False

If anonymous browse access is not supported, you must provide the DN and
credentials (password) for the user that will be used to perform browse
operations when searching for users to authenticate. This is done using the
following variables:

TDBS_ LDAP_USERNAME is the fully qualified DN of the browse user

TDBS_LDAP_PASSWORD is the plain text of the browse user's
password

The user specified must have read access to the entire tree descending from
the root node provided by TDBS_LDAP_BASE (described below).

For example:
TDBS LDAP USERNAME=cn=Manager,dc=bjensen, dc=com
TDBS LDAP PASSWORD=thx1139

When attempting to authenticate a user, that user's identity will typically be
provided as an RDN rather than a fully specified DN. In order to turn that
RDN into a DN for authentication, you must provide the following set of
variables:

TDBS_ LDAP BASE defines the base of the tree in which users can
be found

TDBS_LDAP_SEARCH defines an LDAP search string to use to find
users

For example, if the TRIP user community is collected in a subtree of the
LDAP repository with a logical base of ou=tox/o=pharma/c=us, then the base
of the search tree should be established as follows:

Page 338 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: USER ACCOUNT VALIDATION

TDBS LDAP BASE=ou=tox, o=pharma, c=us

To find a user by RDN (for example by the UID or CN that the user presents
as their typical login public key), specify an LDAP search string using the
%u% substitution string to stand for the user's provided RDN. For example,
when using the person structural schema (or some derivation, for
exampleorganizationalPerson, or inetOrgPerson) with the uidObject add-on
schema the search string would be:

TDBS LDAP SEARCH= (& (objectclass=person) (uid=%u%))

Any occurrence of the "%u%" pattern within the string will be replaced with
whatever "username" is provided to TRIP during the login process.

Once the user has been found (i.e. their RDN has been dereferenced to a
DN) their record must be turned into a TRIP username for use within the
CONTROL database. The following variable is used to specify the field from
the user record that will provide this mapping, for example in most user-
related schemas, this would be the "uid" field:

TDBS LDAP MATCH=uid
Notes:
¢ (TRIPclassic or server based application)

e LDAP for TRIP is currently supported on the Windows, Linux and
Solaris platforms

e The username SYSTEM is always validated against the local
CONTROL database and is never subject to the directory service
provider model (See 'TRIP Standalone Usernames', below).

LDAPS

If using SSL for communication, the location of the local certificate database
must be provided by setting the following variable. As TRIP uses the Mozilla
LDAP SDK on Linux and Solaris, the database in question is that used by the
Mozilla and Firefox browser applications (amongst others), is entitled
"cert8.db"and can normally be found within a user profile, for example:

TDBS_ LDAP_SSL CERT DB=/home/bjensen/.mozilla/cert8
.db

On Windows TRIP uses the native LDAP SDK. For Windows installations of
TRIP, the certificate database is the Windows certificate store of the local
machine. In order for the SSL connection to work, the issuer of the SSL
certificate in use by the LDAP server must be found in the Trusted Root
Certification Authorities store.

Local System Validation

Local system validation (LSV) is a facility in TRIP for allowing automatic user
validation for users already existing on the server hosting a particular TRIP
installation.

Configuring TRIP login validation to use an LSV, removes the need for users’
passwords to be maintained in TRIP's CONTROL data dictionary, thereby
permitting a user to log into TRIP without entering a TRIP password.

For how to enable local system validation, see the 'Ignore Password'
subsection of '‘User Properties (1) — General', in Chapter 10 'User Privileges'

Page 339 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: USER ACCOUNT VALIDATION

Notes:

e The checkbox to ignore TRIP passwords also exists in the new user
creation dialog (For more details see, "Creating a New TRIP User", also
in Chapter 10).

e For this form of validation to work, the TRIP installation must be on the
same server that is carrying out the validation; it is, therefore, only really
of use in TRIPclassic sessions, or server based applications.

TRIP Standalone Usernames

The 'traditional' way of handling TRIP users, TRIP Standalone users are
unigue to each TRIP installation and are maintained in that installation's
CONTROL data dictionary.

This method of user management does not represent any significant
difficulties, other than the TRIP usernames and passwords may be different
to those needed to access the operating system TRIP is installed on.

Page 340 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

Connecting to TRIP Servers

Server Connection Overview

The fundamental requirement of any management activity is to be connected
to a TRIP instance. This can be either local or remote, with the following

rules:

A given console can contain only one local connection. Once a local
connection has been established, the option to establish a local
connection is no longer available in the connection wizard.

Note:

It is possible to construct two or more local connections by using two
or more consoles within the same MMC process (i.e. by creating two
or more .MSC files). However this behaviour is not supported and
may lead to unpredictable results.

A given console can contain as many remote connections as desired,
each of which may be targeting a different TRIP server, or the same
TRIP server with a different set of login credentials or host
initialization script.

A connection, either local or remote, is identified by its "alias." This
alias is a string of arbitrary length that should be meaningful to you as
a means of identifying the connection, without having to examine the
server's properties.

Note:

The connection alias does not have to be unique, although it will no
doubt be confusing if it is not.

Page 341 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

Creating a Server Connection

In order to connect to a TRIP instance, simply select the "TRIP Servers" node
in the MMC tree and choose the "New Connection..." option from the 'Action’

menu:
[k& TRIP Manager E@g
By File [Action | View Window Help [[=][x]
New Connection...
Version
New b Pas SYSTEM

as Frederice
Mew Window from Here

Export List...

Help

- L
s ﬁ Tea_Drinkers
> !ﬁ Usermanagers
> 9 My Profile
> Bl Local TRIP as Frederico

| |Add a new connection to a TRIP server to the console
— =

Figure B-8 Selecting the New Connection Wizard

You will be presented with the "New Connection" wizard, as shown overleaf:

”
Welcome &

Welcome to the New
Connection wizard

This wizard will lead through the required steps to
create a new connection to a TRIP server

< Back [Next >] [Cancel] Help

Figure B-9 The New Connection Wizard welcome dialog

Clicking the "Next" button will progress to specifying the connection type and
parameters; see overleaf:

Page 342 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

Local Connection

As shown below in Figure 2.37, when connecting to the local TRIP instance,
no further information is required:

New Server &J)
— -
Connection Properties T Il’)
Define the general means by which to connect to the degired TRIP server S

{+ LConnect directly to TRIP on the local computer;
(" Connect to a TRIPserver
" Connect to a TRIPgrid

Server name address: |

Protocol: |:I-Ic-na} J

Alias: | My Computer

Service name/port: |

Host initialization fie: |

Advanced...
| < Back “ Mext >] | Cancel | | Help |

Figure B-10 Specifying alocal Connection
The default alias is "My Computer" but you can change this as desired.
Note:

It is only possible to create one local connection in TRIP manager. If you
need to create more connections to the local machine, use Remote
Connections and specify ‘localhost’ as the machine address.

Remote Connections

In order to construct a remote connection using TRIPnet, you need to know
the following information:

e The name or IP address of the machine on which TRIP is installed
e The protocol by which the connection will be made:

e TRIPnet

o Encrypted TRIPnet

e XML over HTTP (via a Web proxy)

e The alias by which this connection will be identified within the
TRIPmanager mmc console (this default's to the machine's name or
IP address)

e The port number or service name that uniquely identifies the TRIP
server on the target machine (the default is use port number 23457)

Page 343 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

e The name of an (optional) host initialization script that the server
should run to configure its operating environment.

For example:

[New Server - Iﬁ]

Connection Properties T IP
Define the general means by which to connect to the desired TRIP server S—

" Connect directly to TRIP on the local computer
{* Connect to a TRIPserver

" Connect to a TRIPgrid

Server name/address: | trip. mycopration.com

Protocol: [TRePret =]
Alias: [TRIPREt Server|
Service name/port: | 23457
Hostir 1 file: |
Advanced...
[< Back][MNext >][Cancel] [Help]

Figure B-11 Specifying a remote connection

Clicking on the "Next" button will proceed to specifying the login credentials to
associate with this connection

Specifying Credentials
This dialog allows you to specify the user name and password with which you

wish to login to TRIP. The default behaviour is to not store the password
within the console (the .MSC file) because that storage is not encrypted.

However, if you click the "Save password with the server definition" check
box, you will be able to type in the password (and confirmation string). This
password will then be stored along with the server definition in the console
file and will be used every time the console attempts to login to that particular
TRIP instance.

New Server y @]

TRIP Login T '[l'_l
Define the username and password for authenticating with TRIP on this SRS
connection

TRIP user name: | SYSTEM

TRIP password: | =

Confirm password: | *

I¥ Save password with the server definition

[< Back][Mext >][Cancel] [Help]

Figure B-12 Specifying user credentials

If you opt not to store the password with the server definition, every time the
console needs to login to this TRIP instance, you will be prompted to provide
the password.

Page 344 of 416

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Specifying_Credentials.htm

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

If you change your mind later and wish to either store the password or to
remove / change a stored password, you can use the Server's properties

dialog to do so.

When you click the "Next" button, you will see a confirmation dialog that
allows you a final opportunity to cancel this action:

- = = z
Finished =5
e —
New Connection wizard
completed
When you dick the Finish button, the console will add
the new definition to the set of available connections.
[<Bak i Fiish | [cancel | Help

Figure B-13 New Connection completion dialog

Clicking "Finish" at this point will result in the new server's connection
information being added to the console.

Page 345 of 416

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm
mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CONNECTING TO TRIP SERVERS

Logging into the New Server Connection

In order to actually login to the TRIP instance, click either on the new server
node in the MMC tree, or on the plus sign (+) that appears to the immediate
left of the server's alias. When you do so, you will see one of three things:

e An error dialog if, for example, the TRIP license is invalid for this
instance, the password is incorrect, or the specified remote server
could not be contacted:

TRIP Error - 123.456.789.1 5

I.-"'_"\-.I [ACtdbkit2.cpp : Message] Communication Error
‘S [\Ctdbpriv.cpp: CallAndListen] Unable to write to communication port
[\Wsallcom.c : getaddrinfo] Host not found in HOSTS file

Figure B-14 Communications Error

e Alogin dialog, if you either didn't store the TRIP password or specified
an incorrect password (to correct an invalid password, use the
Server's properties dialog).

localhost [ilﬂ_h]k
Ok |

¥ Save credentials for future sessions
Username: Eystem]

Password: | *

Cancel |

Figure B-15 Login Dialog

o A set of descendant nodes that specify the types of information that
can be administered with this snap-in, signifying a successful login:

ZB& TRIP Manager E@I&J\
‘fh File Action View Window Help -=
||

TRIP Servers
4 a‘ My Computer

MName

My Computer
- [Databases E‘ v P

v % Classification S5chemes
@ Search Forms
| a @ Users and Groups
ﬁ} My Users
I - €8 Public
. @ Tea_Drinkers
> @ Usermanagers
Il - % My Profile

Figure B-16 Successful login

Page 346 of 416

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: TRIP GRIDS

TRIP Grids

Notes:
e The TRIPgrid software is included as part of TRIPwpi

¢ The TRIP license installed on the TRIP server used for metadata and
authentication must include TRIPgrid and TRIPjxp. The latter is
because TRIPgrid uses TRIPjxp to communicate with the metadata
database.

Introduction to TRIP grid computing

As data and user volumes increase it can quickly become difficult to manage
either one or both of these metrics within the confines of a single server.

Rather than continue to throw more and more expensive hardware at this
problem, TRIP grid computing allows for the construction of cheap commodity
matrices of hardware that, in combination, can provide much greater
throughput for both data and user volumes than would ever be possible
within a single machine.

The core concept behind a TRIP grid is, by splitting a query into multiple parts
(grids are really intended for use in read-often / write-rarely configurations),
each of which can be serviced by a different server, the aggregate throughput
of the whole grid will be considerably higher than would be possible
otherwise.

To achieve this, TRIP grids support two key notions, one being clusters, the
other being replica sets:

e Areplica set is a set of databases on one or more physical servers,
each of which is considered a duplicate (or replica) of the others.
There is nothing explicit within the grid logic that enforces this; it is
entirely up to the grid administrator to create the replica relationship
using TRIP's normal log file-based roll-forward replication
mechanisms.

e Acluster is a collection of either physical databases or replica sets on
one or more servers that are to be searched together, much like a
cluster definition on a single server. The cluster is the primary
searchable entity within a TRIP grid.

Queries placed against a grid are, in fact, placed against a cluster hosted by
that grid.

Note:

All current programming interfaces support queries against grids as well as
against physical servers, i.e. TRIPnxp, TRIPjxp, TRIPaxp)

The grid router (a web service hosted on one or more of the servers taking
part in the grid) is responsible for breaking the grid query into as many parts
are as necessary, in order to dispatch the query to all physical grid machines
taking part in that cluster.

Note:

Databases within a replica set are used in a 'round robin' fashion to attempt
to load balance user volumes against the available data.

Page 347 of 416

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Grids/Creating_a_Grid_Cluster.htm
mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Grids/Creating_a_Grid_Replica_Set.htm

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: TRIP GRIDS

As an example, consider a grid consisting of three machines:
e grid_1 hosts the grid router
e grid_2 hosts dbl and db2
e grid_3 hosts db2 and db3
Now assume that we construct the following logical entities within the grid:
e rep_1is areplica set consisting of grid_2.db2 and grid_3.db2
e cluster_1is a cluster consisting of grid_2.db1, grid_3.db3 and rep_1

Queries placed against this grid, using cluster_1 as the search domain, will
therefore always be dispatched to at least two query servers by the grid
router. For example, a simple search ("Find 'x") against cluster_1 will result in
two queries being dispatched:

e grid_2 is told to query dbl and possibly also db2, depending on the
replica set load balancing

e grid_3is told to query db3 and possibly also db2, depending on the
replica set load balancing (obviously, only one of grid_2 or grid_3
would be directed to query against db2)

The grid router is then responsible for collecting the results from grid_2 and
grid_3 and collating them prior to dispatch to the query originator. This
collation could be caused by sorting on one or more key fields, sorting by
ranking, or a combination of both.

In absence of specific collation criteria, the final result set will be a round
robin collation produced by taking the first record in the search results (RIS 1)
from server 1, then RIS 1 from server 2, ..., then RIS 2 from server 1, etc.

Constructing a TRIP grid is therefore an exercise in deciding which type of
scalability you most wish to emphasise:

¢ For more data, partition the data across multiple machines using a
grid cluster: e.g. by splitting an existing database cluster

¢ For more users, replicate high throughput databases across multiple
machines using a replica set

Grids are represented within TRIPmanager as servers, but with a different set
of descendant nodes than a normal physical server connection, for example:

Page 348 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: TRIP GRIDS

5 TRIPmgr - [TRIP Servers\Local Grid]

E File Action View Favorites Window Help
& |2 E = HE

Y TRIP Servers

% My Computer (Local)
a] Loopback over HTTP Clusters Replicas

| 4 Local Grid

| > @ Clusters
b @ Replicas
> & Hosts

> B Local TRIPnet

Figure B-17 A TRIP Grid in TRIPmanager

As the names imply, the clusters and replicas nodes allow for management of
clusters and replica sets, respectively. The hosts node simply allows for
navigation and inspection of which databases are being served by which
physical machines.

Note:

In order for a machine to take part in a TRIP grid, it must be a TRIPnet

server as this is primary means of communication between the grid router
and the grid members.

Page 349 of 416

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Creating a Grid

Creating a TRIP Grid requires installation and configuration of software that is

beyond the scope of this document. For more information, see the document
entitled, "TRIPGRID USER’S GUIDE", which is included in the TRIPwpi

distribution.

Creating a Grid Cluster
To create a new cluster, simply right click on the "Clusters" node and choose

"New Cluster.

.." This will produce a wizard that leads the user through

providing the required information, which is basically just the name and
description of the cluster. The name must be unique across the grid, but has
no other requirements.

General properties TRI
Specify a unique name and comment for this duster S

Give a name to the new grid duster. This name must be unique per grid, and will be the only
means of spedifying this duster either for management or searching purposes.

Name: | My Cluster

You can also provide a textual comment for the duster that will be shown in the management
console, and can be retrieved for display to end users.

Description:

Some descriptive text.|

[< Back][Next >][Cancel][

Figure B-18 Defining a cluster

Once the cluster is created, add databases and replica sets to it using the
publication mechanisms described in the following sections overleaf.

Creating a Grid Replica Set

To create a new replica set, simply right click on the "Replicas" node and
choose "New Replica Set..." This will produce a wizard that leads the user
through providing the required information, which is basically just the name
and description of the replica set.

Note:

The name must be unique across the grid, but has no other requirements.

Page 350 of 416

PART 6:
APPENDIX B:

APPENDICES, LISTS AND INDEX
TRIP GRIDS

General properties TRIP
Specify a unique name and comment for this replica set s

Give a name to the new replica set. This name must be unique per grid, and will be the only
means of specifying this replica set either for management or searching purposes.

Name: I My Replica Set

You can also provide a textual comment for the replica set that will be shown in the
management console, and can be retrieved for display to end users.

Description:

Some descriptive text...

[< Back][Next >]l Cancel][

Figure B-19 Defining a replica set

Once the replica set is created, add databases to it using the publication
mechanisms described in the following sections overleaf.

Publishing to a Replica Set

In order to publish one or more databases to a replica set, simply find those
databases in TRIPmanager and drag / drop them to the replica set. That is,
the server that is hosting the physical database to be added must already be
configured for access via TRIPmanager, and must be present within the
console definition file in use.

The connection configured must be via TRIPnet as no other communication
mechanisms are supported for use between the grid router and grid member
servers.

If the server hosting the database being added to the replica set is not
currently a member of the grid in question, you will be prompted to confirm
that you wish to add this server to the grid.

Publishing to a Grid Cluster

In order to publish one or more databases to a cluster, simply find those
databases in TRIPmanager and drag / drop them to the cluster. That is, the
server that is hosting the physical databases to be added must already be
configured for access via TRIPmanager, and must be present within the
console definition file in use. The connection configured must be via TRIPnet
as no other communication mechanisms are supported for use between the
grid router and grid member servers.

If the server hosting the database that is to be added to the cluster is not
currently a member of the grid in question, you will be prompted to confirm
that you wish to add this server to the grid.

You can also add replica sets to a cluster; in order to do so simply drag the
appropriate replica set to the cluster definition.

Page 351 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: TRIP GRIDS

Grid Authentication

In contrast to normal TRIP connections, grid connections are not persistent.
This means that each query operation creates its own connections to as
many TRIP servers as are required to service the query and once the query
is complete, those sessions are terminated. This keeps the grid clean in
terms of processes in use, but it does place a burden in terms of how
sessions are authenticated, and how many sessions are continually being
created and terminated.

In order to use the grid in authenticated form, i.e. using discrete credentials
for each user of the grid, each server that is taking part in the grid must have
a coherent copy of some central CONTROL database containing user
credentials and access rights for each potential user. This allows for each
query to be accompanied by authentication information (i.e. user name and
password) and for that to be forwarded to each server taking part in the
query. In turn each server will use that authentication information when
creating the TRIP session for the query operation.

Whilst this provides a high degree of control, it does also place a high burden
of replication upon the grid administrator.

To provide an easier to administer mode of operation, and to reproduce a
much more "real life" interaction model, TRIP grids also support anonymous
and pooled access.

What this means is, if a query is not accompanied by authentication
information, that query is performed within the context of a predefined
anonymous user. As a secondary benefit, anonymous user connections can
be pooled per server, so as to use the minimum server resources possible.

In order to establish anonymous credentials for a grid and to enable
connection pooling for those anonymous sessions, simply provide credentials
on the Authentication tab of the grid's property sheet (see overleaf):

Local Grid Properties

LGEQ?@! J Authentication _m“

Specify the name of the TRIPxpi server that will receive credential
validation requests from TRIPgrid distribution routers. The CONTROL file
on this server will be used to authenticate all TRIPgrid protocol requests.

Server name: localhost Y

When requests are made of TRIPgrid that are not accompanied by valid,
authenticated credentials, the grid will use the credentials defined here to
identify the “anonymous” user.

Username: anon
Password: sresrresy]

For better performance, underlying TRIP sessions connected via the
anonymous credentials set above can be pooled

[V Pool connections that are made using anonymous credentials

[OK H Cancel H Apply H Help

Page 352 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: TRIP GRIDS

Figure B-20 Grid Authentication tab

Note:

The server defined as hosting the authentication CONTROL database must
already be a member of the cluster, i.e. it must be publishing at least one
database to a cluster somewhere.

Advanced Grid Properties

This property page displays several advanced properties that are really
meant for debugging grids that aren't working correctly:

]&en_eral w Advanced

The following options allow you to modify the behavior of grid servers and
should not be changed in most circumstances. Changing the default
values may impact the performance of the grid significantly.

§ to be observed, a Java console
must be connected to the grid distribution router(s) being
monitored

[V Emit debug-style error messages

Normal error messages from the grid are simple textual
descriptions of the situation; checking this option will cause full
stack trace information to be induded along with the textual
description

Figure B-21 Advanced Grid Properties tab

The first option, to log all traffic to a console, requires a Java console to be
attached to the grid router; for example Eclipse using the Sysdeo Tomcat
addon.

The second option, to emit debug-style error messages, is probably much
more use in a customer situation. In essence this directs the grid router to
emit error messages complete with a trace of where the error occurred, so
that this can be forwarded to TRIP support for triage and follow-up.

Page 353 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CLASSIFICATION SCHEMES

Classification Schemes
Note:

The logical name TDBS_CLS must be configured in the [Non-privileged]
section your tdbs.conf file for classification schemes to function correctly:
For more information, see page 266 of this document.

Introduction to Classification Schemes

A classification scheme is a collection of information (in reality, a special-
purpose TRIP database) that instructs TRIP on how to recognize documents
as representing one or more classes of information. The classes of
information, called categories, that you are interested in are defined by you
and, in order for TRIP to recognize that a new document belongs to a
particular category, you must train TRIP using documents that you know are
representative of that category.

The classification process is therefore divided into two steps:
¢ Management, or training and definition
e Categorization, or assigning categories to documents being indexed

You can accomplish everything related to classification scheme management
under the "Classification Schemes" node in the MMC tree. The list of objects

that you see as sub-nodes in the MMC tree are those schemes to which you

have at least some level of read access.

nﬁ] TRIP Manager = | B |
C TER W

Ty File Action View Window Help _[=

e |#|c=H

TRIP Servers MName Last Modified Qwner Description

a % My Computer
. [l Databases There are no items to show in this view,

% Classification Schemes
@ Search Forms

I 3 @ Users and Groups

| . {7 My Profile

Figure B-22 Classification Schemes sub-node

For example, in your business you may determine that it's important to be
able to correctly separate documents of a financial nature from those of a
legal or product nature. Creating a simple classification scheme that
recognizes these three categories of documents is accomplished by:

e Creating a new scheme

e Creating the categories of document that you wish TRIP to be able to
recognize

Page 354 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CLASSIFICATION SCHEMES

e Training each category with documents that represent the category
e Attaching the classification scheme to one or more databases

To create a new classification scheme, simply right click on the "Classification
Schemes" node and choose "New Classification Scheme..." from the 'Action’

menu.
["ﬁ TRIP Manager I E@ﬂ
“8) Fle [Action] View Window Help AEE
MNew Classification S5cheme...
e odified Owner Description
Bew g € no items to show in this view,
All Tasks 3

MNew Window from Here

Refresh
Export List...

Help

Create a new classification scheme consisting of one or

= =

Figure B-23 New Classification Scheme menu item

This will produce a wizard that leads you through the process of creating a
new scheme:

-
Welcome ﬁ

Welcome to the New
Classification Scheme wizard

This wizard will lead you through the required steps to
create a new dassification scheme.

< Back [Next >] [Cancel] Help

Figure B-24 Create New Classification Wizard
Configuring the new scheme is simply a matter of:
= entering a name for the new scheme

= selecting a classification algorithm for training categories and
assigning tags

= choosing a character set to be used for the classification scheme's
storage database

Page 355 of 416

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Container/New_Container_General.htm

PART 6:

APPENDICES, LISTS AND INDEX

APPENDIX B: CLASSIFICATION SCHEMES

= setting the maximum number of categories/items to be accepted as
training data

= entering a description
as shown on the next page:
New Classification Scheme ﬁ

- —

General Properties T '[l']
Define the name and type of the new scheme SR

Specify a name and a dassification type for the new scheme. This type will determine the kind
of dassification that is performed on any databases using this scheme.

Name: CL FI]
Classification Type: |Naive Bayes ﬂ
Character Set: |Unic0de {(UTF-8 encoded) ﬂ

Specify how many items will be accepted as training data per category - 0 means no limit

Maximum items [category: |3

Description:

Sdience Fiction works

[< Back][Mext >][Cancel][Help]

Figure B-25 New Classification Scheme properties
Note:
Currently, the only classification algorithm available is 'Naive Bayes'.

Successful creation of the new classification scheme will be indicated by a
TRIP message:

TRIP Message - Classification Schemes M

Figure B-26 Classification Scheme storage database created

Attaching a Classification Scheme to a database

To attach a classification scheme to a database, in order that the records in
that database are categorized whenever new or updated records are
processed for indexing, use the Database General Properties dialog, as
described beginning on page 33 of this guide.

Note:
If the TDBS_CLS logical name has not been correctly configured in the

[Non-privileged] section your tdbs.conf file, the following error will appear
when you try to submit your new scheme:

Page 356 of 416

PART 6: APPENDICES, LISTS AND INDEX
APPENDIX B: CLASSIFICATION SCHEMES

- - —_y - -
TRIP Error - Classi hemes A u

—

@ Invalid classification environment, check that TDES_CLS is defined

Figure B-27 TDBS_CLS configuration error

For more information on configuring TDBS_CLS, see page 266 of this
document.

Page 357 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: SCOPE SEARCH FACILITY

Scope Search Facility
Note:

As has been stated elsewhere in this manual, the “UPDate SCope”
command is not connected with global updating. Aside from this Appendix,
further information can be found in the “Find SCope” and “UPDate SCope”
sections of the CCL Command Reference.

The new Scope Search facility

UPDate and Find SCope functions are used, respectively, to update and
search using predefined saved search sets, in order to be used across large
database clusters of mostly static data. For example, such a cluster might
contain historical data split across several databases, one for each year; the
most recent database (i.e. the one for the current year) being the only one
that has data that changes and is still being updated.

In such a large database cluster, it may be useful to have several TRIP
procedures — e.g. one each for particular different areas of interest — that are
used to create pre-made search sets saved in a special SIF file. This file can
then be used only for searching by TRIP, in order to simplify, standardize and
speed up such searches.

Scope Search Example

This example is set in 2011 and uses a database cluster of eleven TRIP
databases.

The first part of the cluster comprises one database for each of the years
from 2001 to 2010, named db01 to db10 respectively, and they contain the
historical data. As the data these databases is essentially static, they are
never updated and only ever used in searches.

There is also one extra database, db11, for the ‘current’ year (2011) which is
updated throughout the year as new data is added.

There are also three TRIP procedures, each one for different areas of interest
and resulting in a different search set. These procedures, named procl,
proc2 and proc3 are for creating pre-made search sets that can be used in
order to simplify, standardize and speed up the searching.

Note:

In the following example, the number of search hits, usually displayed in the
search history as an integer, is represented by <N1>, <N2>, etc.

Setting Up the Scope Search
To set up the Scope Search facility, do the following:

e Start TRIP

¢ Open the databases that together define the cluster:

base DBCL=db01,db02,db03,db04,db05,db06,
db07,db08,db09,db10,dbll

resulting in s=1 <N1> base DBCL=db01,db02, .. ,dbll

e run all TRIP procedures that create pre-made search sets as follows:

Page 358 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: SCOPE SEARCH FACILITY

scope (procl) resultingin s=2 <N2> scope (procl)
scope (proc2) resultingin s=3 <N3> scope (proc?2)
scope (proc3) resultingin s=4 <N4> scope (proc3)

del s=1 toremove the cluster creation command

Page 359 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: SCOPE SEARCH FACILITY

e save the above search sets in a special SIF file that will be used by
TRIP for searching:

stop save no highlight file=special.SIF
Note:

Any name can be used for special.SIF and specifying “no
highlight”will keep the size of the SIF file down and thus help
speed up the searches; however there will of course be any
highlighting of the pre-searched terms.

To get highlighting use the following command:

stop save file=special.SIF

¢ alogical name pointing to the special SIF file should be defined in the
environment for each user:

TDBS PRE SCOPE=/path-to-SIF-file/special.SIF

Using the Scope Search
To use the new Scope Search facility, do the following:

o start TRIP (with TDBS_PRE_SCOPE set as described above)

e open the same cluster as when the special SIF-file was created, with
the databases in the same order:

base DBCL=db01l,db02,db03,db04,db05,db06,
db07,db08,db09,db10,dbll

resulting, as before, in s=1 <N1> base DBCL=db01,db02,
. ,dpbll

e perform a search thus:
find scope (proc?2) and (any other search criteria)

resulting in s=2 <N2>

e this search should use the pre-made search saved in the file pointed to
by TDBS_PRE_SCOPE and this should be faster than performing the
search without the pre-made search sets.

Updating the Scope Search

When the database for the current year is updated, or if a change is made to
one of the static yearly databases, the special SIF file must be updated.

To update one database in the special SIF file:
e make a backup copy of the special SIF file.
e copy the special SIF file to 'username'.SIF, e.g. as user SYSTEM:
in UNIX:
cp /path-to-special-SIF-file/special.SIF SYSTEM.SIF
in windows you can simply copy/paste then rename the file

e start TRIP (with TRIP's home directory set to where SYSTEM.SIF is
located)

¢ the search sets created above will now appear, in this case:

Page 360 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: SCOPE SEARCH FACILITY

S=1 <N1> scope (procl)
S=2 <N2> scope (proc2)
S5=3 <N3> scope (proc3)

Page 361 of 416

PART 6: APPENDIX AND INDEX
APPENDIX B: SCOPE SEARCH FACILITY

e update (for example) the db05 database in these search sets, thus:
upd scope (db05)

e this should update the search sets with the result of new searches for
db05; no new search sets are created:

S=1 <N4> scope (procl)
S=2 <N5> scope (proc2)
S5=3 <N6> scope (proc3)

e save the search sets in the same way as before, using the same file
name:

stop save no highlight file=special.SIF
or
stop save file=special.SIF

e an updated version of the special SIF file will now exist, and users who
are using it at this moment, will immediately get access to the updated
file.

Note:

When adding a database for a new year, the special SIF file will have to be
created. This is done exactly as creating a SIF file is described above, but
adding the new database to the list of databases that make up the cluster.

Page 362 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

Appendix C:

TRIP Programming

This part of the appendix contains information valuable to programmers who
will be responsible for writing:

e applications to convert online data to TForm
e add-on modules to give TRIP more functionality using ASEs
Note:

For more detailed descriptions and examples on use of the TRIP
Application Programming Interface (API), refer to the TRIPsystem API
Reference Guide provided with the TRIPsystem release documentation.

TForm
The TRIP system offers two main methods for entering data into a database:

¢ manual data entry, and

e automated loading of machine-readable data by conversion to TRIP’s
input format TForm, and entry into the BAF using the LOAD
procedure.

TForm is a delimiter-controlled record format for the transfer of text into
records intended for a TRIP database. Using TForm, sequential text files
(variable length record format) using the DEC multinational character set or in
7-bit ASCII may be entered into a TRIP BAF file.

A BAF file consists of a sequence of records, each record containing one or
more fields, and a field consists of one or more subfields or paragraphs. The
paragraphs are further subdivided into sentences.

A TForm file is a text file with control strings, which determine how the text
strings will be organized in the BAF. These control strings adapt the file
contents to the structure of the database by marking the beginning of the
individual record (and record part), the beginning of the individual field, and
its subdivision.

Control Strings

The control string delimiter generally used is the caret [], followed by an
alphanumeric marker. The following characters identify the five basic types of
markers:

Page 363 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

Marker Type Symbol
Record R
Record Part G
Field F
Paragraph/Subfi P
eld
Sentence S

A control string may also contain control skip characters, which allow the
insertion of spaces and linefeeds for ease of proofreading and editing of
TForm files. These control skips are ignored when the file is transferred to a
BAF file.

All characters with a decimal ASCII representation of up to and including 32
(<SP>), or any combination of these, will be accepted as control skip
characters. A string of appropriate characters may immediately follow a
delimiter or record marker, but not a field, subfield or sentence marker.

Note:

When the content of a field is strictly regulated, as in the case of NUmber,
INteger, DAte, TIme or PHrase fields with a pattern, you should place the
defined delimiter immediately after the subfield content to avoid including

extra characters (space or <Return>) in the field contents.

When a TForm file is transferred to a TRIP file, the following situations hold
true:

o "R<CR><LF>"F is a record control string [*R] followed by a field
control string [*F], and is equivalent to "R"F,

o however, "F<CR><LF>"P is a field control string [*F], followed by the
text string <CR><LF> and a subfield or paragraph control string [*P],
and is not equivalent to “"F"P.

A control master is available to support the available character sets. For
example,

~CROM

inserted at the beginning of a TForm file tells TRIP that this file is written in
character set ‘Roman 8'.

This delimiter can be defined differently for each TForm file. The first
character in a TForm file tells TRIP what the delimiter is going to be.

Text Strings

A text string is a sequence of characters bounded to the left by a field or
subfield control string, and to the right by a single delimiter (or the end of the
TForm file).

Normally, TRIP determines automatically what constitutes a sentence or
paragraph in a TExt field. Should you wish to define sentences manually, you
must use a sentence or paragraph marker before every sentence and
paragraph in the text portions of the records.

Page 364 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

When the TForm file is loaded into TRIP, the contents of TExt fields are kept
in their original form, unless the database manager has decided otherwise
during design. ‘Layout retained’ ensures that linefeeds and blanks are kept
exactly as they are in the original. The one exception to this is the blank line
marking the start of a new paragraph.

Record, Record Part, Field and Subfield Markers

The six basic markers used to create a record are record, record name,
record part, field, paragraph/subfield and sentence markers.

The Record Marker: nR

The marker R signals that record n is to follow (n is an integer), or, if nis
omitted, that a new record is to be added at the end of the BAF. The record
number is used only to identify an already existing record when updating it.

The record marker must be immediately followed by a new control string, or
by a string of control skip characters followed by a control string. One
exception occurs when using a record name while updating.

The Record Name Marker: N

N (followed by a record name) signals that a record with the given name is to
be added, or, if a record by that name exists already, that it is to be updated.

The Record Part Marker: nG

Marker G indicates that record part n is to follow (n is an integer), or, if n is
omitted, that a new record part is to be added at the end of the record. The
record part number is used only to identify a previously existing record part
when updating it.

A record with record parts in a TForm file should start with the head fields,
followed by the part fields of each record part.

The Field Marker: nF

This marker directs that a field n of the current record is to follow (where n is
an integer).

The Paragraph/Subfield Marker: nP

P signals that paragraph/subfield n is to follow (n is an integer), or, if n is
omitted, that a new subfield or paragraph is to follow at the end of the current
field.

In a TEXxt field, TRIP recognizes a new paragraph as the end of a sentence,
followed by two <CR><LF>s and the start of a new sentence. This is the
system default both at data entry and in a TForm file. P as a paragraph
marker is redundant if paragraphs are separated in this manner.

Note:

If paragraph and sentence markers are used, data entry forms must not be
used for these records.

Any given text string will be assigned to the subfield given by the control
string preceding it. If this is a field control string, then the text string is
assigned to a new subfield at the end of the indicated field. This makes
A2Ftext string” and ~2F"Ptext string” equivalent, and if field two in the current
record is a new field, then both are equivalent to "2F~1Ptext string”. In that

Page 365 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

case, all three will put the string ‘text string’ in the first subfield of the second
field of the current record.

The Sentence Marker: S

The sentence marker may be useful if the text strings contain data that
should not be interpreted as sentences. The default sentence definition is an
end-of-sentence marker followed by at least one space and a capital or
upper-case letter. TRIP would read such a sequence as the end of one
sentence and the beginning of another if the string was controlled by a
paragraph marker only.

Adding Records With TForm

We will use the TRIP demonstration databases Corr and Carroll to describe
how a TForm file is made. We will examine Corr first, which is structured as

follows:
Field name | Type No | Contains
rname PHras | 1 recipient: | name
e
rcomp " 2 " company
raddr " 3 " address
rcountry " 4 " country
sname " 5 sender: name
scomp " 6 " company
saddr " 7 " address
scountry " 8 " country
day DAte 9 the date of the message
cat PHras | 10 | type of communication
e
content TExt 11 | the text of the message

Each field in Corr is of one of the seven existing data types. Paragraphs and
sentences are used in fields of the type TEXxt, while subfields are used in
fields of the other six types (PHrase, NUmber, INteger, DAte, Time and
STring).

Assume that a file of correspondence (letters and telexes) is to be entered
into the Corr database. The same TForm layout is used for both initial record
loading and for appending records to already existing data.

When you create a database, the system numbers the fields as you identify
them. A STatus or Show database order will display the database field
numbers, presenting the fields in field number order. TForm files present the
only occasion where you will use field numbers instead of field names.

When designing a database, the database manager decides whether a TExt
or PHrase field is to keep its original layout (‘Layout retained’). Here, all
<Tab>s, <LF>s, and spaces are maintained as they occur in the entered text,

Page 366 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

whether the data has been imported from a TForm file or has been entered
manually during data entry.

As these records were loaded into TRIP in their original form, there is one
empty line before the first paragraph in field eleven. A sentence separator [. !
?] followed by two <CR><LF>s and the start of a new sentence marks a new
paragraph by default, so no paragraph or sentence markers are needed.

Page 367 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

A TForm file for two documents may then look like this:

RA
1F”°

PMr. Ron Smith”

2F"

PThe Sparkler Institute”
3F”

P16 Sparkling Road”
PSparkletown”

4F"

PUSA”

5F7

PMats G. Lindquist”®
6F"

PParalog AB"

TEN

PBox 22847

P103 17 STOCKHOLM"
A

8F”

PSverige”

9F"

P1984-06-15"

11F

Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows: The central modules of the
system are completed and work on the user interface is underway. We will exhibit the
system in Stockholm in November, and at that time we will have some new material about
the system, which I will send you.

The first version is, as you know, implemented on a VAX in Pascal. We will make the
system portable to other machines, e.g. IBM, in the near future.

Hoping that you can hold out a little bit longer, I remain

Yours sincerely

Mats G. Lindquist

Marketing Manager”

Page 368 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

RA
1F”

PMats G. Lindquist”

PMats G. L&fstrém”

2F"

PParalog AB"

3F”

PBox 22847

P103 17 STOCKHOLM"

4F~

PSverige”

5F”

PMr. Ron Smith”

6F"

PThe Sparkler Institute”

TEN

P16 Sparkling Road”

PSparkletown”

8F”

PUSA"

9F”

P1984-06-13

10F”

PTelex”

11F

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LOFSTROM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IT IS NOW AVAILABLE ON VAX11/780? WHAT
IS THE PURCHASE PRICE? DOES THE SYSTEM EXIST ON OTHER MACHINES?
RON SMITH, SPARKLER INSTITUTE

The demonstration database Carroll, on the other hand, is a head-part
database containing main and part records, as this extract from its STatus
information shows:

Field No Type Part
Name

chapter 2 | PHrase N
chaptnr 1 | INteger N
person 3 PHrase N
speaker 4 | PHrase Y
txt 5 TEXt Y
verse 6 TExt Y
txt2 7 TExt Y
book 8 | PHrase N

This example shows one main record (containing all of the head fields),
followed by its first two record parts:

Page 369 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

2F"

PPig and Pepper”

3F”

PFish Footman”

PFrog Footman”

PDuchess”

PQueen”

PPig”

PCook”

PCheshire Cat”

PMad Hatter”

PMarch Hare”

8F"

PAlice's Adventures in Wonderland”

Gn

5F7

For a minute or two she stood looking at the house, and wondering what to do next, when
suddenly a footman in livery came running out of the wood - (she considered him to be a
footman because he was in livery: otherwise, judging by his face only, she would have
called him a fish) - and rapped loudly at the door with his knuckles. It was opened by a
footman in livery, with a round face and large eyes like a frog; and both footmen, Alice
noticed, had powdered hair that curled all over their heads. She felt very curious, and
crept a little way out of the wood to listen.

Gn

4F"

PFish Footman”

PFrog Footman”

5F

The Fish-Footman began by producing from under his arm a great letter, nearly as large as
himself, and this he handed over to the other, saying, in a solemn tone, "For the
Duchess. An invitation from the Queen to play croquet."

Then they both bowed low, and their curls got, entangled together

Alice laughed so much that she had to run back into the wood for fear of their hearing
her; and, when she next peeped out, the Fish-Footman was gone, and the other was sitting

on the ground near the door, staring stupidly up into the sky.”

Updating Records With TForm

If a record in a TForm file is headed by the number of an existing BAF record,
and contains nothing but fields that do not exist in the old BAF record, the
new fields will be added to the BAF record.

You can also add new subfields to an already existing field. If
field number two is a PHrase field, the construct:

2FJack”*Fand”"2FJill"

will cause three new subfields containing ‘Jack’, ‘and’ and ‘Jill’ to be
appended to it. If the field is a TExt field, you may add new paragraphs after
the last paragraph in the same way.

Should you wish to replace an old BAF record with a new TForm file record,
this must be marked in the beginning of the TForm file record. For example, if
you want to replace record number fifteen of your BAF file with a record
beginning with the string ‘Here we are.’ in field number one, your record in the
TForm file should look like this:

~“15R"0OR
~“"1FHere we are.

The zero record marker will empty the old record, which will then be filled with
the new contents.

Page 370 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

To empty a field in an old record, use a zero field marker in the same way.
The string:

~15F"OF
will empty field number fifteen.

To delete a record completely, without creating an empty record as the zero
marker does, use a deletion marker. The string:

~15D

will delete record number fifteen. The deletion marker could either be
followed by control skip characters or a record marker.

You may also use record names to identify records that are to be changed,
e.g.:

“"RJames Grieve”

positioned at the start of the record will cause the record with the name
‘James Grieve’ to be located and updated. If no such record exists, this order
will be ignored.

Use the record name marker N to add a new record or update an old one.
The instruction:

“"NJames Grieve”

placed at the start of the record will cause a record by that name to be added,
if it does not already exist.

If you are making small changes in several records at once, global updating
will likely be the simplest way to change the BAF records.

Data Type STring and the Length Marker

In a field of type STring, any characters in combination with <Ctrl> or <Esc>
can be entered, and each subfield must be given with length markers
specifying the length of the subfield. Each subfield part must be preceded by
nL, with the integer n specifying the length of the part. A string subfield in
several parts will be concatenated into a single subfield by the load process.
A string subfield with two subfield parts containing fifteen and ten STring
characters respectively could look like this:

~"P~15Lcharscharschars”
10Lcharschars”

resulting in a STring subfield containing twenty-five characters. The contents
of the subfield follow immediately after the control string. The length marker is
mandatory for fields of type STring, and can be used for other data types as
well.

Copying Records Using Print TForm

Records from one database can be copied to another database, using a
predefined system report that creates a file in the format TForm. That file can
then be loaded into other databases after any necessary editing has been
done. The order is:

Print TForm=file.ext

Page 371 of 416

PART 6: APPENDIX AND INDEX
APPENDIX C: TRIP PROGRAMMING: TFORM

and just as with any other Print order, Print TForm can contain a reference to
a search result or to record numbers in the source database. If no extension
to the file name is given, TRIP adds the extension .TFO.

If a database has received name/number/field, it is possible to specify
whether the record name or number should be used in the Print TForm order.
By giving the CCL order:

Print R TForm=file.tfo

the file created will then count on the string ‘Nrecordname”0R’ and/or
‘ARrecordnumber”OR’.

Page 372 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Application Software Exits (ASESs)

Application Software Exits, or ASEs, make it possible for programmers to
design parts of a TRIP application in an external programming language,
such as C or Fortran. ASEs are useful when:

e TRIP does not provide a function you need for your application,

e TRIP’s default functionality is not powerful enough for your purposes;
for example, you might need complex cross-field or cross-database
validation during data entry,

e or you need to process data before it is committed to the database or
to the index. This could include providing unit normalization (metric to
imperial, centigrade to Fahrenheit), or lexical functions such as stem
indexing, to make the searching of complex languages such as
Finnish or German more intuitive.

To make this possible, TRIP defines a number of exit points which designers
can use to call their own routines. Within these routines, the programmer can
place calls back into the TRIP executable to gain information about the
current context of the call; for instance, the database record TRIP is currently
processing.

The exit points defined by TRIP follow.

Summary
CCL

CALI asename[arguments] provides a simple exit point to a user-written
routine from the CCL command line. Normally, CALI summons external
products with arguments such as filename, since little contextual information
is available to the routine when called in this way.

Output Format

<Call(asename, item, delay)> passes a field item (such as a subfield or a
literal string) to a routine for reformatting prior to output within a text insert
function. It also allows the routine to completely reformat the content of the
record in memory. This is typically used to read the content of external files or
fields from other databases into the current record prior to output.

TForm Load

This is specified during database design. On a field basis, it is used to read
and possibly modify the content of an individual field or subfield. On a record
basis (both before and after the record is committed), it is used to gain
access to the entire record in memory, for instance, for cross-field validation.

Using TRIPmanager, the forms used for specifying the routine names are on
the Advanced tab of the General Database Properties form (for record-based
access), and the Advanced tab of the Field Properties form (for field-based
access).

Using the TRIPapi, the routine names are specified using the base
specification record fields baffit_asel and baffit_ase2 (for record-based
access) and the field specification record field baffit_ase (for field based
access).

Page 373 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

In both cases, the values specified either on the forms or in the fields of the
specification records are the names of the ASE routines.

Index

This is specified during database design, and is used to modify the indexed
values for a specific subfield or term. For instance, you may wish to index
‘US’ for every occurrence of the phrase ‘United States’, thus allowing your
users to search for either variant and still find the record.

For complex languages, such as Finnish or German, morphological analysis
routines can be written to index stems of terms in addition to the terms
themselves, thus making searching much easier and faster. For example, in
German the stem ‘geschl’ occurs in many terms, making the CCL search:

Find geschl$

very slow in a large database. If the stem itself were indexed, the user could
simply perform the search:

Find geschl
Removing the ‘$’ wildcard improves search performance drastically.

Using TRIPmanager, the Advanced tab of the Field Properties form (for field-
based access) cab be used for specifying the routine to be called for each
field.

Using the TRIPapi, specify the routine name using the field scanit_ase in the
field specification record.

In both cases, the value specified either on the forms or in the field of the
specification record is the name of the ASE routine.
Data Entry (TRIPclassic only)

This is specified during form design (TRIPclassic only), and is used on two
levels to control the entry of data to a database. There are four ASEs
concerned with each record, and two concerned with each field:

Record level:this is defined by pressing <kp 1> anywhere
on the actual form:
before the record is presented to the user
after the user presses <Leave>

after the user presses <Enter>, and
before the record is committed to the
database

after the record has been committed to
the database, and before the next record
is presented to the user

Field level: this is defined by pressing <kp 1> while the
Field Properties overlay is shown for a
particular field, i.e. <Gold><kp 9> has been
pressed while the cursor is in the field area:

before entry to the field or subfield

before exit from the field or subfield

Page 374 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

These ASEs tend to be used for functions such as:

Record level:. complex, multi-field validation
immediate index submission

Field level: . simple cross-field validation
protected field manipulation
help messaging
simple data manipulation, such as
conversion to and from uppercase

simple calculations, such as standard
deviation, mean, etc.

Note:

ASE invocation-sequencing conflicts may occur in the event that ASE-1 is
called when entering an entry form, then ASE-2 is called when entering a
field and the field associated with ASE-2 is also the first field accessed in
the entry form. To overcome this, it is necessary to implement a procedure
to check if ASE-1 has been executed before calling ASE-2.

Search Form (TRIPclassic only)

This is defined during form design, and is used for manipulation of terms in a
search box prior to searching for them, for instance, converting metric units to
imperial.

These ASEs are defined on page three of the search form design form by
specifying a routine name in the ‘ASE’ column within the box specification
tuple.

Page 375 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

The Format of an ASE Routine
All ASE routines are integer-returning functions, which take two arguments:

Argstr

Type Character string
Access Modify
Mechanism By reference

Argstr is a character string, which is passed in a context-dependent manner
from TRIP to the ASE. In certain circumstances the ASE can pass a value
back to TRIP in the Argstr. The maximum length of the buffer which Argstr
references is 256 bytes. Attempts to write more than 256 bytes to Argstr will
produce unpredictable results—most likely an unrecoverable error.

Arglen
Type Signed longword
Access Modify

Mechanism By reference
Arglen is a longword, which specifies the length of the character string Argstr.

The return code from the ASE to TRIP is a longword bitmask. For all ASE
routines, the lowest bit (bit 0) specifies the success or failure status of the
ASE routine. This bit can be set by using the manifest constants
ASE_SUCCESS and ASE_FAIL from the TRIPase include file (see the
language-dependent sections for the actual filename). Any other bits in the
return code should be set by adding the generic success-or-fail codes to the
function-specific return values, such as ASE_FIXFIELD and ASE_REFRESH,
etc. The function-specific return values are listed in the function sections that
follow.

A Template ASEin C

For C/C++ programmers, the header file to include is called TRIPASE.H,
which is located in the INCLUDE directory of the TRIP tree structure.

#include "tripase.h"

int any ase name (argstr, arglen)
char *argstr;

int *arglen;

{

return (ASE SUCCESS) ;
}

Linking ASE Routines to TRIP

You must build an ASE library and define a logical name to point to that
library for TRIP to be able to find your ASE routines.

UNIX

The logical name which needs setting is called TDBS_ASELIBS. This
variable’s value should contain a list of logical names mapped to the ASE
libraries made using the procedure shown below, for instance:

Page 376 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

MYASEl=\usr\lib\myasel
MYASE2=\usr\lib\myase?2 eftc.,
TDBS ASELIBS=MYASE1l,MYASEZ,MYASE3 efc.

This variable can be set either in the user’'s own environment or in the
system-wide tdbs.conf configuration file.

To make the ASE library, use the following procedure:
e Create a directory to hold your source files.

e Copy all of the files from the ASE directory in the TRIP tree to your new
directory.

e Create your source files.

o Edit the makefile (which has been copied from the TRIP ASE directory),
so that the variable ASEOBJ is defined to be a list of space-separated
names of the ASE object files and routine names.

e Type ‘make’ at the command prompt.
For example, suppose you have a TRIP installation in /usr/local/TRIP:
/users/dev> mkdir ase
/users/dev> cd ase
/users/dev/ase> cp /usr/local/TRIP/v31/ase/*

Now suppose that you have source files ‘Source1.c’ and ‘Source2.c’
containing ASE routines ‘ase1’ and ‘ase2’:

/users/dev/ase> vi Makefile
.. ASEOBJ=sourcel.o source2.0o
/users/dev/ase> make

This will compile your source, build a TRIP jump table if necessary, and then
build an executable called (by default) ‘asemain’. If you have correctly defined
TDBS_ASELIBS to point to the newly-created ‘asemain’, you will be able to
invoke ASE routines immediately.

Notes:

e Historically, the logical name TDBS_USRSHR was used to point to the
ASE being used but, as it is only possible to specify one library with
TDBS_USRSHR, it has been depreciated, and is only retained for
backward compatibility.

e When specifying ASE routine names, they must be lowercase only. If
there are any uppercase letters in the routine name, the invocation of
the routine will fail.

Windows

All ASE’s must be compiled and linked into a DLL. The DLL must be 32- bit if
you use a 32-bit TRIPsystem, and 64-bit if your TRIPsystem is 64-bit.

We recommend using a Visual Studio project file to specify the compiler and
linker options for building an ASE library. An example Visual Studio 2008
solution and Visual C++ project file is available in the ase directory of the

TRIPsystem installation.

Page 377 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

TRIP is directed to which DLL to use by the value of TDBS_ASELIBS in the
tdbs.conf file. This value is a list of logical names mapped to the ASE libraries
made using the procedure shown below, for instance:

MYASEl=c:\mylibs\myasel
MYASE2= c:\mylibs\myase2 etc,
TDBS ASELIBS=MYASEI, MYASE2,MYASE3 etc.

TDBS_ASELIBS can be set either in the user’s own copy of tdbs.conf, or in
the system-wide tdbs.conf configuration file.

ASE function should be declared as below, replacing ‘'myase’ in the example,
with the name of your ASE:

int ASECALL myase(char*,int*)
Note:

ASE names must follow the usual conventions for TRIP ASE names: max
16 characters, English alphabet letters and digits only.

It is extremely important to remember the ASECALL macro. The windows
precompiler expands it to the __stdcall calling convention, without which the
call may suffer a fatal error. You may safely keep ASECALL in your code
even if you build your ASE for other platforms as well (e.g. Linux), since its
definition on non-Windows platforms is empty.

If you implement your ASE in C++, then your function must be declared as
below:

extern ”C” int ASECALL myase(char®, int*)

Using DEF-files to export your ASE function from the DLL is strongly
recommended. The following two lines are sufficient to enable the above
example function:

EXPORTS
myase

Include the DEF file in the DLL project so that the linker will produce the DLL
with the desired exports.

Note:

Functions exported with decorated names (e.g. _myase@8), are unusable.

Page 378 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Debugging ASE routines

ASE routines can be debugged through the use of multiple printf()
statements, or other debugging methods such as dbx (UNIX) and ??7?
(Windows).

Notes:

¢ When debugging, it is not possible to immediately set a breakpoint in an
unloaded object, however a breakpoint can be set in advance (e.g. at
beginning of function) and loaded later.

e The ASE must be in the libiray being debugged.

CCL ASEs

The CCL statement CALI invokes a named ASE routine with a user specified
argument string, for example:

CALl notepad This is a string to send to the ASE
routine notepad

Quotation marks enclosing the argument string are not necessary. If they
have been included, they will be passed unmodified to the ASE routine.

The string specified in the CCL command is passed to the ASE routine in the
Argstr argument, with the length of the string being given by the Arglen
argument.

Note:
The argument string is not zero terminated by TRIP.

Using the CALI command, the only way for the ASE routine to communicate
with the calling process is via the return code from the routine. This return
code can be examined using the TRIPclassic macro function %RTNA and the
TRIPapi function ASE RET CODE.

The CCL interface in TRIPclassic supports ASE_REFRESH, in addition to the
usual success and fail return codes. ASE_REFRESH can be added to either
ASE_SUCCESS or ASE_FAIL, and causes the screen to be repainted upon
return from your routine.

For example (the source code can be found in the SAMPLES directory in the
TRIP tree, called CCLASE.C):

#include <stdio.h>

finclude "tripase.h"

int notepad(char *argstr, int *arglen)
{

argstr[*arglen] = '\0';

printf ("\n\n%s\n\n", argstr);
getchar () ;

return(ASE_SUCCESS + ASE_REFRESH);

}

Page 379 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Output Format ASEs
There are two styles of ASE available within a report:

e an ASE used within a text insert function, to modify the content of an
individual box, and

e an ASE used at the very top of the format specification, to allow
modification of the entire record in memory. This style requires the
use of the TRIPapi.

Text Insert ASEs

Typically, text insert ASEs are used to reformat a particular value from the
database, or to perform such simple functions as column addition. The ASE
will be declared using a report function specification such as:

<box at b(*)+1,1
<t=<call (reformat, speaker.l, 0)>>
>

where ‘reformat’ is the name of the ASE routine to call, ‘speaker.1’ is the item
from the current record to pass to the ASE routine (in this instance, the first
subfield from the PHrase field speaker), and ‘0’ is a ‘delay’ flag having these
possible values:

1 no delay, call immediately

2 call when the user triggers a ‘hot key’ (normally <Gold><G>
in TRIPclassic)

3 call after TRIP has formatted the content of a page

Instead of passing a field item to the ASE routine, a report can pass a literal
string, for example:

<box at b(*)+1,1
<t=<call (reformat, "My String", 0)>>
>

To use the text insert ASE to produce effects such as column addition, you
can use constructs such as:

<for <x>

<box at b(*)+1,1

values.x

<t=<call (add, wvalues.x, 0)>>

>

>

<box at b(*)+1,1 <t=<call (total, "", 0)>> >

which will call the ASE routine ‘Add’ for each subfield of field values, and then
call the ASE routine ‘Total’.

The value specified as the item to pass to the ASE routine can be read by
that routine in the Argstr argument, with the length of the item being given by
the Arglen argument.

Page 380 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Any modifications that the ASE routine makes to the content of the Argstr
string will be used by TRIP when formatting the text insert. If you do not wish
anything to be output by TRIP, you must set the contents of the Arglen
argument to 0 before returning from your routine.

For example:
#include "tripase.h"
int reformat (char *argstr, int *arglen)
{
char *chp;
argstr[*arglen] = '\0';
for (chp=argstr; *chp; chp++)
if(*chp = ' ') *chp = "' ';
return (ASE SUCCESS) ;
}

which simply replaces all occurrences of the space character with
underscores in any string passed to it.

As another example, the ASE routines ‘Add’ and ‘Total’ used in the previous
format example are shown here (these routines can also be found in the
SAMPLES directory in the TRIP tree, named TEXTASE.C):

#include <stdio.h>

#include "tripase.h"

static int current total = 0;

int add(char *argstr, int *arglen)
{

int ival;

argstr[*arglen] = '\0';

sscanf (argstr, "%d", &ival);
current total += iVal;

*arglen = 0;

return (ASE SUCCESS) ;

}

int total (char *argstr, int *arglen)
{

*arglen = sprintf (argstr, "%d4d",
current total);
return (ASE SUCCESS) ;

}

Page 381 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Format-Level ASEs

If you wish to modify more than the value of a single string during output, you
should use a format-level ASE. An ASE at format-level must be declared
immediately after the opening chevron of a format, for example:

<

<call (format ase, "", 0)>

>
As shown above, the call must not be placed inside a layout box.

You can only pass literal strings to this type of ASE, not field items. You can,
however, gain access to the entire record in memory in the ASE routine using
the function CURRENT ITEM, as documented in the section entitled
‘TRIPsystem Callback Functions for ASE Routines’. This function will return,
among other things, the current record control handle pertaining to the record
in memory.

Since a record control handle may only be manipulated using TRIPapi
functions, you must have a TRIPapi license to modify the record in memory. If
you have a TRIPapi license, you can set a cursor to the handle and retrieve
or modify as you normally would.

Any modifications that you make to the record will be reflected when your
ASE routine returns, with two restrictions: you will be unable to change the
number of paragraphs in a TExt field and the number of part records in the
record.

You can work around the first restriction, however, by defining a TExt field to
have a maximum of one paragraph. You can then put whatever you like into
that one paragraph.

TForm Load ASEs

When you are loading data to a database using the TRIP system utility
program BAFFIT, you can interact with the data before it is committed to the
database. This can be very useful when performing validation beyond the
scope of that provided by TRIP, or when performing complex multistage
updates in many databases based on the new or updated contents of a
master.

TForm load ASEs are available at two levels; field-specific ASEs and record-
specific ASEs.

Field-Specific ASEs

When you define a field-specific ASE for a database, you are telling TRIP to
call your ASE routine every time that an instance of that field is encountered
in the load file.

For structured field types such as PHrase, NUmber, etc., your ASE routine
will be called for each distinct subfield encountered. For unstructured field
types such as TExt and STring, your ASE routine will be called just once,
after the field has been loaded into memory from the file.

In either case, the ASE routine names are defined in one of two ways:

Page 382 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

In TRIPmanager, use the entry boxes on the Advanced tab of the Field
Properties form (with the required field’s design loaded). There you can
provide the name of an ASE routine to be called during TForm load, and an
ASE routine to be called during scanning. If you do not wish to call an ASE
routine during scanning, only enter a value in the TForm load field.

Alternatively, use the TRIPapi to specify the name of the ASE routine to be
called with the field baffit_ase in the TRIPsystem field specification data
structure (field_spec_rec/FieldSpecRecord).

Structured Field-Specific ASEs

When an item from a structured field is encountered in the load file, TRIP will
call your routine with the content of the item given in the Argstr and Arglen
arguments. Any changes that you wish to have committed to the database
should be made to these two arguments in your routine.

For example, the following ASE routine converts all lowercase letters to
uppercase in the item being loaded (this example can be found in the TRIP
SAMPLES directory, called TFOFIELD.C):

#include <ctype.h>

#include "tripase.h"

int loadase (char *argstr, int *arglen)
{

char *chp;

argstr[*arglen] = '\0';

for (chp=argstr; *chp; chp++)

*chp = islower (*chp) ? toupper (*chp)
*chp;

return (ASE SUCCESS) ;

}

If you wish to inhibit the loading of a particular item, you must set the length
of the argument string (Arglen) to zero before returning.

If you wish to give an error message, you should return a fail code from your
routine, whether or not you inhibit loading. For example:

finclude "tripase.h"

int errorase(char *argstr, int *arglen)
{

char msg[80];

int len;

if (.. some condition ..) {

/* Inhibit loading of item */

*arglen = 0;

/* Create and register error message */

strcpy (msg, "Error in item load.");

Page 383 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

len = strlen(msg);

TdbMessage (MSG_SET ERROR, msg, é&len);
/* Trigger output of error message */
return (ASE FAIL);

}

}

To perform differing actions for the various modes (such as add, modify and
delete) in which BAFFIT can operate, use the routine BAFFIT MODE
documented in the section entitled ‘TRIPsystem Callback Functions for ASE
Routines’. For example:

#include "tripase.h"

int loadase2(char *argstr, int *arglen)
{

int mode;

mode = TdbBaffitMode (RECORD LEVEL) ;
switch (mode) {

case ADD MODE

case MODIFY MODE

case DELETE MODE

}

return (ASE SUCCESS) ;

}

Unstructured Field-Specific ASEs

Unstructured fields, such as TExt and STring, do not easily divide into logical
256 byte sections, and so do not permit the type of calling which is performed
for structured field types.

Because of this restriction, your ASE routine is called only once for each field
instance found in the load file. Consequently, whenever the field number
referenced by the load file changes, your ASE routine will be called if the old
field number referenced the field to which your ASE routine was attached.

For example, suppose you have attached an ASE routine to field number five
of a given record design. In this instance, the following TForm layout for a
single record would trigger two calls to your ASE routine, at the points
marked with “**ASE***":

RA
1F”
PThis is field 1"
2F"
PThis is field 2"
5F~

PThis is the first paragraph of field 5%

Page 384 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

PThis is the second paragraph of field 5"
3F/\ ***ASE***
PThis is field 3~

5F”
PThis is the third paragraph of field 5%
4/\ ***ASE***

PThis is field 4"

Your ASE routine would be called on the change from field five to field three,
and likewise, on the change from field five to field four. Your ASE routine is
not simply called once at the end of the record, and you cannot therefore
assume that the entire field has been loaded once you are called (unless you
know the format of the load file’s content in advance).

To query the content of the field scanned or any other fields within the record,
place a call to the TRIPsystem function CURRENT ITEM to gain the current
record control handle (as documented in the section entitled ‘TRIPsystem
Callback Functions for ASE Routines’). This handle can then be interrogated
and updated using a TRIPsystem cursor. You must have purchased a
TRIPapi license to do this.

To inhibit the loading of the field in question, you must explicitly delete the
content of that field using the TRIPapi call DELETE ITEM.

If you wish to provide an error message, you should return a fail code from
your routine whether or not you inhibit loading. For example:

#include "tripase.h"

int errorase(char *argstr, int *arglen)
{

char msg[80];

int 1len;

if (.. some condition ..) {

/* Create and register error message */
strcpy (msg, "Error in item load.");
len = strlen(msqg);

TdbMessage (MSG_SET ERROR, msg, é&len);
/* Trigger output of error message */
return (ASE_FAIL);

}

}

To perform differing actions for the various modes (add, modify and delete)
in which BAFFIT can operate, use the routine BAFFIT MODE documented in
the section entitled “TRIPsystem Callback Functions for ASE Routines’. For
example:

finclude "tripase.h"

int loadase2 (char *argstr, int *arglen)

Page 385 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

{

int mode;

mode = TdbBaffitMode (RECORD LEVEL) ;
switch (mode) {

case ADD MODE

case MODIFY MODE

case DELETE MODE

}

return (ASE SUCCESS) ;

}

Record-Specific ASEs

Record-specific TForm load ASEs normally perform complex cross-field
validation exercises beyond the scope of TRIP’s default operators.

Two record-level access ASEs have been defined: before and after the
record is committed to the database. In both cases, the only access
mechanism for the record is via the current record control handle, gained by
calling the TRIPsystem function CURRENT ITEM (as documented in the
section entitled “TRIPsystem Callback Functions for ASE Routines’). Again,
you must have purchased a TRIPapi license to do this.

To define the names of the ASE routines to be called:

1 In TRIPmanager, enter the ASE to be called, both before and after
commit, in the ‘Data Loading’ section on the ‘Advanced’ tab of the
General Database Properties form. You will be prompted for the
names of the routines to be called.

2 With the TRIPapi, use the fields baffit_asel and baffit_ase2 in the
TRIPsystem database specification data structure
(base_spec_rec/BaseSpecRecord) to specify the names of the
routines to call before and after the commit, respectively.

If you wish to inhibit the loading of a record, you should return a fail code from
your ASE routine.

To issue an error message, call the TRIPsystem callback function MESSAGE
prior to returning a fail code. You cannot use this mechanism for delivering an
error message if you return a success code. For example:

finclude "tripase.h"

int recordase (char *argstr, int *arglen)
{

char msg[80];

int len;

if (.. some condition ..) {

strcpy (msg, "Cannot load record.");

len = strlen(msgqg);

TdbMessage (MSG_SET ERROR, msg, é&len);

Page 386 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

return (ASE FAIL);

}
return (ASE SUCCESS) ;
}

To perform differing actions for the various modes (add, modify and delete)
in which BAFFIT can operate, use the routine BAFFIT MODE. For example:

#include "tripase.h"

int loadase2 (char *argstr, int *arglen)
{

int mode;

mode = TdeaffitMode(RECORD_LEVEL);
switch (mode) {

case ADD MODE

case MODIFY MODE

case DELETE MODE

}

return (ASE_ SUCCESS) ;

}

Index ASEs

You can specify which terms are to be indexed (either to exclusion of the
terms within the actual data, or in addition) by interacting with TRIP when it is
preparing entries for the index file.

For example, you may wish to have the term ‘United States’ indexed
wherever the term ‘US’ occurs within the database. Users can then search for
either, and find both.

When processing languages with a high degree of complexity, such as
Finnish or German, you can determine which terms should be indexed in their
entirety and which should be indexed by their stems. For example, in German
the stem ‘geschl’ occurs in many terms, and so in a large database the
search:

Find geschl$S

will be relatively slow in completing. As this is a very useful type of search, an
index ASE can be used to direct the index engine to add the stem ‘geschl’ to
the index at every point where a derived term occurs, such as ‘geschlossen’.

An index ASE can only be defined on a per-field basis. Your ASE routine will
be called for each term which occurs in that field, with the term specified in
the Argstr/Arglen parameters. Any changes that you make to these
parameters will be reflected in the index files, according to the circumstances
detailed below.

To define the names of the ASE routine to be called:

¢ |In TRIPmanager, user the entry boxes on the Advanced tab of the
Field Properties form to specify the names of the routines to be called

Page 387 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

during TForm load and scanning. Specify the scanning ASE if you
wish your routine to be called during Index.

¢ With TRIPapi, use the field scanit_ase in the TRIPsystem
field specification data structure (field_spec_rec /FieldSpecRecord) to
specify the name of the routine to call during Index.

The conventions used for the Index ASE are slightly different, depending on
the type of field to which the ASE routine is attached.

If the field is of type TExt, NUmber, INteger, DAte or TIme, your routine will
be called for each term which is scanned in that field. If you want your routine
to have only the original term indexed, then:

¢ do not modify the contents of Argstr
e set Arglen to zero before return
e return ASE_SUCCESS from your routine
If your routine should have new terms indexed instead of the original, then:
¢ modify the contents of Argstr to the new term(s) required
e set Arglen to the length of the new term(s)
e return ASE_FAIL from your routine

If you want your routine to have new terms indexed as well as the original,
then:

¢ modify the contents of Argstr to the new term(s) required
e set Arglen to the length of the new term(s)
e return ASE_SUCCESS from your routine

If you are specifying more than one term, either in addition to the original or
as a replacement, the terms should be separated by one space character.

If the field being scanned is of type PHrase, your routine will also be called
with the entire subfield as well as with each component term. When TRIP has
written an entire subfield into Argstr, Arglen will be negative, to signal the
difference between the two.

If Arglen is negative, your routine can have just the original phrase indexed
by:

e setting Arglen to zero before return

¢ not modifying the contents of Argstr

e returning ASE_SUCCESS

If Arglen is negative, you can have a new phrase indexed instead of the
original by:

e modifying the contents of Argstr
e setting Arglen to the length of the new phrase
e returning ASE_FAIL

If Arglen is negative, you can also have both a new phrase and the original
indexed by:

Page 388 of 416

PART 5:

APPENDIX AND INDEX

APPENDIX C:. ASE ROUTINES

e modifying the contents of Argstr
e setting Arglen to the length of the new phrase
e returning ASE_SUCCESS
If Arglen is positive, you can have just the original term indexed by:
¢ not modifying the contents of Argstr
e setting Arglen to zero before return
e returning ASE_SUCCESS from your routine
If Arglen is positive, you can have new terms indexed instead of the original
by:
¢ modifying the contents of Argstr to the new term(s) required
e setting Arglen to the length of the new term(s)
e returning ASE_FAIL from your routine

If Arglen is positive, you can also have new terms indexed as well as the
original by:

¢ modifying the contents of Argstr to the new term(s) required
e setting Arglen to the length of the new term(s)
e return ASE_SUCCESS from your routine
Thus, your routine could be called for any of the following:
e the original phrase subfield
e each term within the original subfield

e each term within a replacement for the original subfield

Page 389 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

For example (this example can be found in the SAMPLES directory of the
TRIP tree, called SCANASE.C):

#include "tripase.h"

int indexase (char *argstr, int *arglen)

{

if (*arglen < 0) { /* entire subfield */
argstr[-(*arglen)] = '\0"';

if(!strcmp (argstr, "UNITED STATES"))

/* Accept United States without modification */
*arglen = 0;

return (ASE_SUCCESS) ;

}

else if(!strcmp(argstr,

"GREAT BRITAIN")) {

/* Add "United Kingdom" to "Great Britain" */
strcpy(argstr, "United Kingdom") ;

*arglen = strlen(argstr);

return (ASE SUCCESS) ;

}

else if(!strcmp(argstr, "TIMBUKTU")) {
/* Replace Timbuktu with "Where?" */
strcpy (argstr, "Where?");

*arglen = strlen(argstr);

return (ASE_FAIL);

}

}

else { /* single term */
argstr[*arglen] = '\0';
if(!strcmp (argstr, "UNITED")) {

/* Replace "united" with "divided"™ */
strcpy(argstr, "divided");

*arglen = strlen(argstr);

return (ASE_FAIL);

}

}

/* Catch all - no new terms, index original
*/
*arglen = 0;

return (ASE SUCCESS) ;
}
This example will:

Allow ‘United States’ to be indexed as an entire phrase
Add ‘United Kingdom’ wherever ‘Great Britain’ occurs
Replace ‘Timbuktu’ with the WHERE?

Replace the term ‘United’ with the term ‘Divided’

A W DN P

This will have several effects:

e Field-specific searches for ‘United States’ will fail, unless the search
term is single-quoted:

Find MYPHRASE = UNITED STATES - No hits!
Find MYPHRASE = 'UNITED STATES' - Hits

Page 390 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

This is because the phrase ‘United States’ was indexed, but the individual
term ‘United’ was replaced with ‘Divided’. Thus, the following search will find
records containing ‘United States’:

Find MYPHRASE = DIVIDED STATES - Hits

e Searching for ‘United Kingdom’, with or without single quotes, will
locate records containing ‘Great Britain’.

e Searching for ‘Timbuktu’ will always fail, but searching for WHERE? will
hit records containing ‘Timbuktu’.

Data Entry ASEs (TRIPclassic only)

There are six types of ASE defined for data entry forms, none of which pass
any arguments to the ASE routines. All interaction with the data onscreen, or
in the record in memory, must be performed using a set of specialized
routines for TRIPclassic interaction or by using the TRIPapi.

The six ASEs defined are:
1 Oninitialization of the form prior to the user being allowed to input.
2 Onthe user leaving the form via a <Leave> action, e.g. <PF 3>.

3 On the user committing the record using <Enter>, before the record is
actually written to the database.

4 After the record has actually been written to the database and before
the initialization ASE is invoked once more (if further data entry is to
be performed).

5 On entry to a particular field box.
6 On exit from a particular field box.

To define the routines to be called at a form-based point (numbers one
through four above), press <kp 1> at any time when the field properties
overlay is not shown during data entry form design. You will be prompted to
supply up to four ASE routine hames.

To define the routines to be called at a box-based point (numbers five and six
above), press <kp 1> when the field properties overlay is shown, i.e. you
have pressed <Gold><kp 9> in an attached field box. You will be prompted to
supply up to two ASE routine names.

There are a number of return code bit settings that are specific for data entry
ASE routines:

Page 391 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Setting Name | Function

ASE REFRESH | Signals TRIP to repaint the screen on
- return from your routine

ASE CONTINUE | Signals TRIP to simulate a repeat of the
- keystroke which occurred just before the
invocation of your routine

ASE MESSAGE | sighals TRIP to report a message

- registered using the MESSAGE callback
function (useful when you want to report a
message without returning a fail code)

ASE FIXFIELD signals TRIP to leave the cursor in the box
- to which you have set it, rather than simply
moving to the next in sequence

ASE NOFIELD signals TRIP to disallow any user input to
- the form

There are also a number of TRIPclassic specific callback functions,
summarized below and documented fully in the section entitled ‘TRIPclassic
Callback Functions for ASE Routines’:

Function Purpose
Name

CHECK ENTRY | F€turns to your routine the field number
and item, or row, number at which the
cursor is currently positioned

GET LINE returns the content of the line in which the
cursor is currently positioned

PUT LINE overwrites the content of the line in which
the cursor is currently positioned

SET ENTRY sets the cursor to a specific field and item,
or row, number

WRITE delivers a message on the TRIP message
line immediately, rather than on return

MESSAGE from your routine as is the case with the

MESSAGE callback
Form-Based ASEs (TRIPclassic only)

The form-based ASEs (points one through four of the Data Entry ASE list
given previously) do not allow onscreen modification or interrogation of data.
If you wish to change or read the contents of the record in a routine invoked
from one of these ASESs, you must use the TRIPapi to do so. In this case, you
can use the TRIPsystem function CURRENT ITEM to get the current record
control handle, which can be manipulated using a standard TRIPsystem
cursor.

The only interaction that can be performed with TRIPclassic is via the return
code from your ASE routine, as detailed below.

Form Initialization (TRIPclassic only)

This ASE is called before the user is actually allowed to see the data entry
form. Its normal use is therefore either to initialize data for the later ASEs or
to stop the user from having access to the form.

Page 392 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

When initializing data, your routine should always return a success code.
When preventing form access, your routine should always return a fail code.
TRIP will only act upon this code, however, if the user has attempted to enter
data entry with the CCL EDit command. If the user has entered data entry via
the standard menus, the return code will have no effect.

Typically, if you are preventing the form from appearing, your routine will call
the MESSAGE function from the TRIPsystem to report to the user why his or
her EDit command has failed. This is documented in the section entitled
‘TRIPsystem Callback Functions for ASE Routines’,

Quitting the Form Using <Leave> (TRIPclassic only)

TRIP invokes this ASE when the user makes modifications to the record
onscreen and presses either <Leave> or <Gold><Leave>. Returning a fail
code from your routine at this point will stop the quit action from completing,
i.e. it will keep the user in the form.

Treat this ASE with care. Making it impossible for the user to quit data entry
will result in many records of poor quality being committed to the database,
since <Enter> will then be the only permissible method for leaving data entry.
To avoid the confusion generated by non-working keystrokes, be sure to
provide appropriate messages when such circumstances arise.

Record Commit Before Writing to BAF

TRIP invokes this ASE when the user submits the record, signalling that all
modifications have been completed. You can interrupt the sequence,
however, by returning a fail code from your ASE routine, as the record has
not yet been written to the database.

If you do return a fail code, you will probably want to direct the user to a
particular field for update. You can do this with the callback function SET
ENTRY, as documented in the section entitled ‘TRIPclassic Callback
Functions for ASE Routines’, and setting the FIXFIELD bit in the ASE routine
return code. For example:

#include "tripase.h"

int prewritease (char *argstr, int *arglen)
{

char msg[80];

int len;

if (.. some condition ..) {

/* Format and register error message */
strcpy (msg, "Bad value in field");

len = strlen(msqg);

TdbMessage (MSG_SET ERROR, msg, é&len);

/* Move the cursor to the incorrect field (26)
*/
TedSetEntry (26, 1);

/* Signal TRIP to leave cursor in place */

return (ASE FAIL + ASE FIXFIELD);

Page 393 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

}
return (ASE SUCCESS) ;
}

If you do not use the FIXFIELD bit in the return code, TRIP will place the
cursor in the first box on the entry form and ignore any field placement
performed by the SET ENTRY function.

Record Commit After Writing to BAF

TRIP invokes this ASE once the record has been successfully written to the
database. The ASE will not be invoked if the commit failed.

If your routine returns a success value, the user can continue to the next
record or return to CCL.

If your routine returns a fail value, the record has already been written but the
data entry mode is set to ‘modify’, giving the user the ability to edit it.
Additional record commits of this same record will modify the record further,
rather than adding a new record to the database.

For example:
#include "tripase.h"
int postwritease (char *argstr, int *arglen)
{
if (.. some condition ..) {
/* Create and register a message */
strcpy (msg,
"You must update this value");
len = strlen(msgqg);
TdbMessage (MSG_SET ERROR, msg, é&len);
/* Set the cursor to the required field
*/
TedSetEntry (26, 1);
/* Return fail - switch TRIP to modify
mode */
return (ASE FAIL + ASE FIXFIELD);
}
return (ASE SUCCESS) ;
}

If you have a TRIPapi license, you can delete the record just created with the
TRIPsystem functions CURRENT ITEM and DELETE RECORD.

Box-Based ASEs (TRIPclassic only)

The box-based ASEs (points five and six of the Data Entry ASE list given
previously) allow onscreen madification of data. By using the routines
documented in the section entitled “TRIPclassic Callback Functions for ASE

Page 394 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Routines’, any changes in your ASE routine will be discernible to the user at
the time of modification.

TRIP invokes box-level ASE routines differently for TExt fields than for other
field types. If the field in question is of type PHrase, NUmber, INteger, DAte
or Time, each of the box-based ASEs will be invoked separately for each
subfield in which a modification is made.

During data add, the entry ASE will be invoked when the cursor is first placed
in the box, and the exit ASE will be invoked when the cursor either leaves the
box or is moved to the next subfield using <Return>. If a new subfield is to be
added, the entry ASE is called again before the user can enter the subfield.

For a TExt field, the entry ASE is invoked once on entry to the box, and the
exit ASE is invoked once on exit from the box if the user has made any
modifications to the content of that box.

To enable your routine to make onscreen data modifications, you should
place calls to the TRIPclassic callback functions GET LINE and PUT LINE.
These act on the ‘current’ field and row set using the function SET ENTRY.

To protect a particular box from a certain class of user but not from all users,
set the ASE_CONTINUE bit in the return code. This bit causes TRIP to
simulate a repeated keystroke, for example, as if the user had pressed the
<Tab> key twice to skip over a field.

Page 395 of 416

PART 5: APPENDIX AND INDEX
APPENDIX C: ASE ROUTINES

Search Form ASEs (TRIPclassic only)

The only ASE defined for search forms is used for each search box on the
form. This ASE is defined on page three of the layout screen in the ASE
column of the box specification tuple.

When defined, this ASE will be invoked when the user leaves the box in
question. Your ASE routine can then use the TRIPclassic callback function
GET LINE to retrieve the data input by the user. Your routine can use PUT
LINE to replace that data following data modifications, and can also modify
the content of any other search box on the screen by using SET ENTRY
before PUT LINE.

When calling SET ENTRY, the ‘field number’ should be the ordinal box
number as defined on page two of the layout screen, and the ‘row number’
should always be set to 1.

You cannot use the FIXFIELD bit in the return code on a search form, as
TRIP will ignore any attempt to set the real cursor to another box out of
<Tab> sequence.

TRIPsystem Callback Functions for ASE Routines

Within an ASE routine, it is often useful to be able to place a call into
TRIPsystem to establish the user’s current context, or to report a message in
a standard manner.

TRIPclassic Callback Functions for ASE Routines

Within an ASE routine, it is often useful to be able to place a call into
TRIPclassic to perform such functions as writing data to field boxes in data
entry, or issuing messages before your routine returns.

If you have purchased a TRIPapi license, you can use all of the TRIPapi
functions from within ASE routines. If you have not, the following pages detail
those routines which are available to all ASE programmers.

TRIP API Reference Guide

Refer to the TRIP API Reference guide document, supplied with the
TRIPsystem distribution, for details on all TRIPsystem API calls.

Page 396 of 416

PART 6:

APPENDIX C:

APPENDIX AND INDEX
LIST OF FIGURES AND TABLES

List of Figures and Tables

Figures
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 2—-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2—6
Figure 2—-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 2-11
Figure 2—-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3—4
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 6-1
Figure 6-2
Figure 6-3
Figure 64
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4

The CONTROL database

Head and part records in a database
Carroll's head/part record structure

A head record

A part record

A record entity

A composite record

Record components

New Database Wizard

New Database General Properties
Database Name Entry Field

The Database File Location Selection Boxes
Transaction log selection

XML Enabling a Database

The Database Description field

New Database Design Wizard Completion page
DB Creation Confirmation

Specify Field Collection Query

The Database General Properties Form
Sample SYSTEM default report, ‘Dump’
The Database Files Properties Form 1
The Database Files Properties Form 2
The Database Indexing Properties Form
Natural Language Treatment selection box
The ‘Train’ thesaurus, vertical representation
The ‘Train’ thesaurus, horizontal representation
New Thesaurus Menu

STatus for thesaurus ‘Thesall’

Entry forms for database CORR
Properties for CORR entry form FULL
Copy a Data Entry form

Name New Data Entry Copy

Data Entry Copy Confirmation

Delete a Data Entry form

Delete Data Entry form confirmation

Data Entry form Deleted

Report layout and construction

Report components

New Report Menu

New Output Format name entry dialog
New report Properties dialog

New report Content dialog

Paged output

The Show Format window

Search forms for a TRIP installation
Properties for search form ALICE_DEMO
Copy a Search Form

Name Search Form Copy

Page 397 of 416

22
23
24
24
24
24
25
25
27
28
28
29
30
31
31
32
32
32
33
34
37
38
39
39
84
84
86
92
105
106
106
107
107
108
108
108
110
110
112
112
113
114
142
145
202
202
203
203

PART 6:
APPENDIX C:

Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure 9-1
Figure 9-2
Figure 9-3
Figure 10-1
Figure 10-2
Figure 10-3
Figure 104
Figure 10-5
Figure 10-6
Figure 10-7
Figure 10-8
Figure 10-9
Figure 10-10
Figure 10-11
Figure 10-12
Figure 10-13
Figure 10-14
Figure 10-15
Figure 10-16
Figure 10-17
Figure 10-18
Figure 10-19
Figure 10-20
Figure 10-21
Figure 10-22
Figure 10-23
Figure 10-24
Figure 10-25
Figure 10-26
Figure 10-27
Figure 10-28
Figure 10-29
Figure 10-30
Figure 10-31
Figure 11-1
Figure 11-2
Figure 11-3
Figure 11-4
Figure 11-5
Figure 11-6
Figure 11-7
Figure 11-8
Figure 11-9
Figure 11-10

APPENDIX AND INDEX
LIST OF FIGURES AND TABLES

Search Form copy confirmation

Delete a Search form

Delete Search Form confirmation

Search form Deleted

Indexing the Database TestThes

Load a TForm file into database TestThes
Load TForm Specify File Name form
Creating a New User

The create New User form

The User created confirmation dialog
Deleting the user ‘Fred’

The Delete User Confirmation

The Deleted User Access Loss Confirmation
Opening Properties for the User, FREDERICO
The user FREDERICO’s user Properties form
Date Format selection box

Ignore TRIP password checkbox

Date Format selection box

Date Format Selections

Changing the date digit separator
Management privilege settings

Session parameter settings

Company information entry area
Procedures for user FREDERICO

Group membership for user FREDERICO
The Add To Group form

Access Rights for user FREDERICO
Creating a New Group

New Group dialogue

New Group Created Confirmation

Deleting a group

Confirming deletion of a group

The ‘My users’ sub-tree

The Add Group Member confirmation

The Delete Member confirmation

The Change Manager option

Change Manager Selection box

Change Manager Confirmation

Granting Access to Database CARROLL
The Access Level Form

Database Name Selection

Database Name Selection

Field and Record Restrictions

Record-level READ rights for ‘FREDERICO’
Record-level WRITE rights for ‘FREDERICO’
The Change Manager action menu option
Change Manager Selection

Carroll's Show ACcess screen

Page 398 of 416

203
204
204
204
217
218
218
224
224
225
225
226
226
227
227
228
228
228
228
229
229
229
230
230
231
231
232
232
233
233
233
234
234
234
235
235
236
236
238
239
239
239
240
242
242
245
245
246

PART 6:
APPENDIX C:

Tables

Table 0-1
Table 1-2
Table 1-3
Table 1-4
Table 2-1
Table 2-2
Table 2-3
Table 2—4
Table 2-5
Table 2—6
Table 2—-7
Table 2-8
Table 2-9
Table 2-10
Table 2-11
Table 2-12
Table 2-13
Table 2-14
Table 2-15
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 4-1
Table 4-2
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 8-1
Table 8-2
Table 8-3
Table 8—4
Table 8-5
Table 9-1
Table 9-2
Table 11-1
Table 11-2
Table 12-1
Table 12-2
Table 12-3
Table 12-4

APPENDIX AND INDEX
LIST OF FIGURES AND TABLES

TRIP naming conventions

Sample flat file table

Sample relational database tables

Sample full-text database table

Special characters

The character folding classes

Truncation, masking and special symbols
The character classes

Paragraph definition in TRIP

Sentence definition in TRIP

Field Defaults and Restrictions

Use of the record name field

Symbols used in pattern specification
TRIP’s predefined character sets

A simple pattern

A more complex pattern

More patterns

Sample combined character sets

Modifying a database design

Record contents and thesaurus design for ‘“Train’
The thesaurus template

Record contents and thesaurus design
Hierarchical relationships of the ‘Train’ thesaurus
Hierarchical relationships of the ‘Train’ thesaurus
A sample accounting file

Types of background text

Text string reserved characters

Headers

Separators

Trailers

Text string functions

Field type-dependent functions

Box and box group functions

Format functions

FOR loop functions

Structure of Olympic_Games

Date formats

Samples of <Numform> output

Anatomy of a global update command
Structure of a global update using record numbers
Generic update targets

Structure of a global update using a search result
Record update targets

Operating systems and log file names
Running the BAFINI utility

General field access rights

Unsupported combinations of access rights
Keywords for printer control files

Sample translation table

Bits flags for accounting

CHARS valid values

Page 399 of 416

14
17
18
19
41
42
43
45
49
51
58
63
66
67
67
68
69
70
73
85
87
88
89
97
99
125
125
126
126
129
131
133
135
136
137
139
158
185
207
207
208
211
211
219
220
240
241
251
252
256
264

PART 6:

APPENDIX C:

Table 12-5
Table 12-6
Table 12—-7
Table 12-8
Table 12-9

APPENDIX AND INDEX
LIST OF FIGURES AND TABLES

CONFLATOR_LANG valid values
TRIP’s demonstration databases
LANG valid values

TRIP printer control files

SORT valid values

Page 400 of 416

269
273
282
298
305

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

Index

-symbol....ccoeeiieiiiiie, 44, 66, 67, 229, 241
"SYMDBOL..ceeei 43, 47
Lsymbol......ceeiiiie, 43, 47, 125, 367
" SYMDOI ... 43
#SYMDOl ..o, 43
S symbolooeeiiiiieee 43, 374
QORTNA . ..o 379
& SYMDBOL ... 43
(SYMDOl ..o, a7
() SYymbOl.....ooovviiiiiiiiiiiii 43, 66
) SYMDOI ... 50
*SYMDOL ... 66

Symbol ... 43, 47, 229, 367
W SYMDBOL e, 66, 67
/

SYMDBOL ..o 43
[symbol..............oooeeii, 66, 67, 125, 229
11'SymbBOl ..o, 66, 67
ISYMDBOL ..., 47

SYMDBOl ..o, 50, 229

SYMDBOl .o 250
2 SYMDBOI ..evviiiiiiiiie 43, 47, 367
@ Symbol........cooooiiiii 268
[SymbOlcoovviiiiiiiiii 47
]1SYMDBOl ..o, 50
ASYMDBOL. ..., 251, 363

SYMDBOI ... 28, 125
{symbol ... 47
FSYmMbOl ... 50
+SYmMbOl ..., 43, 66, 67
<symbol ... 47,109, 114, 125
<[>, @S CONVENLIONuveeeeeeee e, 13
<APPEN> ..., 137, 146
<At end> ..., 135, 148
SBaASE> ..o 131, 149
O || T 373

fOrmMatoveeeeeeeee e 136, 150

LES)]] o [131, 152
KCASE> .. 135, 153
SCRI> ., 131, 155, 156
CCR> 45
<CR>, @S CONVENLION ...cvvviviieiiieieeeee e, 13
<SCR><LF> i 365, 367

anNd TFOM ... 364
S O1T | {0 [(=TT 131, 157
<DateforM>.....coceovieeiieieieee e 131, 158
<DEbIt> e, 72,136, 160
S > s 131, 161
SR> 45
<FF>, @S CONVENLION ...covvvnieieiee e eeeeaaeans 13
<Fieldname>.........ccooeiiiiiiiiiie e, 133

<Fieldno>c.cooviiiiii e, 133
<Fieldtype>.........ccovviiiii e 133
S O3 S (0]0] o1 J 163
<Gold>

<GOIA><E>..coveiie e, 276

<GOld><G> ., 380

<Gold><kp 9>....ciiiiii 374, 391

<Gold><Leave>........ccoccceveiiiiiiiiineiiieenn, 393
SHItHSE> v 137, 166
SHIES> e 131, 168
<If-changed>ccccooiiiiiiiiniiin. 135, 169
<If-empty> ..o 135, 171
<If-nonempty>cccoceeeiiieennii, 135, 172
<lf-unchanged>ccccoooeeiiiiiininnnnnn. 135, 173
<Indent>......oovviviiiiiiii, 111, 135, 175
SKP 1> oo 374, 391
SLEAVES ... 393
<SLF> 45, 48, 51, 64, 366
<LF>, as conventioncoeveeeeeeeeneeneennann, 13
<LINK> oo, 135, 177
<Loop variables>..........cccccceeeiiiiiiiiiien e, 137
<NL>, as CONVENLION.......coeevnvieniiiiiieiieenn, 13
SNOFE> e 136, 180
SNOI> e, 136, 181
<NOOTIG>. i 111, 135, 182
<NUMFOrM> ..o, 131, 184
SOCCS™ it 131, 186
O] g (o1 ST 135, 187
SO 110 135, 188
<PAgENO>....ciiiiiieceei e 131, 190
<Paragraphno>............cccceeeiiiiiiiiiiiiinnneee, 133
SPAMS> .. 131, 191
SPE3> 391
RIS e 131, 192
RIS e, 131, 193
<RNAME>...ciii 131, 194
<SENENCENOD>evieiieiieeeeeee e 133
<Sortfields>ccovvviiiiiiienn, 110, 136, 195
<SP>

AN TFOM .. 364
<SUbfieldNo> ..o, 133
<SUDBIA> e 131, 196
<SUBSING> ... 131, 197
<TaAb>..iiii 64, 366, 395
<Textvariables>..........ccccoevviviiiiininnns 136, 198
<TIMEforM> ..o, 131, 200
S - o S > 135, 199
VT > e 45
<Weight> ..., 131, 201
> symbol....ccooooiiii 50, 109, 114, 125
ACCDIR. ..o 254

Page 401 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

Access
database
(o] (1153 (=] G 243
defining......oeeeeiiiei . 239
field [eVel ..., 241
firsSt fOrM ... 241
general field..............ooeviiiiiiiiiiiiiiiiiiiins 240
hidden read scope........ccccccceeeiieeeeiennns 243
hierarchy of access rights.................... 243
1S3 1] o [N 245
(=T [0 I 240
read SCOPE ...oevvvvvnniiieeeereeenns 240, 241, 243
record level......ccooouvveiiiiiiiiiiiiien, 241
11 (T 240
write scope........cccvueen. 240, 241, 242, 243
PIINT e 246
SNOW e 245
Access privileges
database.......ccoooeeviiiiiiiii e, 238
ACCFLG ..., 254, 255
Accounting log
B-liN€ e 97
CliNE e 97
E-liNE e, 97
F-liN€ conieeiie e, 97
M-lN.eeie e 97
O-lNE..ceeiie e, 97
Q-lINE.ueei i, 97
R-NNE oo, 97
SlNE e, 97
U-NINE e 97
Added fields
theSAUIUS........ i 91
Adding
user group membercccevvvviviiinnnnnns 234
Administrator
database.......ccoooeeiiiiiiiiii e, 222
SYSEEIM ..o 222
Alice databaseccocovveeiennin. 12, 13, 34, 273
STaAUS .o 76
Arglen 376, 379, 380, 383, 387, 388, 389
Argstr.......... 376, 379, 380, 383, 387, 388, 389
ASE s 315
baffit
ASE e 373
ASEL e 373
ASEZ i 373
bOX-DASEd.......evieiiii 391
ENITY oo 395
L) (| 395
box-based (TRIPclassic only) 394
CCL i 373, 379
data entry

field [evel ..., 374, 375
record levelcooovvveiiiiiiiiienenn, 374, 375
data entry (TRIPclassic only)........... 374, 391
debuggingccceeeeiiiee e, 379
dIr€CtOry .ooooeeeeeeeeee 377
A | 379
field-SPECIfiCuuvvveeiiiiiiiiiiiiie 382
SUUCIUrEd ..., 383
UNSErUCtUredvveeeieeeeicieceee e, 384
form initialization (TRIPclassic only) 392
format......ccoooeviii 376
format-levelcccoiiiiii 382
form-based.........ccoeviiiii 391
form-based (TRIPclassic only)................. 392
1010 [TR 374, 387
brary ...oooeeeeeeiiie e, 376, 377
lINKING t0 TRIP ... 376
quitting form with <Leave> (TRIPclassic
ONIY) v 393
record commit
after writing to BAF....................... 393, 394
record-specifiC.....ccceeeeeeeeiiiiiiiiiiiiie e, 386
FEPOIMS .. 373, 380
RET CODE.......cuvvviiiiiiniiiiiiiiiininnnennnnnnnnn. 379
SCANIE_ASE eevvviiiiiiieeeeeeeeiiae e e e e 374
search form (TRIPclassic only)........ 375, 396
template, iIN C.....ooooiiiiii 376
TEXL NS e 380
TForm load.......coovvvveiiiiiiieieeen, 373, 382
TRIPclassic callback functions 396
TRIPkernel callback functions 396
USES Of wuveiiiiiiiicee e, 373
ASE_
CONTINUE ..., 392, 395
A | R 376, 388, 389
FIXFIELD ..o 376, 392
MESSAGEoovviiiiiiiiiiiiiiiiiiivieiieiiiiiinnns 392
NOFIELD......cuuuiiiiiieiiiieiiiiiieiieinnnnnnnnnnnnnnns 392
REFRESH..........cvvvviiiiiiiiiiiinnns 376, 379, 392
SUCCESS.........cceeeee. 376, 379, 388, 389
ASELIBS ..., 257
ASEOBI ..., 377
AT CCLuiiiiiiiiiii e, 316
AUTH_PROVIDER ..., 258
AUTO_SAVE ..., 259
Background text
FEPONS ..ot 124
BAF .o, 25, 206, 216
and general database properties................ 29
and LOAD procedure..........cccoeeevveeeenennnnn. 363
=T o I I o] 1 o PO 370
and the record name field.......................... 63
BAFFINL ..o 220

Page 402 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

BAFFIT ..o 382, 384, 385, 387
MODE.........uuuumiiiniiiiiiiiiiiiiiiinnns 384, 385, 387
Baffit
A it 373, 383
ASEL.. 373, 386
ASEZ. e 373, 386
BAFFIT_SECURITY ..o, 260
BAFFRE_TIMEOUT..........oooviiiiiiene. 261, 262
Base access
0111 246
SHOW ... 245
Basefile.....ccooueiiiiieii 25
Base File......ccooeeeiiiiiiiii, see also BAF
Base index filecccoooiii 25
Base Index File.........cccceevviinnnnn. see also BIF
Base SPEeC IeC....ccovviiiviiiiiiiiiieeie e, 386
BaseSpecRecord...........cccccovviiiiiiiiiiiiinnnn, 386
Batch
UPCALE ...t 12
BATCH
INDEX ..ooviiiiiiiiiiiiiiiiiiiniieiinsineenennnenns 277,278
[0 7 I J 278
BIF 25, 206
and general database properties 29
and the record name fieldccvvveen. 63
Bigram ..o, 26
Bin direCtory......ceeeieeeiiiiiiiiee e, 278
B-liNe .o 97
Bold, as convention..........cccccevveiiieeieeeneenn. 13
BOX e 110
(o0 0153 1 (N]=]] £ 110
definition ... 110
fUNCLIONS ..oevveiiiiiee 135
group
definition enclosures............cccceevvvvnnenn. 123
(=] 010 £ PP PTT 123
layout
defining a....ccooeeeeeiiiiiiiie e, 114
NUMDErNG........ccooiiiiiii e, 117
page level ... 142
POSItIONING ...t 117
using coordinatesccoeeeeeeeeeeeeeenn, 117
using preceding boxes...............cceeeeeeee 118
proportioning
uSing COIUMNSoiiiiiiiiiiic e, 122
using liN@Soovvveiii i 121
using lines and columns 120
reports
header.......ccoooveiiiiiiii e, 142
trailercooei e 143
SIMPIE . 114
size
=] 010 £ K= 120

specifications
directed........coovvvviiiiiiiiiiiiiiiiii 117
NONSPECITICuvviieei i, 117
Box/box group
functions
<APPENA>..cooiiiiiiiiiiieeeeeeee e 146
<at_ end>.......coiiiiiiiiii 135, 148
(07 1Y = 135, 153
<if-changed>............ccccccvveeenn 135, 169
<if-empty>...cccoooiiiiii 135, 171
<if-nonempty>.......cccccovviiiiiiinnnnn. 135, 172
<if-unchanged>.............c.............. 135, 173
<INAEeNE> ... 135, 175
<INK> oo 135, 177
S 1 [0]0] {0 P 135, 182
(0] £ [01= 135, 187
0] 1o D 135, 188
SETACE> ... 135, 199
BUT_LOCATIONcovvvvvviiviveeeeieeeeeeeeeeee 263
CALI cettiiiiieiiieiiieeeieeiiveieeeeeeeeeeenees 373, 379
Carriage return
(=] 10 PPN 125
Carroll databasecccccoevveeviiiiiiiinnnnnn. 12,273
chapter information in...............cooeeeeeeeen. 23
page information iN.............cccccvvmviiinnnnnnnns 23
records
Chapter.....coovieeeiii e, 24
MAIN .. 24
paragraph.......cccccoeiiii 24
PAT. ..o 24
STalUS...niei e, 369
Case sensitivity
and global updatingccccoeeeeeiiiiiiiinnnnn. 215
CCL
commands and reports............ccceeeeeeeennn. 145
search menu option..........cccccvvvvvvviiiinennnnn. 13
CCLASE.C ...oviiiiiiiiiiiieiivevvsvvenesaannnnennnnnnnnnes 379
CHAR SET ...ooviiiiiiiiiiiiiiiiiiieiiiiiiiininnnns 251, 252
Character folding class
and diacCritiCSvuueei e 41
and UmIautS.......cceeeeeeeriieceee e, 41
default ..., 41
ENGIISh ... 41
specificationoiiiiiiiiiii 40
SWEdiSh ..o, 41

Character masks, as searchable characters .43
Character sets

Specificationcccccvvviiiiiiiiiiii 67
Characters

control SKipoevieiii 364

diacritically-altered.............cccceevveviiiienennns 305

ignore search characters.............cccceeeeeees 50

non-printable ... 251

Page 403 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

paragraph separatorsccccceevvvveennnnnns 48
paragraph startoooovvvviiiieiieeeeeeeenns 48
paragraph terminatorsccceeeeeeeeeeenns 49
FESEIVEd ... 125
searchable.........cc.ooovviiiiii e, 43
Specialooooviiiiii 41
CHARS ... 264
CHECK ENTRY ..oottiiiiiiiiiiiiiiiiiiiiineiinennnnnnns 392
Chevron, as CoONVENtioNcoevvvveeverneennnen. 13
CHINESE...oeiee e 264, 282
CHIVOC.... ... iiiiiiiiiiiieiiiiiiiiviaeeeeeneneneaenees 265
C-liNE e, 97
O I TR 266
Cluster
Creating........oovvuiieii e e 77
deleting......oooviiieiii e, 81
MOAITYING ...t 79
Columnar QUEPULvvvveeiiiiiiiiiiiiiiiiiiiiieenes 144
COM i nrrannes 268
COMFORTER......cuttiiiiiiiiiiiiiiiiiiiiiiieieennenens 317
Command
DEfiNE it 13
EFOrm .. 35
Format......cccoooeiiiii 35
INDEX .vvvvvvvevieeveeeeeensesssessssesssssnnnnsnnnnnnnnes 217
Component
in head/part database............................. 25
Composite record.......cccooeeeevveeeviinieneennn.. 23, 25
CONFLATOR LANG ..., 269
CONFLATORS ..., 270
Constituent
DOX e, 110
Control
files
PHNTET e 250
CHAR SET ..., 251, 252
HIGHLIGHT OFF.........ceeii, 251
HIGHLIGHT ONcooovvviiiiiiiiiiieceee, 251
INIT oo 251
Keywords.........coovveeieiiiiiieeeeeeee, 250
PAGE SIZE ..., 251
QUEUE ...t 251
TRANS TAB.....coooieeiieeieeeeieee 251

CONTROL database.... 22, 223, 225, 253, 271,
303

(o70] 01 (=] 1] £ 22
Control master, and TFOrm........cccceevvvnneeen. 364
Control skip charactersccccuvvvvvvennnne 364
Control strings

anNd TFOM ... 363
CONV e 318
Conventions

S 13

SCR>. 13
<SER> 13
SLF> 13
SNL> 13
boldface........ooeveiciiii 13
ChevIoNS. ..o, 13
Courier foNtS.......cevii i, 13
TEAIC . .evveiee e 13
[OWEF CASE....cceiiveviiiiie e 13
NAMING +2eiiteeeee e e e e e e e eeaeens 14
space character..........ccccccvvvvvviiiiiiiiiiinenn, 13
UPPETI CASE ..cevveieeeerieeeeenie e e e eeees 13
Copying
records with TFormccccceeeeiieiinnn, 371
(=] 10 1 S PP 111
with global updating.............ccccvvveeennil. 214
Corr database..........ccccceeeeviiieviieiiiiinn. 12,273
aNd rePOIScoeeeeeeeeee e 114
database field numbersccccvvvennn. 366
SHUCIUIE v 366
Courier fonts, as conventionccc.ccoveeuneen. 13
Creating
(] oJ0] £ PP PPPTSRPPI 111
search formsccccvveviiiii e, 203
USI ittt ettt e e e 224
ST g0 (01U o PP 232
O I R 271
Current
date form.......cccceeeiiieeie e 228
CURRENT ITEM 382, 385, 386, 392, 394
Data
MOAEIS ... 17
normalization.........cccoeeeeeeiiiiiiiiiiee e, 18
organization, and TRIP..............cccccevvvvnnnnn. 19
Data entry
database descriptionccoeeeeeieeeeenn. 36
entry form ..., 105
default.......ooooveeei 35, 36
Data Entry FOrMScccoviiiiiiiiieeieeees 105
(070] 0)Y/ 1 o TR 106
Creatingoooveeeeeeeeeeeee e 106
deleting........ooooeeeeei, 108
Database
access
(ol [V] (] P 243
definingoovveiiiiiee 239
field level ..., 241
firstform.....ccooeiiii 241
general field ..., 240
hidden read scope.........cccccceeeiiieeniienne. 243
hierarchy of access rights..................... 243
1S 1 T 245
PrVIleges.......ouvvieiiieeeeee e 238

Page 404 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

=T Lo 240
read SCOPEccvvvveereeeenrennnns 240, 241, 243
record level.......cccooooieeiiiiiiiiiiiiieeeece, 241
L] (= 240
Write scope.......cccvvvnnnn. 240, 241, 242, 243
administrationooovveevviiciiie e, 12
adMmiNIStrator........covveeeviveeeicce e, 22
AlICE. . i 12, 34, 273
STaAtUS...ccieeiei i 76
Carroll.....eeee e 12, 273
chapter information in............ccccccoeeeeeen. 23
paragraph information in....................... 23
records
Chapter....oooooiiiiiice e, 24
0T] o [P 24
paragraph.......cccccovviiiiiieee, 24
PAIT... i 24
STaAtUS...ciiiiie e 369
cluster
reports and.......ccceeeeeeeeeieeiiiiiiinieeeeeeeens 144
CONTROL......... 22, 223, 225, 253, 271, 303
(010 011=] 0] £ 22
COIT e 12, 273
database field numbers.ccc........ 366
description
and general database properties............ 31
and STatUS.....ccoeeeeeeiiiiiiicee e, 31
design
COPYING .cciiiiiiiiiiiiiieeeeeee e 74
deleting......eveeeeeiiiiiieiiiieee s 74
MOAITYING ...coeeeeeeeeeeeeee 73
LYz V41 [PR 73
field numbers........cccoovveeeiii 366
general properties........ccccoveeeeieeeeeieeeiiinnnnn. 28
head/part
COMPONENT ... 25
head record........cccoooeveeiieeiiiiiiiie e 24
part record........ccceeeeieeeeiiiiiiiiiee e 24
(=T oT0] o R URRUPRIPPIN: 25
record entity........ccooevveeeiieieiiiiiiee e 24
management system
fUll-tEXE. e 17, 18
FEINAEXING ...uvvveiiiiiiiiiiiiiiiiiiiiiiiieiiieiieieaaees 219
relational.............coviiiiiiii i 17
responsibility, transferring....................... 245
SECUIMY e 12
TheSali..c...ooieeiiiiiiieeee e 12, 273
ThESAUN ..ot e, 83
TRIP bASICSoiiiviiieeieeieeeeeeee e, 22
what is a thesaurs?........cccceeevevveiiiieeeennnnnn. 83
Database administrator............ccccceeeeeennnn.n. 222

Database Administrator..see also File Manager
Database Cluster

Creatingcoooveeeeeeeeeee e 77

deleting........cooiiiiiiiee e, 81

MOdifyiNg......coovvviiiiiii e 79
Database Corr

SHTUCKUIE e 366
Databases

[ISTING .. 76
Date

fOIrM, CUMENT..ceeiie e 228
DATE .o 21

FESHICIONS e 71
DEBIT.LOGoveveeieeeieeeee 72,94, 95, 255
DEFATTR ..o 272
Default

data entry form.........ccccccvviiiien s 35, 36

<] o0 5P 34
Define

space character.........cccccccvvvviviiiiiiiiiiinnnn, 43
DEFINE o 13

EFOrM oo 35

Format......oovvvieiii 35

PRINTEF .uuiiiiiiie e 250
DEFINE

LPCODE ...t 252

PCODE ... 252
Definition

DOX e 110
DEIBLE . 206

L1121 o [T 206

PAragraphccccceumemiiiiiiiiiiees 206

[(=To70] (o [T 206

Y= (=] [0 = T 206

SHING oo 206

SUBfield......eiieie e, 206
DELELE . 208
DELETE ITEM..cooveiiie e 385
DELETE RECORDcoovviiviveeieeeeeei 394
Deleting

records with TFOrmcoovvviiiiivniiinns 371

FEPONMS ..t 111

(U1 = 225

USEE GIOUP ceeevieeeeetieeeeeniaeeeenineeeenineeeees 233

user group memberccccvveeiiiniiinnnnns 235
Deletion markeroooevveviiiiiiiiieceeeeeen, 371
Delimiter

TFOM e 363
Delineators, as searchable characters.......... 43
DEMO oot 273
Digits, as searchable characters................... 43
DIR e 319
Directory

ASE ..o, 377

DIN 278

Page 405 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

INCLUDE.......ccvvieeieiiiieiiiieiieeiniennnnnnnnnnnnns 376
PRC .. e 298
SAMPLES..........ooeeeii. 379, 381, 383, 390
SCratCh......ooovieee e, 303
SY S 271, 310
TRM..o, 313
DISALLOW_GUESTccoovvivivieiieeeeeeeeee, 274
DISPLAY_ORIGcoooiviiiiiiiiiiii 275
Document, and TRIPovviiiiiiiieeeeeeeen, 20
DUMP reports......cceveveeviieeeeecc e 133
EDIT (TRIPclassic onlycccccoevvennnnnn. 276
EDITOR ...oooiiiiiii 276
Editors
oY1 (=] 1 P 276
Vi 276
Element
FTEPOITS ..o 110, 124
E-lNE covee e, 97
ENGlish ..o 251, 264, 269, 282, 305
character foldingcccocveeeeiiiieiiieiiinnnn, 41
Entity
(=T oT0] o RPN 24
Entry form
data entry ... 105
Environment.........ccooooiiiiiiiieee, 12
Environment Setupcccvveeeeiiiiiiiiieiiinnn, 248
Batch Setup.......ooovvviiieiiiieeercee e, 250
Logical Names.......ccccceeveeeeeiiiviiiiiieee e, 253
Logical Names Reference Guide............. 254
tdbs.coNf..ueeii i 248
ERRLOG ... 219
ERRMAILST ..o 277
Error checking
global updatingcoooviiieiiiiiiin, 216
EXE e 278
Fmarker ..cooovieviiiiiieeeee e, 364, 365
Field
ACCOUNLING ...ovvviiiie e, 71
attributes........cooovieei i, 62
Create NEWcceuvvveeieeeie e e e 59
database reference..........cccceevveeeviieeinnnnnnn. 65
defaults and restrictions.............ccccevvvvvnnnn. 58
defin@ ASE......coooviiii i, 71
define pattern..........ccoveiiiiieeee, 66
delete.... i, 206
editordelete.....ccooevieriiiiiiiiii e, 59
elements
and reportScooevvvvviiiiiiiiiieeee 116
headcccooooiei 23
INAEX MOAEoiiiieii e 61
iNdex Settings......ccuuueeeiveeeeieeeiiiieeeeen, 61, 62
15T o A 206
layout retained.............oooeevvviiiiiiiiieeeeeeens 64

LS SRR 60
ST OF .. 60
make part field..............ooooiiiii 63
MAaNdatorycveeiiieeeeieeecee e 64
marker
TFOIMM v 363, 365
modify COIleCtionS............cccccvviiiniiiiiiiiinins 58
NAMIE Lttt e e e e eeeeees 60
Organisiationcc.coevvveviiiiiie e, 64
PAT. .. 23
record NAMEocvvveiieee e 63
record NUMDEToeviiieiiiceee e 63
record part NAMEccccuemmmmmimmmmnnninnnnnns 64
FEPIACE ..evi e 206
Set restriCtionSccvvvvvvviiiiiiiiiiiiiiceee 65
Y P e 60
DAL .. 71
desCription........ccvvvviviiiiiiiiiiiieiieeeeee 72
INtEOEN ..o 70
NUMDbBEr ..o, 70
PHrase. ..., 70
saving the designccccooeeeeviviiiinnnnn. 72,73
15 70
TN 71
types
DAL . 21
INTRIP .o, 20
PHrase ... 20
STHNG ceiiiiiiiiiieeee 21
TEXU e 20
1T T 21
Valid ValuESouvvvriiiiiiiiiiiiiiiiiiinieiiinnnnnnns 65
Field numbers........cccccvvvviiiiii 366
Field_spec reC......cccccuiiieeiieeeniinnnnn, 383, 388
Fields
added
theSaurusoovvveieiie e 91
hiddenccoooie 243
and data entry........ccccceeeeee e, 244
and reports oo 244
and searching.....ccccccevvvvviiiiiiiiiiinnnnnn, 243
read-protected...........cccceuvviiiiiiiiiiiiiiiininns 243
and data entry......ccccccvvvvvviiiiiiiiinnnnnn, 244
and reports oo 244
and searching.......cccccooeiiiiiiiiiiin, 243
FieldSpecRecord.........viiiiieiinnninnns 383, 388
File
flat .o 17
inverted, and TRIPcoooviiiiiiiiiiieeieen, 25
structures
INTRIP ..o, 25
File managerc.cccveiiiiviii e, 222
FIND_TIMEOUTcooviiiiiiiiiiiiiiiiiiiieee 279

Page 406 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

FINNishcccci 269, 282, 305
FIXFIELDcoooiiiiiiiii 393, 396
Flatfile ... 17
F-line..ooo 97
FOR loop
aNd rePOIS ...ccooeeeeeeeeeeeeee e 136
fUNCLIONS .o, 163
= 0] 01T [0 D 137
<hItliSt> .. 137, 166
<loop variables>..........ccccoeeeeieiiiiiiinnnnn. 137
Form
data entry ... 105
Format
functions
<call>.....oooviiiiii 136, 150
<debit> ... 136, 160
<NOff>.. 136, 180
<NOIf> ..o 136, 181
<sortfields>......cocevviiiieee 136, 195
<text variables>..........cccccoevvuvrinnrn. 136, 198
FOIMS oo 12
Fragment index
and TRIP ..o, 19
Freetext .. 19
Full-text database management system
(TDBS) oo 17,18
Functions
(=] 010 130, 136
DOX e 135
TEXE STING. .t 130
FUZz, and the VIF.......coooeiiiiiiieeeeee, 26
G MaArKer. ..o 364, 365
General database properties
creating the databaseceeevvvvvnnnnnn. 27
database description...........ccccccvvviiiinnnnnn. 31
database Name..........ccccvvveeiiieeeeeeeeiiinn, 28
file locationS.........ccovevviiiiiiiee e, 27
modifiying database properties.................. 33
advanced properties........cccoeeeeeeennns 52,54
files propertiesccceeevveeeiieeeiiiiieeeeee, 37
general Properties.............eeeeeevvveveeeeennnns 33
indexing propertiescccceeeeeeeeeeeeeeenn, 39
physical fileScccvviviiiiiiiiiiiiiiis 29
saving the database............cc.oooeeviiiiiinnnnnn. 32
transaction 10gcoevveiiiiiiiiii e 29
XML enabling the database 31
General Settings, Limits and Defaults......... 331
CCL Command Length Limit................... 331
Chinese GBK Character Set................... 331
Database File size Limit in UNIX............. 332
DEfine command defaults................ 332, 333
Euro Currency Symbol
Character Set........ccccccvvvviiiiiiiiiiinnnn, 331

Searcing for........vvvvvvviiiiiiiiiiiiiiiiiieee, 331
Open databases limit...............ccoeevevvinnnnn. 332
GERMaN........ccvvvvvnnnnns 251, 264, 269, 282, 305
GETLINE ..ot 392, 395, 396
GLBUPD_OPEN_DB_ONLYccccvvvvnennnnnns 280
Global updatingeeevveriiiiieiiiiiiiiiiiennns 206
and case Sensitivityccceeeeeeeeeeeeen, 215
and log file.....coooeeeiiiiiii . 216
copyiNg Witheveiiiii e, 214
DELELE ..evvvvviiiiiiiiiiiniiiiviiviiieiiiiniinnens 208, 209
error checking.........ccooeeeee, 216
examples
using DELetecoceevvveviiiiienne, 210, 213
using INSertccoooeeeiiiiiiiieeeeee, 209, 211
using UPDate.........cccoovvvvvveeeeennn. 210, 212
1N Y= o PSR 208, 209
PArt FECOIASuuuuiiiiiiiiiiiiiiiiiiiiiiiiiieee 214
[=ToT0] o K-SR 210
fArgetS .o 208
VP e 208
update
domainccovvvviiiiiiiiiiiii 209
target. ..o 208, 211
EYPE e 208, 211
ValUE ... 208, 211
UPDaALE........uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiinnnes 208, 209
upper- and lower-case letters.................. 215
using asearchresult.........cccccceeeeeeeninnnn, 210
using record NUMDErS.............eevviiiiiniinnns 207
Group
U 1Y = S 222, 243
Creatingvveeeiieeeeceeeeee e, 232
deletingoveeeiiiieii e, 233
Group member
user
AddiNgcovviviiiiiiiiii 234
deletingccoevvvveviiiiiiiiiiii 235
Groups
1S 1] [o [P USUPPPRRTPIN 237
Hashed tables...........cccooiiiii 25
Head
fleld oo 23
[(=T070] (o [23, 24
Head/part database
COMPONENT e 25
head record.........cccooeiiiiiiiii s 24
PArt FECOIM......uuueiiiiiiiiiiiiiiiiiieee 24
(=T oT0] o B SSRRRTPRRRR 25
[=ToTo] (0 I =T 0 11|V 24
Header ... 244
FEPONMS ..t 126
Header_Box
=] 010] £ £ PRSPPI 142

Page 407 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

Hidden fieldS ..., 243
and data entrycooooeeeviieiiiiiine e, 244
and reportS....ccvceeeeiee e 244
and searchingcccooeeeevvieiiiiiiiieeeeeeeeen, 243

Highlight
PIINT Lo 251

HIGHLIGHT
OFF e, 251
ON 251

HOME...... 281

HOSTINI..oooiiiiieeeee 320

Ignore search charactersccoccvveeee. 50

INCLUDE dir€Ctoryccccceevvvviiiiiinninnnnnn. 376

Indent
(=] 10 S 175

Index
files, INTRIP .oooviieiie e, 25
fragmentooovvvviiiiiiiiii 19

INDex
COMMANA...ciiieiieeeeeeeeee e 217

INDEX....oiiiiiiiii 277,278

INAEXING ...cooiiiiiiee e, 217
failed batch jobs.........cccccovviiiiiiii. 220

INIT o, 251

INSEIM....eiieiii e 206
fleld....oveeei 206
paragraph.........ccccccviiiieiiiieee 206
SENIENCE ...cvuiieiiiii e 206
subfield ..., 206

INSEert ..o 208

INteger
FESEICHIONS ...vvviviiiiiiiiiiiiiiiiiiiiei e 70

Interval
and values list.........ccceeeeeeeeei, 70
in PHrase pattern...........cccccevvvveeevienenennnnns 67

Italic, as conventioncccccevveveieeeieeeneeenn, 13

IX databasename unique ID.log................. 219

LANG ..., 269, 282, 305

LAtIN L oo 251, 264

LAtIN 2 oo 251, 264

LAtIN 3 .o 264

Layout box
defining a.....ooooviiiiiiii 114

Layout retained
AN TFOM .. 365, 366

LD databasename unique ID.log................ 219

LDAP_ANONYMOUScccoiiiriiiiieeeeienn, 283

LDAP _BASE.....ccoi i 284

LDAP_MATCH. ..ot 285

LDAP_MECHANISM..........cccovviiiiiiiiiiee 286

LDAP_PASSWORD.........ccccvvvviiieiiieeeeee 287

LDAP_SEARCH ... 288

LDAP_SERVER........cccccciiiiiii 289

LDAP_TIMEOUT ...ccovvivevviieeeeeeeeeeeeeeeeeeeee 290
LDAP_USERNAMEcccccciiiiiiiiiiiiiiinn, 291
Length
MATKET ... 371
Letters, as searchable characters................. 43
LI databasename unique ID.log.................. 219
Linefeed
=] 010] £ £ PPN 125
List
values and intervals.............cccvevveeeeeeninnnnn. 70
Listing
databases........ccccoeviieiiiiii 76
OIOUPS «eeeeeeei et e e 237
LOAD ..oooiiiiiiiiiiieei 278, 363
Loading and Indexingcccceeue. 217, 218
LOG ..o 292, 321
Log file
and general database properties................ 29
NAMING ..o 219
Logical Names
ACCDIR ..oviiiiiiiiiiiiiiiiiiieireeeeeeerrenrenr. 254
ACCFLG.....cuteiiiiiiiiiiiiieiieieninnnnnnnnnnn 254, 255
ASE ... 315
ASELIBS ..o 257
) I X O 316
AUTH_PROVIDER.........ccuviiiiiiiiiiiiiiiinnnns 258
AUTO_SAVE......ouuiiiiiiiiiiiiiiinnneninnnnnnnnnnnes 259
BAFFIT_SECURITYoovviiiiiiiiiiiiiiiiiiinnnns 260
BAFFRE_TIMEOUTccceeeenn. 261, 262
BUT LOCATION.....ccooeiieiiee e, 263
CHARS.........c o, 264
CHIVOC ..., 265
CLS ., 266
COM. i, 268
COMFORTER ..., 317
CONFLATOR LANG.......ccoeeiveiiiieeiiee, 269
CONFLATORS.....cco i, 270
CONV .o, 318
CTL e, 271
D N I 272
DEMO ..o, 273
DIR 319
DISALLOW_GUESTcccvvivivviiiieeeeeiinn, 274
DISPLAY_ORIG.....ccuvvviiriiiiiiiiieeniinnnnnnnnns 275
EDIT (TRIPclassic only)ccccceeeeieeeee. 276
ERRMAILST ...ovviiiiiiiiiieiieiiieiiieienneinnnnnnnnns 277
EXE . 278
FIND_TIMEOUT ..., 279
GLBUPD_OPEN_DB_ONLY 280
1 281
(O 1S I || 320
Y 269, 282, 305
LDAP_ANONYMOUS.........oovvviiiiiiiiiiinnnns 283

Page 408 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

LDAP_BASE......cooiiiiieiieeeeeeeeeee 284
LDAP_MATCH ..o 285
LDAP_MECHANISMccccoviiiiiiiiineeenn, 286
LDAP_PASSWORDcccccovviiiiiiiiineenn, 287
LDAP_SEARCHcccviiiiiiiiiiiiieeeee 288
LDAP_SERVER........cccooiiiiiiiiiieee 289
LDAP_TIMEOUT ...t 290
LDAP_USERNAMEccccooiiiiiiiiiineeenn, 201
LOG. . 292, 321
LONG_PHRASE.......ccooiiiiiiiiiieeee, 293
MAP .. 322
MAP_DIR ..oooiiiiiiiiiiiieeeeeeeeee 323
MAX_ALLO_MEMcccovveiiiiiiinns 294, 295
NO_GLBUPD_INDEX........cccocoiuiriiereenn. 296
PRC... e 298
PRINT . 299
PRINTUSER........ooiiiiiiiiieeeeeiieeee 300
PUTBAF_TIMEOUTccoviiiiiiiiiiiieeeennn, 301
RESTART ..ooviiiieiiieeeee e 302
SCRATCHoiiiiiiiiiiiiiiiee e 303, 324
SIF 304
SORT e 305
SPAWN ... 306
STO_LOCATION ...cooiiiiiiiieeee e 307
STOP_WORDSoooiiiiiiieeeeee e 308
SUPERMANoooiiiiiiiiiiiiiiiiieeees 222, 309
SY S 310
TDBS_

EDIT oo 276
TDBS_HOMEoovviiiiiiiiiiiiiiiiiieee e 281
TERMINAL (UNIX only) ...ccvvviiieiiieinines 311
TERMLM ..o 312
TIMEOUT .. 325
TRIPclassic onlycccccoceeeiiiiiiiiieiiiinn, 276
TripDaemonHOSt............cccooevviiiiiiiiiiinn, 326
TripDaemonPortccccceviviiiiii, 327
THPNEtPOrt ... 328
TRM (UNIX 0NIY) oo 313
TRMBUFSZ ... 314

UNIX only 311, 313, 319, 320, 322, 323, 324,
329

UNIXLOGIN....cuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiens 329
Windows onlycoeevviceeiiiieeeeeenns 326, 327
Logical Names (TRIPclassic only)
EDIT e 276
Logical Names (TRIPserver).........cccccuueeen.. 315
ASE ..o 315
AT _CClLuiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeee 316
COMFORTER ..o, 317
CONV .. 318
DIR e 319
HOSTINI ..o 320
LOG .. e 321

MAP e 322
Y e | 323
SCRATCH ..., 324
TIMEOUT oo, 325
UNIXLOGIN ..o 329
Logical-names
OVFBUFSZ ..., 297
LONG PHRASE......ccccooiiiiiiiieiiiiee e, 293
Lower case, as CONVENLIONovvvuvevnverneennnns 13
Mail MeSSagES......cccvvvvvviiiiiie e, 277
Y/ E= 1T A =ToT0] (o 23
TFOMM e 369
Manager
file .coovonn... 222, see Database Administrator
privileges
INTRIP o 22
responsibility, transferring..............cccc.... 245
SYSIEBM..eiiiiei e 22,222
U< ST 22,222,223
MAP 322
MAP_DIR ..o 323
Marker
deletioN......oveeeieee e, 371
field
TFOMM e 365
[€NGLN e 371
record
(1= 0 0 1< 371
name, TFOrmcocooviiiiiiia 365
part, TFOrmcooviiiiiiii e, 365
TFOM e 365
sentence, TFOM ..o 366
subfield, TFOIMooooveeieeee e, 365
ZEero
LE[=] o [T 371
[f<To70] (o [370
MAX_ALLO MEMcccovvveeiiiiiiiiiiinn, 294, 295
MESSAGE.........ccoi i, 386, 393
Meta-recordcooveeeeeeiieieeiiaeis 20, 23, 25
M-TINE e 97
MODGCONcotieeee e 271, 303
MULtINALIoONAlcevnvieiieeeeeeeeeeee e, 251
N MATKET . ..eieiee e 365
Name
(U 1S 224
Naming conventionscoevvveeiveiinneeenn. 14
AAtaDASEoevieeeieeeeeee 28
Natural language text...........cccccvvvvviiiiiinnnnnn. 19
NO_GLBUPD _INDEX........cccccvvvvvviiiiiiieenn, 296
NORwegian.........cccccceeeeee.. 251, 269, 282, 305
NRX field ..oeiieeiieeeee e, 87
NUmber
FESHICHIONS vt e, 70

Page 409 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

Numbering
00) 117
O-lIN@ . 97
Olympic_Games database......................... 139
SHUCKIUIE e 139
Operators, as searchable characters 43
Output
116 [T 142
Output Format Reference Guide................ 146
Output in columns
(1] 0L 4= PP 144
OVFBUFSZ.......oovveiiiiiiiiiiiiiiiiiiieiinnnnnnnnnnnnes 297
Pmarker ..o, 364, 365
Page
CONIOL. e 142
level
010) QP 142
PAGE SIZE..........cccoiiii, 251
Paged OUtPULcooviviiiiiii 142
Paragraph
defining a.....ccooceeeeiiieiie e, 47
delete.....oooviiiiiii 206
S]] S 206
marker
TROM.. e 365
parse checkboXcc.oooiiiiiiiiiiiiiieiniein, 48
(1=] 0] = 1oL D 206
S1CT 0= L= 1 0] £ T 48
start character..........cccovevvviciiiieen, 48
1ermMiNAatOrS.....coie e 49
Part
fleld....ooeeeeeeeeee 23
((<ToT0] (o TP 23, 24
Part record
global updating ..., 214
Pattern
PHrase field........cccccooeiiiiiiiee s 66
PHIrase. ..., 20
PHrase field
PALLEIN .o 66
pattern interval............ccccevvvviieiiiiiiniiiiiinns 67
Positioning
DOX e, 117
using coordinatescccccceeeieeeereeenns 117
using preceding boxes................cecece. 118
PRC . 298
PRC direCtory ... 298
Print
ACCESS ovuiin ittt 246
base access........oovvviiiiiiiiii 246
OIOUP ceneeeie et 237
Highlight ..., 251
PRINTEF ...ttt 250

USEI et ee e e e e e e e e e e e e enne e 237
PRINT oo 299
Printer

control fileseeeeieeiiii e, 250

Fa = = 298

S d = 4 298
CHAR SET...coovvvvvvvveivveeeeeeeeeee 251, 252
HIGHLIGHT OFFccoooiiiiiiiieieeeee, 251
HIGHLIGHT ONooooiiiiiiiiee, 251
INIT 251
Keywords.........ooooveiiiiii, 250
PAGE SIZE ..., 251
QUEUE ..o 251
TRANS TABcoviiiiiiiiiiiiiiiiiiiiiiiiinininnnns 251
QUEBUES .uieieeei e et e e e e e e e e eeas 250
CHAR SET...coovvvvviiiviiiiiiiiiiieee 251, 252
HIGHLIGHT OFFcccooeiiiieiieeeeee, 251
HIGHLIGHT ONcoooeiiiiieieeeeeeeeeeee, 251
INIT e, 251
Keywords........cccceeeieieiiiiiiee e 250
PAGE SIZE ..., 251
QUEUE ..o 251
TRANS TAB.....ovviiiiiiiiiiiiiiiiiiiinnninnnnnnnns 251
PRINTUSER........cooviiiiiiviiiieeeeeeeeeee 300

Privileges

database acCesscccccvveeeeeeeeeeieiniiinnnn, 238

firstaccess formcccceeeiiiiiiiiiiiiienn, 241
Procedure

MODCON......ooiiie e, 271
Properties

U 1Y = S 227, 228
Proportioning

box

USiNg COIUMNS ...ueiiieeicceee e, 122
using lines ..., 121
using lines and columns....................... 120
PTRLPRN...ccoo e, 250
PTR2.PRN.....cooiiiiiiiiiii 250
PUTLINE ... 392, 395, 396
PUTBAF_TIMEOUToovvvviviieiiiieieeeeeeee 301
Q-lINE. i 97
QUEUE. ...t 251
Queues
PHNTEN ... e 250
CHAR SET...covvvivviviviiiieeeeeeeeeee 251, 252
HIGHLIGHT OFFccoeeiiiieieeeeeeeee. 251
HIGHLIGHT ON ..., 251
INIT e 251
KeyWords........cooovvviiiiiii, 250
PAGE SIZE ... 251
QUEUE ..o 251
TRANS TAB....ooviiiiiiiiiiiiiiiiiiiiniinnnnennnens 251
Rmarker.....cccooeeeiiiieiiiiceie e, 364, 365

Page 410 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

Read protectioncccccceevviiiiiiiiiiiinnnnnn, 243
and data entrycooooeeeviieiiiiiine e, 244
and reportS....ccvceeeeiee e 244
and searchingcccooeeeevvieiiiiiiiieeeeeeeeen, 243

Record
(o0] 1 0] 00 1] (= 2 23, 25
delete . 206
description of a

in head/part database............................ 25
BN e 24
head ... 23, 24
=V o TS 23
marker

TROM. e 365
[41=] = 20, 23, 25
=10 01 P 63
name field.........ccieei i 63
name Markerceeeeieeeeereeeeiiiiee e 371
name marker, TFOrmccovvivviiienrennnns 365
name Value..........ccoeeeeeieeeeiieeiiee e, 63
number field.........cccooeei i, 63
PAIt ... 23, 24

marker, TFOrM.....ccovvvviiiiieeie e, 365
part name field...........ccccevvveiiiiiiiiiiiiiiis 64
part, TFOrmM.....ccooooiiii e, 369
unit, in head/part database 25
S = 225

Records
copying

with global updating.................eevveeennes 214

With TFOrm ..o, 371
deleting

WIth TFOrM ..., 371
global updating........ccccccceeeiiieiniiieiin, 210
INTRIP (e 22
part

global updatingeevvvvveviiiiiiiiiiiinnns 214
replacing with TFormccccceeeeeeee. 370
updating with TFOrmccccveeeeeeenn. 370

Reindexing........ccoovveeeiiiieiiiiiii e, 219

Relational database management system
(RDMS) ..o 17

Replace ... 206
1] o 206
paragraphooooeiiiiiii 206
SENEENCE ... 206
SHING e 206
subfield ..o, 206

Replacing
records with TFOrm........ccccooevvviiierinnnnnnn. 370

REPOIS ... 109
A desCritptionccovveeeeiieeicee e 109
and database clusters............cccoeeeeeeeeen. 144

and database COIT...........cccceevveeevvveeiinnnnnn. 114
and FOR I00OPS ...cooovevviiiiiiceee e, 136
and specific field elements....................... 116
background text............ccoeevviiiiiiiiieennninn, 124
box
fuNCtionsS.......cccoo v, 135
OFOUP et 123
SIZE et 120
carriage returN........ooeeveeevieee e, 125
(070]0) Y1 1o TSRO 111
Creatingcooveeeeeeeee e 111
default ..., 34
deleting........ooooeeeeee, 111
AUMP s 133
elementoooevveeeee 110, 124
fUNCLIONS ... 130, 136
= 1] 011 [0 b 137, 146
<at end>.......cociiiiiiiii 135, 148
<bASE> ... 131, 149
<call>—formatcoovvevvieeriniinnnns 136, 150
<call>—text string.........cccceeeeeeeennn. 131, 152
CCASE™ .ot 135, 153
<Chr>..oviiiiiiiii 131, 155, 156
<curdate>.......cccccvvvviiiiiiiiiiiiieee 131, 157
<dateform>.........ccccccevvviiiiiiinnnnnnn, 131, 158
<debit>......cooiiiiiii 136, 160
S | B 131, 161
<fieldname>ccccovvieeen i, 133
<fieldNO>ccovvi i, 133
<fieldtype>coovvvvvvviiiiiii 133
<FOR> l00PS. .ot ieeeeeeeiviieee e 163
<hithist> ... 137, 166
<ShItS> oo 131, 168
<if-changed>............ccccoovieeenn 135, 169
<if-empty>...cccooiiiiii 135, 171
<if-nonempty>.......ccccccvviviiiinnnnnn. 135, 172
<if-unchanged>............ccccccco...... 135, 173
<INAGNE> ..o 135, 175
<NK> oo 135, 177
<loop variables>...........ccccoooiiiiiiinnn. 137
<NOff> . 136, 180
<NOI> e 136, 181
S 1 [0]0] 1o D 135, 182
<NUMFOIM>...ieieii e, 131, 184
COCCS™ ittt 131, 186
(0] £ (61 135, 187
0] o D 135, 188
<PAGENO> ..ot 131, 190
<paragraphno>..........ccccceeevieeeeiinninnnnnnn. 133
SPAMS> .. 131, 191
S 10 131, 192
S 15 131, 193
SINAME> ..t 131, 194

Page 411 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

<SENTENCENO>.....cviviiiieiceeeeee e 133
<sortfields>.....ccoccevieiee e 136, 195
<subfieldno>........cc.ccoveiiiiiiiiieen, 133
<SUDId> oo 131, 196
<SUDSEING>..covviiiieeeeeeee e 131, 197
<text variables>..........ccoccoervenrinnnns 136, 198
<timeform>cooevviiiiiiiiiiieens 131, 200
1 1= 107 135, 199
<weight>....oiiiii e, 131, 201
headeroovviiiii 126
header_boX.........oovvviiiiiiiicee e 142
10T =] | S 175
INefeed.......ooeniiii s 125
output in columns.........ccccceeeeieeeeiieeiiiennn, 144
reserved characters inccoeeeevvneeennn. 125
SaMPle......oooeiiii 133
SEPATALONeiieeiieeeee e 126
series of spaces ortabs............ccceeveeeen. 125
specification filecccccevii, 114
text functions
field-dependent..............ccoovvviiiiiennnnn. 132
TEXEINSEIS . ceveiiiee e 130
text strings
field-dependent............cccvvvviiiiiniiiniinns 126
field-independent............ccccevvvviiiiininnns 129
tiMeStampP . ..ccei i, 116
LU= 11 [S 129
trailer_boX....coooooeiiiiiiiie 143
TStAMP .o 116
Reserved characters..........cccoeeevveeeieneeennn.. 125
FSYMDBOL ... 125
[SYmMDBOl ..., 125
SYMDBOL e, 125
<symbol......ooooiii e 125
> SYMDBOL .. 125
RESTART . 302
Restrictions
DALE e 71
1N (=0 =] 70
NUMDBEN .., 70
TIME e 71
to valid Values..........covvviviiiiiiiieeeeeee 70
R-lNE e 97
ROMaAN ... 251
S MATKEE oo 364, 366
SAMPLES directory 379, 381, 383, 390
SCANASE.C...ovviieieee e 390
SCaNit_aSE......ccvveviiiiiiieeeeeeee e, 374, 388
SCRATCH ..o, 303, 324
Scratch directory........cooovveviieeiiiiies 303
Search form
(o (=T 111 o TR 203
Searchable characters...........coooevvvviiiinnnnnn. 43

and 'symbol ... 43
and ! symbol.............cciiii . 43
and " symbol............ooiiiiiii . 43
and # symbol............ccciiii 43
and $ symbol........ccccooiiiiiiiii 43
and & symbol...............co 43
and () symbol.............co 43
and . symbol............ccciii . 43
and /

SYMDBOI oo, 43
and ? symbol.............co 43
and +symbol...............oo 43
and character masks.........cccoevveevrvieeiennnnnn. 43
and delineators..........ccccceeeeeeeeeeeeeeeeeeee, 43
and OpPeratorscooeeeeeevveeiiiieee e, 43
and sentence separator defaults 43
and space character.............cccceeeeeeeeeeeen. 44
and truncation symbols...............ccceeeeeen. 43
and word masksccevieiiiiiennn, 43

Security
databaseccccoeiiiii 12
Sentence
Delete...ouiiiiii i 206
S]] o A SSPPSRRR 206
marker

TROM o, 366
FEPIACE ..uvi e 206
SEPANALON ...eeeee e 367
separator defaults, as searchable characters

... 43

Separator

(=] o0 1 P 126

SENLENCE. . .uuii it 367
Series of spaces or tabs

FEPONS ..ot 125
Session index file........ccoveeviiiiiiiiiii e, 26
SETENTRY ..ovviviiiiiiiiiiinnnns 392, 393, 395, 396
Show

BCCESS .. eeieti e ettt e ettt et 245

base accessceeeiiiiiiiii 245

OFOUP cere ettt e e e 237

U= PP 237
SIF . 26, 95, 97, 302, 304
Simple DOX....cooov e 114
S-lNe 97
1@] [305
Space character

aS CONVENLION ...vvuiiiieeeeicceiiiee e 13

defining......ooooeeiie, 43
SPAWN ...ooiiiiiiiiiiiiieiiiieeerereeeeenennnnneennnnnnnene 306
Specification file

FEPONMS ..t 114
SOL e 18

Page 412 of 416

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX
Start
module, user profilecccevviiiiennnl. 229
STatus
and database Aliceccooeoevviiiiiiiiinnen, 76
STO _LOCATION .covvviiiiiieeiieeeiee e, 307
STOP_WORDSooeciiiiiiiiiiiiiieee e, 308
String
delete..cuniiiiii e, 206
(=] 0] = 1ot T 206
STHNG ceeeiieei e e 21
Structured query language............cccevvveennnes 18
Subfield
[0 (<1 [(T 206
1 TY=] o 206
marker
TFOM. e 365
FEPIACE. .. .uuiiiiiiiiiiii 206
SUPERMAN ..o 222, 309
SWEdish.......cccoeeeeeee. 251, 264, 269, 282, 305
character foldingcccocveeeeiiiieiiieiiinnnn, 41
SYMDBOl ..., 13, 47, 50
S S 310
SYS direCtory......ccuveeeiiieeeieieeiceeeeeen, 271, 310
SYSvariableoovviiiiiii e, 255
System
TRIP baSICS .ccvniiiiiiieeeeeee e, 17
SYSTEM...oiiiiiiieee, 98, 222, 226, 245
System administratorccccceeeeeeeeeeieenn, 222
System 10gginguvvvvvrimmiriiiiiiiiiiiiiiiiiiiinennns 94
ACHVALING oo 94
l0giCalS ... 94
field COSES ..o 94
file format.......c.ooueiiieiiiiii e 96
System manager........ccoeveeeeveeenieeennneenn. 22,222
Tab
AaS CONVENLION ..ceviieieieeeeeeee e 13
Table
hashed.........ccoooiviiii 25
translation.........ccoevvveeiiiei e, 251
TBS _
ASE .o 315
AT CClLuuiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeee 316
COMFORTER ..., 317
CONV L 318
DIR oot 319
HOSTINI...iieiiieee e 320
LOG ..o 321
MAP . e 322
MAP_DIR ..ooovivieieeeeeeeeeeeees e 323
SCRATCH ... 324
TIMEOUT .oeeeeeeee e 325
UNIXLOGIN ..o 329
tdbs.conf........ceeeeennein 248, 255, 300, 377, 378

TDBS . 253
ACCDIR ..ooiiiiiiiiiiies 94, 254
ACCFLG......ccvvirieiriiiiinins 94, 95, 97, 98, 255
ASELIBS ... 257, 376, 377, 378
BAFFIT_SECURITY ..o 260
BAFFRE_TIMEOUTccovvviiiinnnnn. 261, 262
BUT_LOCATION...covtiiiiiiieeeeieeenn e 263
CHARS......coo 264
CHIVOC ..., 265, 266
COM. ., 268
CONFLATOR_LANG........eiiiieeeiiieeiiienn, 269
CONFLATORS. ... 270
L P PPTPTPT 271
DISPLAY_ORIG ..., 275
EDIT 276
EDIT 276
ERRMAILST ..., 220, 277
EXE .. 278
EXE/DAfINI ..evvvviiiiiiiiiiiiiiiiiiiii 220
FIND_TIMEOUT ..ot 279
LANG .o 282
LOG i, 219, 292
LONG_PHRASEcccoeeeeeee. 293, 294, 295
NO_GLBUPD _INDEXcccovviiiiiiiiiene. 296
OVFBUFSZ ... 297
PRC ., 250, 251, 298
PRC:DECSWE.PRC.........cooiiiiee 252
PRC:IPTRLI.PRN ..o 250
PRC:IPTR2.PRN ..ottt 250
PRINT e, 250, 299
PRINTUSERcoooiiiiii e 300
PUTBAF_TIMEOUT ... 301
RESTART ..o 302
SCRATCH ..o, 303
SIF 95, 304
SORT e 305
SPAWN ...t 306
STO_LOCATION.....ccviiiiiii e, 307
STOP_WORDS.......ccoii e, 308
SUPERMAN ... 309
SY S 94, 310

TERMLM.258, 274, 283, 284, 285, 286, 287,

288, 289, 290, 291, 312

TRM o, 313

TRMBUFSZ......cooviiieieeiieeeeeee, 314
TERMINAL (UNIX only) ..coouveiiiiieiiiieiiiiinnnn, 311
TERMLM ..o, 312
Text

L (=TT 19

natural language...........coovvveeiiiiiiiineeeeeees 19
TEX e 20
Text functions

reports

Page 413 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

field-dependent............ccccvvviiiiiiiiininnns 132 copying records With..............ccooeeeeeeeeen. 371
TeXtINSEIS ...covvviiee e e, 244 deleting records with................coevvvivinnnnnn. 371
(=] 00] 1 T 130 deletion marker..........cccccvvvieeiieeeeeeeeiiinnn, 371
Text string Farker....ooooeieiieiieeeieeeeiies 364, 365
definition of, in TFormccooevevviiniennnenn. 364 field markercooevvviveiinninnnns 363, 364, 365
functions G marker ..ooocvveeeiieiiieeeeee e, 364, 365
<baASE> ..o 131, 149 (0 F= 1 W (=T oT0] (o I 369
<CAl> . 131, 152 N MATKET . 365
CAI> i 131, 155, 156 P marker....ooooeiiiiiiiiiiieiieiieeiies 364, 365
<curdate>......ccceeeveeeerieeeiiiiee e, 131, 157 paragraph marker............cccccveieiiiieeeenennn, 365
<dateform>..........cccccciiiiiiiinnnnnnn. 131, 158 paragraph/subfield marker....................... 364
<> 131, 161 paragraphs and sentences in 367
<fieldname>.........cooooviiiiiiiiiin, 133 Rmarkeroooovviviiiiiiiiieiieeei 364, 365
<feldNO™ ..o 133 record Marker.......coeveeeeeeeeeeieeenneen, 364, 365
<fieldtype>......cccooeeiiiiiiiiii e, 133 record name marker..........cccceeeeeeeeeeennnn, 365
<NIES> oo 131, 168 record Part........ccooceeeeeeeeeeieeiiee e 369
NOTF> e, 136 record part marker..........cccooeevvvvnnnnn. 364, 365
<SNUMFOIM> i 131, 184 replacing records with................cccccvvnnnns 370
0 10 015 131, 186 SMarker...oocvviiiiiiiiieieeee e, 364, 366
S 0= (0[] 0 [0 131, 190 sample fileoveeeniiii 368
<paragraphno>..........ccccceeeveeeeniieninnnnnn. 133 sentence marker.........cccceeeeeeeeeeiinnn, 364, 366
S 0= 1 131, 191 subfield marker.......cooooeiiiiiiieieeean, 365
[TR 131, 192 text string, definition of.........................l 364
<S> it 131, 193 updating records Withcccccvvevnnnnns 370
INAMES e eeens 131, 194 zero field marker.......ooovvvviiiviiiiiieieeeen, 371
<SENLENCENO>......ccoviviiiiiiieeieeeeeeeeeeeee 133 zero record markercccceeeeeeeeeeeeeeeee, 370
<subfieldno>........cccccoiii 133 The Environment ..., 247
<SUDbd> oo 131, 196 Thesali databaseccocoevviiiiiinnnnn, 12, 273
<SUbStiNg>......ccovvvviiiiiiiiiie 131, 197 TRESAUN «.ceveiviieeeeeee e, 83
<timeform>cooveeieieeeeeeee, 131, 200 WAL IS i 83
<WeIght>...oooceiieee e, 131, 201 Thesaurus
(=] 0]0] 4 & TSP 130 added fields......cccoeeveeeiiiiiiieee e, 91
Text strings Creatingooovvviiiiiii e 86
and ! symbol ... 125 data layout........cccooeeeeeiiiiiiiiiee e, 87
and / symbol ..., 125 design
and _symbol ..., 125 character Setscccvvvvviviiiiiiiiiiiiiieee, 91
and < symbol ..., 125 defaultsooovvvvviiiiiiiiiiii 91
and > symbol ..., 125 desCription......ccooooeeeiiiiiice e, 91
and TFOMM ..o, 364 field definitioncccooeeiiiiiiiiiiiiiins 91
reports general propertiesccceevveeeeiieeiiinnnnnn. 91
field-dependent...........ccccvvvvviiiiiiiiiniinns 126 other properties........cccccvvvvvvvviiiiiiiinnnnnn, 91
field-independent............cccevvvviiiiiininnns 129 special fields ..., 91
TEXTASE.C..oriiiiiieeee e 381 deSigN oo, 91
TFOFIELD.C..ooiieeeeeeeeeeeeeeeeeeeeeeee e 383 example.........ccooe, 84
TForm filiNG e 92
and <CR><LF>.......ccccocevvuinnn. 364, 365, 367 data entry......ccoooeeeeeiiii e 92
and <SP> ... 364 TROM e 92
and character SetS..........cccccvveeiieeeeeeeenns 264 SHUCIUIE e 87
and control master...........cccoeeeeeeveeeeeeeenn, 364 TOP LEIMS Lo 86
and control Stringscoviceiiiieeeneeeees 363 TIME e 21
and layout retainedcc.......... 365, 366 (Y1 103 1[0 ST 71
and text Stringscooovveveivieeeiien e 364 TIMEOUT ..o e, 325
and the BAF........cccooiviiiiiiieiie e, 370 Timestamp

Page 414 of 416

PART 5: APPENDICES, LISTS AND INDEX
APPENDIX C: INDEX

(] 0L 4= PP 116
Top terms
thESAUIUS.....cevviviiiiiiiiiiiiiee 86
Trailer
(1] 0L 4= PP 129
Trailer_Box
(] 0L 4= PP 143
TRANS TAB...ooiiiie e 251
Translation table ..., 251
THQramM .. 26
TRIP
and inverted file organization 25
database basics...........cccccoiiii 22
iNdeXx fileS iN........veiiiiiiiiiiiies 25
jumptable.......ccoooiiieiiii 377
manager privilegescoovvviiiiiiieeeeeeeenns 22
Naming CONVENLIONS...........uuvvvvveenienenneninnns 14
=T oTo] o (3N o 1R 22
SYStem basiCS ... 17
system data dictionary see CONTROL
TRIPmanager navigationcccuuee... 16
TRIP 253
AUTO_SAVE ...ccoovvviiiiiiiiiiiiiiiiiiieeeeee, 259
[N I 272
3] =1V 273
TERM ..o 311
TERMINAL ..o 311
TripDaemonHOSt............coovivieiiieeeieeeien, 326
TripDaemonPoOrtccooeeeeieiieiieeeeeeeeeeeen 327
THPNEtPOIT ... 328
TRM (UNIX ONlY)...vieeiieeieeeeeeee e 313
TRM dir€CtOryovvueiiieeeiieiiieee e, 313
TRMBUFSZ ... 314
Truncation symbols, as searchable characters
... 43
TStamp
(=] o] 1 €= TSP 116
U-lINe oo 97
UNIgramoouieiiiieeeieeecee e 26
UNIXLOGINcooiiiiiiiieeee 329
UPDAE ... 208
Updating
global....... 206
and case sensitivitycceeveeeeinnnnn. 215
and log file.......c.ooooiiiiiiiii 216
copying With........oooeiiiiii e, 214
DELEetecoooeeeeeeeeieeeeeeeeeeeeeee, 208, 209
error checking........cccccvvvviiin, 216
INSErt.. .. 208, 209
part recordsccevveeeeiieeiiiiii e 214
targets ..o, 208
VP e 208
update

(o (o]0 =] o 209
target v, 211
VP e, 211
VAIUE .. 208, 211
UPDate ... 208, 209
using asearchresult....................ooo. 210
using record nuUMbers.............ccceeeeeenn. 207
Upper case, as conventioncccceeeeeene.. 13
User
administration ..., 222
Creatingcooveeeeeeeee e 224
deleting a........coooeeeeieee, 225
L= 3 o O 223
[0 (o0 | o J P 222, 243
Creatingcceeeei i e 232
deletingveeeiiieeiie e, 233
member, addingcceeiiiiiiiiniieens 234
member, deletingccceeeieiiiiiniiinns 235
individualccccoeiiiiiiiis 222,223
NAIME .ot 224
PASSWOId........coevviiiiieii e 224
PrINT .o 237
Print USEr group......cccccuevevmmmnnnnninnninnnnnns 237
PrOPEILIES ... 227
=T ot 0] o SRR 225
responsibility, transferring........................ 235
SNOW .o 237
ShOW USEr groupocevvvveeeeeeeeeeeeiniinnnnn. 237
USEI GrOUP...ue et 222
User manager.........ccoeeeeevneeennnaen. 22,222, 223
User profile
date form separator characters................ 228
start moduleoooovviiiiiiii 229
USEer pPropertieS........coeuvveeeiieeeeeeeeiiicieee e, 228
company informationoeeeeeeeen. 230
full name.....ccooi i, 228
groups list.....cooeveeeeeiii, 231
ignore TRIP password...........cccceeeeeeeeennn, 228
login procedure............ccevviviiiiiiiiieeeeeeenin, 229
PriVIlEgeScooiiiiiiei e 229
procedures list..........cccoeuuiimiiiiniiiiiiiiiinnns 230
FGNES ST 232
SESSION parameters........cccccvvvvvevvvieeeeeeen. 229
start module ... 229
Values and intervals list...............cccceeviennnnnn. 70
VIF 25, 206
and general database properties................ 29
Vocabulary index file...........ccoooeeiiii, 25
Vocabulary Index File see also VIF
Word
masks, as searchable characters............... 43
WRITE MESSAGE ..o, 392

Zero

Page 415 of 416

PART 5:
APPENDIX C:

field marker

APPENDICES, LISTS AND INDEX
INDEX

371 record marker

Page 416 of 416

	About This Guide
	Scope and Assumptions
	End User License Agreement
	The TRIP Documentation Library
	The Structure of this Guide
	Conventions Used in this Guide
	TRIP Naming Conventions
	TRIP Logical Names

	Part 1: Database Administration
	Chapter 1: Fundamentals
	Navigation within TRIPmanager
	TRIP System Basics
	Introduction
	Data Models
	Flat Files
	Relational Database Management Systems
	Full Text Database Management Systems
	Indexing the Data

	Data Organisation
	TRIP Field Types
	The CONTROL Database
	TRIP Manager Privileges

	TRIP Database Basics
	Records
	Figure 1–3 Head and part records in a database
	Figure 1–4 Carroll’s head/part record structure
	Figure 1–5 A head record
	Figure 1–6 A part record
	Figure 1–7 A record entity
	Figure 1–8 A composite record
	Figure 1–9 Record components

	File Structures
	The BAse File (BAF)
	The Base Index File (BIF)
	The Vocabulary Index File (VIF)
	The Session Index File (SIF)

	Chapter 2: Databases
	Notes on File Locations
	Creating the Database
	Figure 2–1 New Database Wizard
	Figure 2–2 New Database General Properties

	General Database Properties
	Database Name
	Figure 2–3 Database Name Entry Field

	Physical File Locations
	Figure 2–4 The Database File Location Selection Boxes
	Creating TRIP Logical Names

	Transaction Log
	Figure 2–5 Transaction log selection

	XML Enabling the Database
	Figure 2–6 XML Enabling a Database

	Description of the Database
	Figure 2–7 The Database Description field

	Saving the database design
	Figure 2–8 New Database Design Wizard Completion page
	Figure 2–9 DB Creation Confirmation
	Figure 2–10 Specify Field Collection Query

	Modifying Database Properties
	Database Properties (1) – General
	Figure 2–11 The Database General Properties Form
	Character Set:
	Default Report
	Figure 2–12 Sample SYSTEM default report, ‘Dump’

	Default Entry Form
	Classification scheme
	Database Description

	Database Properties (2) – Files
	Figure 2–13 The Database Files Properties Form 1
	Files are located collectively using a logical name
	Individually specified File Locations
	Figure 2–14 The Database Files Properties Form 2

	Database Properties (3) – Indexing
	Figure 2–15 The Database Indexing Properties Form
	Character handling
	Figure 2–16 Natural Language Treatment selection box

	Chinese word segmentation
	Folding class
	Additional searchable characters
	Scanning Rules
	Sentences and Paragraphs
	Character Classes
	Defining a Sentence
	Parse sentences
	Extra characters that mark start of sentence
	Characters that mark end of sentence
	Characters classes that separate sentences
	Characters classes that begin sentences
	Defining a Paragraph
	Parse paragraphs checkbox
	Character classes that separate paragraphs
	Paragraphs must begin with a valid sentence
	Paragraphs must end with a valid sentence
	Setting characters to ignore
	Ignore these characters when parsing
	Considerations for Altering Scanning Rules

	Database Properties (4) – Links
	Database Properties (5) – Advanced
	Background Task Execution
	Batch queue for task submission
	Notify On Completion
	Print Log File
	Keep Log File
	Data Loading
	ASE To Be Called Before Submission
	ASE To Be Called After Submission

	Flags
	Database contains XML documents
	Automatically reorganise index files as needed
	Log deleted records to the transaction log file
	Use an audit log file to capture database events

	Field Definition
	Defaults and Restrictions
	The Modify Fields Collection Form
	Editing or deleting existing fields
	Creating new fields
	The Field List
	Field Name
	Field Type
	Index Mode

	Field is included in index
	Create field-specific index
	Create word-based index
	Enforce Unique Field Values
	Non-Boolean Inclusion
	Field Attributes
	Record name field
	Record number field
	Part
	Record Part Name Field
	Required
	Layout Retained
	Field Organisation (Subfields and Paragraphs)
	Setting Field Restrictions
	Valid Values
	Database Reference (Dictionaries)
	Pattern
	TExt Fields
	PHrase Fields
	NUmber
	INteger
	DAte
	TIme
	Defining Field ASEs
	Accounting Information
	Description

	Saving a field design
	Committing field designs and changes to the database
	Deleting a field design
	Saving a Database Design
	Modifying a Database Design
	Deleting a Database Design
	Copying a database Design
	Related CCL Commands
	STatus
	Show
	Print
	IMPOrt and EXPOrt

	Database Clusters
	Creating a Cluster
	Modifying a Database Cluster
	Deleting a Cluster

	Related CCL Commands

	Chapter 3: Thesauri
	What Is a Thesaurus?
	A Simple Thesaurus
	Figure 3–1 The ‘Train’ thesaurus, vertical representation
	Figure 3–2 The ‘Train’ thesaurus, horizontal representation
	Table 3–1 Record contents and thesaurus design for ‘Train’

	Creating a Thesaurus
	Figure 3–3 New Thesaurus Menu

	Thesaurus Structure
	Table 3–2 The thesaurus template
	Data Layout
	Table 3–3 Record contents and thesaurus design
	Table 3–4 Hierarchical relationships of the ‘Train’ thesaurus

	Thesaurus Database Design
	General Thesaurus Properties
	Special Thesaurus Fields
	Defaults
	Character Sets
	Description of the Thesaurus
	Other Thesaurus Properties
	Field Definition

	Filling The Thesaurus
	Using TForm
	Using Data Entry

	Related CCL Commands
	STatus
	Figure 3–4 STatus for thesaurus ‘Thesali’

	Show
	IMPOrt/EXPOrt

	Chapter 4: System Logging Functions
	Overview
	Activating System Accounting Functions
	Assigning Field Costs for Accounting
	Accounting function Logical Names
	TDBS_ACCFLG Bits
	Bit 0
	Bit 1
	Bit 2
	Bit 3
	Bit 4
	Bit 5
	Bit 6
	Bit 7

	Accounting Log File Format
	Table 4–1 Hierarchical relationships of the ‘Train’ thesaurus
	Example
	Table 4–2 A sample accounting file

	Event logging
	Overview
	How to Enable Event Logging
	Parameters
	Event Log Output
	Log File Location and Name

	Part 2: Forms
	Chapter 5: TRIPclassic Data Entry Forms
	Figure 5–1 Entry forms for database CORR
	Figure 5–2 Properties for CORR entry form FULL
	Creating and Modifying TRIPclassic Data Entry Forms
	Copying TRIPclassic Data Entry Forms
	Figure 5–3 Copy a Data Entry form
	Figure 5–4 Name New Data Entry Copy
	Figure 5–5 Data Entry Copy Confirmation

	Deleting TRIPclassic Data Entry Forms
	Figure 5–6 Delete a Data Entry form
	Figure 5–7 Delete Data Entry form confirmation
	Figure 5–8 Data Entry form Deleted

	Chapter 6: Reports / Output Formats
	The Report
	Copying Reports
	Deleting Reports
	Creating a New Report
	Defining Layout Boxes
	Simple Boxes
	Output of Specific Field Elements
	Box Numbering
	Box Positioning
	Positioning Using Coordinates
	Positioning Using Preceding Boxes

	Box Proportions
	Proportioning With Lines and Columns
	Proportioning With Lines Only
	Proportioning With Columns Only

	Box Grouping

	Background Text
	Field-Dependent Text Strings
	Headers
	Separators
	Trailers

	Field-Independent Text Strings
	Text Inserts

	Functions
	Text String Functions
	Field-Dependent Text Functions
	Sample Output Format
	Box Functions
	Format Functions
	<For> Loops
	General Structure
	Example 1:
	Example 2:
	Example 3:

	Page Control
	Page Level Boxes
	Header_Box
	Trailer_Box

	Page Size
	Columnar Output

	Output Formats for Database Clusters
	Related CCL Commands
	Output Format Reference Guide
	<APPEND>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<AT_END>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<BASE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CALL>–Format
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CALL>–Text String
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CASE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<CHR>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CLASS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CURDATE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<DATEFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	<DEBIT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<FF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<FOR> Loops
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<HITLIST>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<HITS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<IF-CHANGED>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-EMPTY>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-NONEMPTY>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-UNCHANGED>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<INDENT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<LINK>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	<NOFF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NOLF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NOORIG>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NUMFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<OCCS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<ONCE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<ORIG>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<PAGENO>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<PARTS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RID>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RIS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RNAME>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SORTFIELDS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SUBRID>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SUBSTRING>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:

	<Text Variables>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<TRACE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<TIMEFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<WEIGHT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	Chapter 7: Search Forms
	Figure 7–1 Search forms for a TRIP installation
	Figure 7–2 Properties for search form ALICE_DEMO
	Creating and Modifying TRIPclassic Search Forms
	Copying TRIPclassic Search Forms
	Figure 7–3 Copy a Search Form
	Figure 7–4 Name Search Form Copy
	Figure 7–5 Search Form copy confirmation

	Deleting TRIPclassic Search Forms
	Figure 7–6 Delete a Search form
	Figure 7–7 Delete Search Form confirmation
	Figure 7–8 Search form Deleted

	Part 3: Batch Update
	Chapter 8: Global Updating
	Command Overview
	Updating Using Record Numbers
	Command Structure
	Update Type
	INSert Orders
	UPDate Orders
	DELete Orders

	Update Target
	Update Value
	Update Domain
	INSert Examples Using Record Numbers
	UPDate Examples Using Record Numbers
	DELete Examples Using Record Numbers
	Example 4:

	Updating Using a Search Result
	Command Structure
	Update Type
	Update Target
	Update Value
	Update Domain
	INSert Examples Using Search Results
	UPDate Examples Using Search Results
	DELete Examples Using Search Results

	Global Updating of Part Records
	Copying With Global Update
	Examples:

	Case Sensitivity
	The Log File
	Error Checking

	Chapter 9: Loading, Indexing and Reindexing
	Index
	Figure 9–1 Indexing the Database TestThes

	Load and Load/Index
	Figure 9–2 Load a TForm file into database TestThes
	Figure 9–3 Load TForm Specify File Name form

	Checking the Results
	Table 9–1 Operating systems and log file names

	Error Logging
	Reindexing a Database
	Table 9–2 Running the BAFINI utility

	When Batch Jobs Fail
	On UNIX and Windows systems
	On UNIX systems only

	Part 4: Database Security
	Chapter 10: User Privileges
	TRIP’s internal Access Privileges
	The TRIP System Manager
	The TRIP ‘Superman’ Logical Name
	TRIP File and User Managers
	File Manager
	User Manager

	The TRIP User Group
	The Individual or End User in TRIP

	Creating a New TRIP User
	Figure 10–1 Creating a New User
	this will cause the New User details form to appear:
	Figure 10–2 The create New User form
	Figure 10–3 The User created confirmation dialog
	Deleting a TRIP User
	Figure 10–4 Deleting the user ‘Fred’
	Figure 10–5 The Delete User Confirmation
	Figure 10–6 The Deleted User Access Loss Confirmation

	User Properties
	Figure 10–7 Opening Properties for the User, FREDERICO
	Figure 10–8 The user FREDERICO’s user Properties form

	User Properties (1) – General
	Full Name
	Figure 10–9 Date Format selection box

	Ignore Password
	Figure 10–10 Ignore TRIP password checkbox

	Date Form
	Figure 10–11 Date Format selection box
	Figure 10–12 Date Format Selections
	Figure 10–13 Changing the date digit separator

	Management Privileges
	Figure 10–14 Management privilege settings

	Session Parameters
	Figure 10–15 Session parameter settings
	Start Module
	Login Procedure

	Company Information
	Figure 10–16 Company information entry area

	User Properties (2) – Procedures
	Figure 10–17 Procedures for user FREDERICO

	User Properties (3) – Groups
	Figure 10–18 Group membership for user FREDERICO
	Figure 10–19 The Add To Group form

	User Properties (3) – Access Rights
	Figure 10–20 Access Rights for user FREDERICO

	Creating a User Group
	Figure 10–21 Creating a New Group
	Figure 10–22 New Group dialogue
	Figure 10–23 New Group Created Confirmation
	Deleting a User Group
	Figure 10–24 Deleting a group
	Figure 10–25 Confirming deletion of a group

	Adding a Group Member
	Figure 10–26 The ‘My users’ sub-tree
	Figure 10–27 The Add Group Member confirmation

	Deleting a Group Member
	Figure 10–28 The Delete Member confirmation

	Transferring User Responsibility
	Figure 10–29 The Change Manager option
	Figure 10–30 Change Manager Selection box
	Figure 10–31 Change Manager Confirmation

	Related CCL Commands
	Show
	Print

	Chapter 11: Access Rights
	Figure 11–1 Granting Access to Database CARROLL
	Figure 11–2 The Access Level Form
	Database Access Rights Definition
	Database
	Figure 11–3 Database Name Selection

	User / Group
	Figure 11–4 Database Name Selection

	General Field Access
	Figure 11–5 Field and Record Restrictions
	Table 11–1 General field access rights
	Table 11–2 Unsupported combinations of access rights

	Only Selected Fields Access
	Record-Level Access
	Figure 11–6 Record-level READ rights for ‘FREDERICO’
	Figure 11–7 Record-level WRITE rights for ‘FREDERICO’

	The Hierarchy of Access Rights
	Database Cluster Access
	About Read-Protected Fields
	Hidden Fields and Searching
	Hidden Fields and Output Formats
	Hidden Fields and Data Entry

	Transferring Database Ownership
	Figure 11–8 The Change Manager action menu option
	Figure 11–9 Change Manager Selection

	Related CCL Commands
	Show
	Figure 11–10 Carroll’s Show ACcess screen

	Print

	Part 5: The Environment
	Chapter 12: Environment Setup
	The Configuration File tdbs.conf
	Location of tdbs.conf
	Configuration File Lookup on Windows
	Configuration File Lookup on UNIX
	Effects on System Administration
	Effects on Installation Procedures

	Batch Setup
	Printer Queues and Printer Control Files
	Table 12–1 Keywords for printer control files

	Specifying Non-Printable Characters
	More About Translation Tables
	Table 12–2 Sample translation table

	Logical Names
	UNIX
	Windows

	TRIPsystem Logical Names Reference (TDBS_)
	ACCDIR
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ACCFLG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ASELIBS
	Function
	Usage
	Looked for in
	Default value
	Valid values
	Examples

	AUTH_PROVIDER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	AUTO_SAVE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BAFFIT_SECURITY
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BAFFRE_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BOLD_COLOR (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Examples

	BUT_LOCATION
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CHARS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples:

	CHIVOC
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CLS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CODEPAGE (Windows TRIPclassic only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	COM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related commands:

	CONFLATOR_LANG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CONFLATORS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CTL
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DEFATTR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DEMO
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DISALLOW_GUEST
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	DISPLAY_ORIG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	EDIT (TRIPclassic only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ERRMAILST (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	EXE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	FIND_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	GLBUPD_OPEN_DB_ONLY
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	HOME
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LANG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	LDAP_ANONYMOUS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_BASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_MATCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_MECHANISM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_PASSWORD
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_SEARCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_SERVER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_USERNAME
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LOG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	LONG_PHRASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAX_ALLO_MEM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAX_THREADS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	NO_GLBUPD_INDEX
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	OVFBUFSZ
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	PRC (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PRINT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PRINTUSER (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PUTBAF_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	RESTART
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SCRATCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SIF
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SORT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SPAWN
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related commands:

	STO_LOCATION
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	STOP_WORDS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SUPERMAN
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SYS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TERMINAL (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TERMLM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	TRM (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TRMBUFSZ
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	TRIPserver Logical Names (TBS_)
	ASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	AT_CCL
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related Commands:

	COMFORTER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CONV
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DIR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	HOSTINI
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	PLEASE NOTE!
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAP (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAP_DIR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SCRATCH (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripDaemonHost (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripDaemonPort (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripNetPort
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	UNIXLOGIN (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	Part 6: Appendix and Index
	Appendix A
	General Settings, Limits and Defaults
	Support for the Euro Currency Symbol
	Searching for the Euro symbol
	Support for the Chinese character set GBK.
	Limit to TRIPclassic CCL Command Length
	No Limits to Database and Index File Sizes
	Limit to the Number of Search Sets
	Limit to the Number of Open Databases
	Defaults for the DEfine command
	TRIPserver Crash Handling (Windows only)

	Appendix B
	Obtaining Version and License Information
	TRIPmanager mmc Version Information
	TRIPsystem Version Information
	TRIP Product License Information
	Updating a TRIP Product License Key

	TRIP User Account Validation Methods
	Overview
	LDAP
	Configuring LDAP
	LDAPS

	Local System Validation
	TRIP Standalone Usernames

	Connecting to TRIP Servers
	Server Connection Overview
	Creating a Server Connection
	Local Connection
	Remote Connections

	Specifying Credentials
	Logging into the New Server Connection

	TRIP Grids
	Introduction to TRIP grid computing
	Creating a Grid
	Creating a Grid Cluster
	Creating a Grid Replica Set
	Publishing to a Replica Set
	Publishing to a Grid Cluster
	Grid Authentication
	Advanced Grid Properties

	Classification Schemes
	Introduction to Classification Schemes
	Attaching a Classification Scheme to a database

	Scope Search Facility
	The new Scope Search facility
	Scope Search Example
	Setting Up the Scope Search
	Using the Scope Search
	Updating the Scope Search

	Appendix C:
	TRIP Programming
	TForm
	Control Strings
	Text Strings
	Record, Record Part, Field and Subfield Markers
	The Record Marker: nR
	The Record Name Marker: N
	The Record Part Marker: nG
	The Field Marker: nF
	The Paragraph/Subfield Marker: nP
	The Sentence Marker: S

	Adding Records With TForm
	Updating Records With TForm
	Data Type STring and the Length Marker
	Copying Records Using Print TForm

	Application Software Exits (ASEs)
	Summary
	CCL
	Output Format
	TForm Load
	Index
	Data Entry (TRIPclassic only)
	Search Form (TRIPclassic only)

	The Format of an ASE Routine
	A Template ASE in C

	Linking ASE Routines to TRIP
	UNIX
	Windows

	Debugging ASE routines
	CCL ASEs
	Output Format ASEs
	Text Insert ASEs
	Format-Level ASEs

	TForm Load ASEs
	Field-Specific ASEs
	Structured Field-Specific ASEs
	Unstructured Field-Specific ASEs

	Record-Specific ASEs

	Index ASEs
	Data Entry ASEs (TRIPclassic only)
	Form-Based ASEs (TRIPclassic only)
	Form Initialization (TRIPclassic only)
	Quitting the Form Using <Leave> (TRIPclassic only)
	Record Commit Before Writing to BAF
	Record Commit After Writing to BAF

	Box-Based ASEs (TRIPclassic only)

	Search Form ASEs (TRIPclassic only)
	TRIPsystem Callback Functions for ASE Routines
	TRIPclassic Callback Functions for ASE Routines
	TRIP API Reference Guide

	List of Figures and Tables
	Figures
	Tables

	Index

