

Copyright © 2020 Smaser AG

TRIP Administration with TRIPmanager

TRIPsystem
Product Documentation

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 2 of 416

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and

software (altogether “Software”) supplied by Smaser AG (Smaser) are exclusively owned

by Smaser.

The transfer of this Software, solutions or parts thereof requires the prior written

agreement of Smaser. Furthermore, the customer has the right to use licensed Software

and / or process solutions supplied by Smaser to the extent specified in his contract with

Smaser.

The free-to-use non-commercial version doesn’t require a prior written agreement with

Smaser but such customers, organizations and/or third parties agree by using the software

and / or solution of Smaser to be strongly obliged to keep all rights to this software,

documentation and logotypes of the TRIP product family absolutely uninfringed and

protected.

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 3 of 416

About This Guide ... 11
Scope and Assumptions.. 11
End User License Agreement ... 11
The TRIP Documentation Library .. 11
The Structure of this Guide ... 12
Conventions Used in this Guide .. 13
TRIP Naming Conventions .. 14
TRIP Logical Names ... 14

Part 1: Database Administration ... 15

Chapter 1: Fundamentals ... 16
Navigation within TRIPmanager .. 16
TRIP System Basics ... 17

Introduction ... 17
Data Models .. 17
Data Organisation ... 19
TRIP Field Types .. 20
The CONTROL Database ... 22
TRIP Manager Privileges .. 22

TRIP Database Basics .. 22
Records... 22
File Structures ... 25

Chapter 2: Databases .. 27
Notes on File Locations ... 27
Creating the Database .. 27
General Database Properties .. 28

Database Name .. 28
Physical File Locations .. 29
Transaction Log .. 29
XML Enabling the Database .. 31
Description of the Database .. 31
Saving the database design .. 32

Modifying Database Properties ... 33
Database Properties (1) – General .. 33
Database Properties (2) – Files ... 37
Database Properties (3) – Indexing ... 39
Database Properties (4) – Links .. 52
Database Properties (5) – Advanced ... 54

Field Definition .. 58
Defaults and Restrictions .. 58
The Modify Fields Collection Form .. 58

Saving a field design ... 72
Committing field designs and changes to the database ... 72
Deleting a field design ... 73
Saving a Database Design .. 73
Modifying a Database Design.. 73
Deleting a Database Design .. 74
Copying a database Design .. 74
Related CCL Commands .. 76

STatus .. 76
Show ... 76
Print .. 76

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 4 of 416

IMPOrt and EXPOrt ... 77
Database Clusters ... 77

Creating a Cluster ... 77
Modifying a Database Cluster ... 79
Deleting a Cluster .. 81

Related CCL Commands .. 81

Chapter 3: Thesauri .. 83
What Is a Thesaurus? ... 83
A Simple Thesaurus .. 84
Creating a Thesaurus .. 86
Thesaurus Structure .. 87

Data Layout ... 87
Thesaurus Database Design ... 91

General Thesaurus Properties .. 91
Special Thesaurus Fields .. 91
Defaults ... 91
Character Sets .. 91
Description of the Thesaurus ... 91
Other Thesaurus Properties .. 91
Field Definition .. 91

Filling The Thesaurus .. 92
Using TForm ... 92
Using Data Entry ... 92

Related CCL Commands .. 92
STatus .. 92
Show ... 92
IMPOrt/EXPOrt .. 93

Chapter 4: System Logging Functions .. 94
Overview ... 94
Activating System Accounting Functions ... 94

Assigning Field Costs for Accounting .. 94
Accounting function Logical Names ... 94
Accounting Log File Format... 96

Event logging .. 99
Overview ... 99
How to Enable Event Logging ... 100
Parameters ... 100
Event Log Output .. 101
Log File Location and Name .. 102

Part 2: Forms ... 104

Chapter 5: TRIPclassic Data Entry Forms .. 105
Creating and Modifying TRIPclassic Data Entry Forms ... 106
Copying TRIPclassic Data Entry Forms .. 106
Deleting TRIPclassic Data Entry Forms .. 108

Chapter 6: Reports / Output Formats ... 109
The Report .. 109
Copying Reports ... 111
Deleting Reports ... 111
Creating a New Report .. 111

Defining Layout Boxes .. 114

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 5 of 416

Background Text ... 124
Functions .. 130
Page Control ... 142

Output Formats for Database Clusters .. 144
Related CCL Commands .. 145
Output Format Reference Guide ... 146

<APPEND> ... 146
<AT_END> .. 148
<BASE> .. 149
<CALL>–Format .. 150
<CALL>–Text String .. 152
<CASE> .. 153
<CHR> .. 155
<CLASS> .. 156
<CURDATE> .. 157
<DATEFORM> .. 158
<DEBIT> ... 160
<FF> ... 161
<FOR> Loops ... 163
<HITLIST> .. 166
<HITS> ... 168
<IF-CHANGED> .. 169
<IF-EMPTY> ... 171
<IF-NONEMPTY> ... 172
<IF-UNCHANGED> .. 173
<INDENT> .. 175
<LINK> .. 177
<NOFF> .. 180
<NOLF> .. 181
<NOORIG> ... 182
<NUMFORM> ... 184
<OCCS> ... 186
<ONCE> ... 187
<ORIG>... 188
<PAGENO> .. 190
<PARTS> .. 191
<RID> ... 192
<RIS> .. 193
<RNAME> ... 194
<SORTFIELDS> ... 195
<SUBRID> .. 196
<SUBSTRING> ... 197
<Text Variables> ... 198
<TRACE> .. 199
<TIMEFORM> ... 200
<WEIGHT> ... 201

Chapter 7: Search Forms .. 202
Creating and Modifying TRIPclassic Search Forms ... 203
Copying TRIPclassic Search Forms .. 203
Deleting TRIPclassic Search Forms .. 204

Part 3: Batch Update .. 205

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 6 of 416

Chapter 8: Global Updating .. 206
Command Overview .. 206

Updating Using Record Numbers .. 207
Updating Using a Search Result ... 210

Global Updating of Part Records ... 214
Copying With Global Update ... 214
Case Sensitivity .. 215
The Log File .. 216
Error Checking .. 216

Chapter 9: Loading, Indexing and Reindexing .. 217
Index ... 217
Load and Load/Index .. 218
Checking the Results .. 219
Error Logging .. 219
Reindexing a Database ... 219
When Batch Jobs Fail ... 220

On UNIX and Windows systems ... 220
On UNIX systems only .. 220

Part 4: Database Security ... 221

Chapter 10: User Privileges .. 222
TRIP’s internal Access Privileges .. 222

The TRIP System Manager ... 222
The TRIP ‘Superman’ Logical Name ... 222
TRIP File and User Managers ... 222
The TRIP User Group ... 222
The Individual or End User in TRIP ... 223

Creating a New TRIP User .. 224
Deleting a TRIP User .. 225
User Properties ... 227
User Properties (1) – General ... 228
User Properties (2) – Procedures .. 230
User Properties (3) – Groups .. 231
User Properties (3) – Access Rights .. 232

Creating a User Group .. 232
Deleting a User Group ... 233
Adding a Group Member ... 234
Deleting a Group Member ... 235

Transferring User Responsibility ... 235
Related CCL Commands .. 237

Show ... 237
Print .. 237

Chapter 11: Access Rights ... 238
Database Access Rights Definition ... 239

Database ... 239
User / Group ... 239
General Field Access .. 239
Only Selected Fields Access ... 241
Record-Level Access .. 241
The Hierarchy of Access Rights .. 243
Database Cluster Access .. 243
About Read-Protected Fields .. 243

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 7 of 416

Transferring Database Ownership ... 245
Related CCL Commands .. 245

Show ... 245
Print .. 246

Part 5: The Environment ... 247

Chapter 12: Environment Setup .. 248
The Configuration File tdbs.conf .. 248

Location of tdbs.conf ... 248
Configuration File Lookup on Windows ... 248
Configuration File Lookup on UNIX ... 248
Effects on System Administration .. 248
Effects on Installation Procedures ... 248

Batch Setup .. 250
Printer Queues and Printer Control Files ... 250
Specifying Non-Printable Characters ... 251
More About Translation Tables ... 251

Logical Names .. 253
UNIX ... 253
Windows ... 253

TRIPsystem Logical Names Reference (TDBS_) .. 254
ACCDIR .. 254
ACCFLG ... 255
ASELIBS ... 257
AUTH_PROVIDER .. 258
AUTO_SAVE .. 259
BAFFIT_SECURITY .. 260
BAFFRE_TIMEOUT .. 261
BOLD_COLOR (Windows only) .. 262
BUT_LOCATION ... 263
CHARS ... 264
CHIVOC .. 265
CLS ... 266
CODEPAGE (Windows TRIPclassic only) ... 267
COM ... 268
CONFLATOR_LANG .. 269
CONFLATORS .. 270
CTL ... 271
DEFATTR (UNIX only) .. 272
DEMO ... 273
DISALLOW_GUEST ... 274
DISPLAY_ORIG .. 275
EDIT (TRIPclassic only) .. 276
ERRMAILST (UNIX only) .. 277
EXE ... 278
FIND_TIMEOUT .. 279
GLBUPD_OPEN_DB_ONLY ... 280
HOME ... 281
LANG .. 282
LDAP_ANONYMOUS ... 283
LDAP_BASE ... 284
LDAP_MATCH .. 285
LDAP_MECHANISM ... 286

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 8 of 416

LDAP_PASSWORD .. 287
LDAP_SEARCH .. 288
LDAP_SERVER .. 289
LDAP_TIMEOUT ... 290
LDAP_USERNAME .. 291
LOG .. 292
LONG_PHRASE ... 293
MAX_ALLO_MEM ... 294
MAX_THREADS ... 295
NO_GLBUPD_INDEX ... 296
OVFBUFSZ ... 297
PRC (UNIX only) ... 298
PRINT ... 299
PRINTUSER (Windows only) .. 300
PUTBAF_TIMEOUT .. 301
RESTART ... 302
SCRATCH ... 303
SIF .. 304
SORT .. 305
SPAWN ... 306
STO_LOCATION .. 307
STOP_WORDS ... 308
SUPERMAN .. 309
SYS ... 310
TERMINAL (UNIX only) ... 311
TERMLM ... 312
TRM (UNIX only) ... 313
TRMBUFSZ .. 314

TRIPserver Logical Names (TBS_) ... 315
ASE ... 315
AT_CCL .. 316
COMFORTER ... 317
CONV ... 318
DIR (UNIX only) .. 319
HOSTINI ... 320
MAP (UNIX only) ... 322
MAP_DIR (UNIX only) ... 323
SCRATCH (UNIX only) ... 324
TIMEOUT .. 325
TripDaemonHost (Windows only) .. 326
TripDaemonPort (Windows only) ... 327
TripNetPort .. 328
UNIXLOGIN (UNIX only) ... 329

Part 6: Appendix and Index .. 330

Appendix A ... 331
General Settings, Limits and Defaults ... 331

Support for the Euro Currency Symbol .. 331
Searching for the Euro symbol .. 331
Support for the Chinese character set GBK. .. 331
Limit to TRIPclassic CCL Command Length .. 331
No Limits to Database and Index File Sizes .. 332
Limit to the Number of Search Sets ... 332

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 9 of 416

Limit to the Number of Open Databases ... 332
Defaults for the DEfine command .. 332
TRIPserver Crash Handling (Windows only) ... 333

Appendix B ... 334
Obtaining Version and License Information ... 334

TRIPmanager mmc Version Information.. 334
TRIPsystem Version Information ... 335
TRIP Product License Information ... 335
Updating a TRIP Product License Key .. 335

TRIP User Account Validation Methods .. 337
Overview ... 337
LDAP .. 337
Local System Validation .. 339
TRIP Standalone Usernames .. 340

Connecting to TRIP Servers .. 341
Server Connection Overview ... 341
Creating a Server Connection ... 342
Specifying Credentials ... 344
Logging into the New Server Connection .. 346

TRIP Grids .. 347
Introduction to TRIP grid computing .. 347
Creating a Grid .. 350
Creating a Grid Cluster .. 350
Creating a Grid Replica Set ... 350
Publishing to a Replica Set.. 351
Publishing to a Grid Cluster ... 351
Grid Authentication .. 352
Advanced Grid Properties ... 353

Classification Schemes ... 354
Introduction to Classification Schemes .. 354

Scope Search Facility ... 358
The new Scope Search facility .. 358
Scope Search Example ... 358

Appendix C:.. 363
TRIP Programming ... 363
TForm ... 363

Control Strings .. 363
Text Strings ... 364
Record, Record Part, Field and Subfield Markers .. 365
Adding Records With TForm ... 366
Updating Records With TForm .. 370
Data Type STring and the Length Marker.. 371
Copying Records Using Print TForm ... 371

Application Software Exits (ASEs) ... 373
Summary ... 373
The Format of an ASE Routine ... 376
Linking ASE Routines to TRIP ... 376
Debugging ASE routines ... 379
CCL ASEs ... 379
Output Format ASEs ... 380
TForm Load ASEs ... 382
Index ASEs ... 387

TRIP ADMINISTRATON WITH TRIPMANAGER

Table of Contents

Page 10 of 416

Data Entry ASEs (TRIPclassic only) .. 391
Search Form ASEs (TRIPclassic only) .. 396
TRIPsystem Callback Functions for ASE Routines .. 396
TRIPclassic Callback Functions for ASE Routines .. 396
TRIP API Reference Guide ... 396

List of Figures and Tables .. 397
Figures .. 397
Tables ... 399

Index .. 401

ABOUT THIS GUIDE

Page 11 of 416

About This Guide

Scope and Assumptions

This guide describes the administration of TRIPsystem version 7.0 or later via

the TRIPmanager plug-in for Microsoft Management Console (mmc), which

encompasses the creation and maintenance of databases and the

management of user access to the system and its databases.

This guide does not cover the installation and set up of the TRIPmanager

mmc plug-in. For more information on this subject, consult the TRIPmanager

Installation Guide.

Furthermore, this guide assumes that the administrator performing the

TRIPsystem management has sufficient access rights to manage the

TRIPsystem installation in question and possesses a valid username and

password to log into that system.

It is also assumed that anyone using the TRIPmanager plug-in is already

familiar with the Windows operating system in general and with the mmc in

particular.

Further guidance can be found in the contextual help systems provided with

the mmc and also with the TRIPmanager plug-in.

The help for TRIPmanager can also be reached directly via the

TRIPmmc.chm help file in the TRIPmanager installation directory.

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP

product family and software (altogether “Software”) supplied by infinIT

Services GmbH (infinIT) are exclusively owned by infinIT.

The transfer of this Software, solutions or parts thereof requires the prior

written agreement of infinIT. Furthermore, the customer has the right to use

licensed Software and / or process solutions supplied by infinIT to the extent

specified in his contract with infinIT.

The free-to-use non-commercial version doesn’t require a prior written

agreement with infinIT but such customers, organizations and/or third parties

agree by using the software and / or solution of infinIT to be strongly obliged

to keep all rights to this software, documentation and logotypes of the TRIP

product family absolutely uninfringed and protected.

The TRIP Documentation Library

Other members of the TRIP documentation library include the Installation

Guides, Release Notes, Change Histories, TRIPmanager User Guide,

TRIPclassic Administration guide, TRIPclassic User Guide, CCL Command

Reference and the TRIPtoolkit.chm help file.

If you are not already familiar with searching and/or CCL (TRIP’s Common

Command Language), we recommend that you read the TRIPmanager User

Guide first, placing special emphasis on the basic commands Find, Display,

ABOUT THIS GUIDE

Page 12 of 416

Show, Print, DEfine, List, BASe, DELete, STatus, Run, SAve and Help.

Additional information on these and other commands is available in the CCL

Command Reference.

It is also important to understand the elements of data entry before

attempting database construction. If necessary, review Chapter Nine of the

TRIPclassic User Guide for data entry basics before proceeding.

The Structure of this Guide

This guide is divided into six main parts, Database Administration, Forms,

Batch Update, Database Security, The Environment and the Appendices:

Part I: Database Administration (Chapters One through Four)

contains TRIP fundamentals, as well as everything you will

need to begin creating and using TRIP applications,

databases, thesauri and usage statistics.

Part II: Forms (Chapters Five through Seven) covers using

TRIPmanager to create, maintain and use TRIPclassic data

entry forms, reports and search forms.

Part III: Batch Update (Chapters Eight and Nine) includes global

updating and loading and indexing of data.

Part IV: Database Security (Chapters Ten and Eleven) discusses

database access and the administration of user rights.

Part V: The Environment (Chapter Twelve), discusses the setup of

the TRIP operating environment and TRIP logical names.

Part VI: The appendices which, in order, discuss:

Appendix A

• General Settings, Limits and Defaults

Appendix B

• Obtaining TRIP Version Information

• TRIP User Account Validation Methods

• Connecting to TRIP Servers

• TRIP Grids

Appendix C

• TFORM (The Trip output FORMat)

• TRIP ASEs (Application Software Exits)

Every chapter is divided into short sections, each introducing a single concept

and giving examples where appropriate. These can be used either for

reference or as tutorials, repeating the examples given in the demonstration

databases Alice, Carroll, Corr and Thesali.

ABOUT THIS GUIDE

Page 13 of 416

Conventions Used in this Guide

Certain symbols and conventions are used throughout this manual to indicate

words or phrases with special meanings. A word might indicate the name of a

key on the keyboard (Tab), an option in the menus (CCL Search), one of

TRIP’s command words (DEfine or DE), the name of a database (Alice) or a

word being searched for (wonderland). The conventions and styles used are

summarized below:

italic used to indicate variables such as fieldtype or

databasename, and to emphasize important terms and

concepts

bold used to indicate anything that TRIP recognizes or can

interpret and act upon, such as the things mentioned above

(Tab, CCL Search, DEfine, Alice, and wonderland)

lower case used for terms and variables where variables are also italic

UPPER CASE used for proper names such as the database ALICE

Courier Courier Font is used to indicate examples containing specific

text which you are to type in

  chevrons—used to indicate key(s) on the keyboard such as

Tab or Enter

  space character

CR carriage return

LF line feed

NL new line

FF form feed

“ ” messages from TRIP

In examples of CCL order syntax, square brackets ([]) indicate an optional

construct, braces [{ }] enclose option lists, a vertical bar [|] separates

exclusive alternatives, and the ellipsis […] designates a repeating construct.

ABOUT THIS GUIDE

Page 14 of 416

TRIP Naming Conventions

TRIP’s naming requirements are presented in the following table:

Category Content

Alpha-

numeric?

Length1 First

Letter

Alpha-

betic?

Allowable

Punctuation

File Yes 128 Yes Underscore

Database Yes 16 Yes Underscore

Field Yes 16 No Underscore

Procedure Yes 16 No Underscore

Output

Format

Yes 16 No Underscore

Entry Form Yes 16 No Underscore

Search

Form

Yes 16 No Underscore

Group Yes 32 No Underscore

User Yes 32 No Underscore

Password Yes 32 No Underscore

Table 0–1 TRIP naming conventions

1 maximum length in characters (including file paths where applicable)

TRIP Logical Names

Throughout this guide, TRIPsystem, TRIPserver and TRIPclassic internal

environment variables, normally defined in the [Privileged] and [Non

Privileged] sections of the tdbs.conf file, are referred to as ‘logical names’;

this has been done deliberately to avoid confusion with the identically named

Windows and UNIX environment variables. Where the term ‘environment

variable’ is used, it refers to those variables defined in a Windows or UNIX

user’s environment.

Note:

Using the tdbs.conf file is the recommended method for TRIP internal

environment variable (logical name) creation.

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 15 of 416

Part 1:

Database Administration

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 16 of 416

Chapter 1:
Fundamentals

Navigation within TRIPmanager

After connecting to a TRIPsystem server, the mmc window will appear,

similar in appearance to the screenshot below, which shows a connection to

the local TRIP server on a Microsoft Windows 7 installation:

Figure 1-1 The mmc showing a TRIP server connection

Each TRIP server connection will show four main icons representing sub-

groupings of items relating to the server being managed. These icons are:

• Databases All databases accessible to use administrator

accessing the server in question

• Search forms All search forms accessible to the

administrator accessing the server in question

• Users and Groups All search forms accessible to use

administrator accessing the server in question,

assuming the username is granted user

manager rights

• My Profile The profile belonging to the currently logged

on user

and will be covered in detail later in this guide.

Throughout this guide, reference is only made to the ‘Action’ menu. Regular

users of the mmc will, no doubt, already be aware that menu items within the

mmc are contextual, as in most Windows applications; this is also the case

with TRIPmanager, hence it is not always necessary to actually use the

physical ‘Action’ menu on the mmc’s menu bar. Therefore, where clarity is

paramount, screenshots may actually show contextual menus rather than the

‘Action’ menu.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 17 of 416

TRIP System Basics

Introduction

Three of the most popular types of data models are the flat file, the relational

database and the full-text database management systems.

The first and simplest, the flat file system, is commonly used to store and

manipulate large quantities of relatively unstructured and non-mission critical

data where a return on any time investment made in data organisation is not

expected. Uses might include an in-house corporate telephone listing, or a

home music library catalogue kept in a spreadsheet.

The second, the relational database management system (RDMS), is useful

where data exists in small, discreet units that lend themselves to rigorous

organisation. Systems for inventory control and personnel management often

use relational databases for data storage and manipulation.

The third, the full-text database management system or text database system

(TDBS), is invaluable in the handling of large quantities of highly important,

rather unstructured, data that must be searched extremely rapidly. Areas

which find the TDBS of use are document management, standard operating

procedures and the management of scientific data such as seismic

exploration information. These database management systems, of which

TRIP is representative, are also adept at object storage, including such data

types as photographs, video images, voice imprints and hypertext.

These three data models are discussed in depth in the following section.

Data Models

Flat Files

Defining a flat file as a data model is perhaps an exaggeration. However,

many commercial applications take advantage of the relative ease of use that

flat files offer, even though their search capabilities are quite limited.

Employee Telephone

Number

Fred Jones (201) 555-1234

Ben Smith (201) 555-8192

Ed Wedge (201) 555-9999

Table 1–2 Sample flat file table

Typically, the only operators offered by such a ‘search engine’ are arithmetic

(e.g. equal to, greater than, less than etc.), and the search mechanism varies

from sequential scan, through indexed sequential scan to binary search (if the

data in the file is sorted).

Relational Database Management Systems

Relational data models call for data to be organized in fixed-sized tables of

related information, which are then ‘joined’ during a search to provide the

flexibility required to retrieve meaningful results.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 18 of 416

In the example below, two tables hold non-repetitive employee information

(i.e. there is only one place in the database where the value of ‘10’ is equated

to the value ‘Sales’).

RDBMS data table EMPLOYEES

Employee Title EmployeeNo DeptNo

Fred Jones Clerk 1268 20

Ben Smith Salesman 7582 10

Ed Wedge Salesman 7654 10

× RDBMS data table DEPARTMENT

DeptNo DeptName

10 Sales

20 Administration

Table 1–3 Sample relational database tables

Using an SQL (Structured Query Language) statement to extract all

employees in the Sales department, the tables are joined using the field

‘DeptNo’:

SELECT Employee

FROM EMPLOYEES, DEPARTMENT

WHERE DEPARTMENT.DeptName=“Sales”

AND EMPLOYEES.DeptNo=DEPARTMENT.DeptNo;

When designing such a data model, considerable effort is typically expended

in constructing the various tables to ensure that data does not become

redundant. This process is referred to as data normalization.

Also, much thought must be given to constructing the index for these tables

so that, for instance, the join between the two ‘DeptNo’ columns can be

performed as rapidly as possible. Without this extra effort, searches will

complete extremely slowly.

Full Text Database Management Systems

In contrast to other database models, the full text model calls for complete

indexing of all possible database content. This frees database designers to

spend more time on user interface issues such as form design and

appearance, rather than on maximizing data model efficiency. As a result, full

text applications tend to focus on large bodies of often natural language text,

including books, documents and log files, rather than on small, discreet units

of information which are more suited to relational database management

systems.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 19 of 416

Indexing the Data

The fragment index is a hitherto unique feature of the TRIP database system

which provides significant performance increases when searching for

truncated terms. For instance, in the following table, the fragment index is

used to locate terms, which in turn are used to locate content within the

database itself. The example the CCL order:

Find DRE

finds any term in the database which contains ‘dre’, in this case, ‘dream’ and

‘dreams’.

As full text systems maintain a complete index, vocabulary listings are also a

common feature. For example:

Display DRE

will return a list of all terms in the index which contain ‘dre’.

 

Database Content
 Word

Index

Table

 Fragment

Index

I dream of falling; surrounded

by colours,

 DREAM DRE

I am swept by their

confidence,

Into the dreams of childhood, DREAMS DRE

Past the fondness of life.

Emotions flaking as dead

skin,

I see with the eyes of the

innocent.

Table 1–4 Sample full-text database table

Data Organisation

TRIP is a database system which has been specifically designed and

implemented to handle the large amounts of variable length data, which is

typical of free text applications. Free text is used here to mean natural

language text, as found in books, letters, reports, log files, etc.

It is the unpredictable length of the data strings encountered in such

applications which accounts for the main technical difficulties in designing

and implementing a system to handle such data efficiently. Most conventional

DBM (database management) systems deal mainly with fixed length blocks of

data, and possess a very limited capacity for manipulating variable length text

data. These field length fluctuations influence both the file structures and data

access methods adopted during TRIP system design, and it is here that TRIP

shows itself uniquely well placed for building this type of application.

The choice of data which TRIP has been implemented to handle most

efficiently determines, to some extent, the contents of typical fields within the

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 20 of 416

system. Free text documents are, for example, normally broken into chapters,

sections and paragraphs. Paragraphs are further subdivided into sentences,

and sentences into words. In terms of fields, the most natural choice might be

the collection of paragraphs into sections or chapters. Thus fields in TRIP

which contain textual data might typically contain a number of paragraphs.

Within TRIP, the record level of organisation can be equated to a document,

and the database may correspond to a collection of related documents.

Meta-record structures are also available, in which the head record contains

information common to a number of sub-entities. A meta-record can be used

to describe a collection of articles in a periodical, the head record containing

such information as journal title, publisher, etc. and each part containing

specifics regarding individual articles such as author, text and references

cited.

A database might alternatively consist of a number of product descriptions.

Each product would have its own record within the database and each record

could consist of fields for the product name, product number, product

description and date of introduction. If this database employed meta-record

structure, record parts might then contain serial number, production run

number, alterations from the basic model, etc.

TRIP Field Types

Although TRIP was designed specifically for the efficient manipulation of free

text, most documents have auxiliary information associated with them which

are not free text, such as dates, times, numbers, authors, publishers etc. To

accommodate varying data formats, TRIP supports seven data types, TExt,

PHrase, DAte, TIme, NUmber, INteger and STring, as described below.

TExt stores free text in sentences and paragraphs. There can be any number of

paragraphs within a TExt field, which in turn may have any number of

sentences of any length.

The position of every word in the text is noted in the appropriate file when the

records are indexed, including the number of the paragraph within the text

field, the number of the sentence within the paragraph, and the number of the

word within the sentence.

PHrase usually contains short text elements, e.g. names, addresses, identifying

numbers or product codes. Each individual phrase constitutes one subfield.

There can be any number of subfields within a PHrase field and phrase fields

may contain any number of characters, however while all words in the entire

phrase will be word indexed, unlike in a TExt field, the whole phrase index

will only use the first 255 (normalised) chars

Note:

In this context, ‘normalising’ means first replacing all blank equivalents with

blanks, then removing all leading and trailing blanks, as well as

compressing all sequences of blanks to just a single blank.

Example (where ‘◦’ represents a blank or space character):

The phrase "◦◦◦Tarzan,◦◦Jane◦and◦◦◦◦◦Cheeta◦like◦◦◦bananas!!!◦◦◦◦" will be

normalized to "TARZAN◦JANE◦AND◦CHEETA◦LIKE◦BANANAS").

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 21 of 416

When records which contain PHrase fields are indexed, the phrase along with

all subfield contents (as well as each individual word) is noted in a TRIP index

file along with its position (the number of the subfield within the field and the

number of the word within the subfield).

Note:

A phrase field can be any length but the index term for the complete phrase

will be maximum 255 chars (normalized as described above). However,

each single word of a phrase of any size will be indexed. The limit of 255

chars in the index only affects the whole phrase.

NUmber holds double precision signed 64-bit real numbers.

Note:

A database with NUmber values larger than would fit into a signed 32-bit

floating point cannot be used with older versions of TRIPsystem than 8.0

without risking system stability.

INteger holds signed 64-bit integer values.

For greater accuracy, use the data type INteger instead of NUmber

whenever possible.

Note:

A database with INteger values larger than would fit into a signed 32-bit

integer cannot be used with older versions of TRIPsystem than 8.0 without

risking system stability.

DAte stores dates, primarily of the form year-month-day

(e.g. 1985-04-20 or 85.04.20). A year only (1985 or 85) or a year and month

only (1985-04 or 85-04) may also be used when entering data or searching.

This is the standard date form, but other date forms are available. See the

‘Date Form’ section in Chapter Ten of the TRIPclassic User Guide entitled

‘User Administration’ for more information.

TIme holds the time of day, expressed in 24-hour nomenclature of hours, minutes,

and seconds (e.g. 11:04:02 or 11.04.02). The hour only, or the hour and

minute only may also be given when entering data or searching.

STring contains a string of characters of any kind, i.e. images, video, voice etc. Data

of type STring cannot be indexed.

The field type determines some aspects of the manner in which the system

accesses data held within a field, as well as its indexing. It also determines to

some extent the information that can be entered into that field. For instance,

in DAte and TIme fields there is an implicit validation employed that ensures

that the data entered can be interpreted as a date or time.

TExt data is organized into paragraphs and sentences. PHrase, DAte, TIme,

NUmber and INteger data types may be divided into an unlimited number of

subfields, which can then be used for range searching within the database.

STring fields are stored within the database, but are not indexed, and so

cannot be retrieved using TRIP’s query language, CCL.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 22 of 416

The CONTROL Database

A database system needs some method of tracking all of its parts or

components, which in TRIP include users, user groups, databases, clusters,

thesauri, reports, data entry forms, search forms, procedures and macros.

This is done by way of the system data dictionary, a database known as

CONTROL which contains definitions of the data structures currently within

the system. Each definition within CONTROL occupies a separate dictionary

entry.

The contents of the CONTROL database are illustrated schematically below.

C O N T R O L D A T A B A S E

System Manager

Output
Formats

Search
Forms

Data Entry
Forms

Databases

Database
Administrator

Individual

Users

User

Profile

Group
Procedures

User Manager

User Groups

User
Procedures

Public
Procedures

Public Group

Clusters
Thesauri

Figure 1–2 The CONTROL database

TRIP Manager Privileges

Management responsibilities within TRIP are divided between three classes

of administrator:

System Manager:

the prime user within TRIP; assigns selected users database administrator or

user manager privilege and administers the public group (all users).

User Manager:

creates and maintains individual users and user groups, as well as the

procedures and macros which are private to these groups.

Database Administrator:

(also known as file manager) creates and modifies databases with their

associated reports, etc., and grants other users and user groups access to

the data within these databases.

TRIP Database Basics

Records

The data contained in a TRIP database is organized in terms of records, each

record consisting of a collection of fields. A record can have any number of

fields, not all of which need be filled (empty fields do not impose any storage

overhead).

Each record within a database is assigned a unique record number on entry

into the database, which can be used when accessing data within the

database. A record may also be assigned with a unique record name.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 23 of 416

In some applications, a record may exist as a two-level tree structure called a

meta- or composite record, composed of a head record and any number of

part records. In this arrangement some of the fields within the record are

shared by all of the part records, and are collectively known as the head

record. The contents of the remaining fields are unique to the record entity,

and together constitute one part record. If head and part records have been

included in the design of any particular database, each field is by definition

either a head or a part field for that database.

The head record, which includes the head fields, is described by the contents

of these fields and generally contains information which is relevant to all its

part records. The part records (each of which holds one or more of the part

fields) are described by the contents of those fields and usually contain

information which is applicable to that part record only. Head records with

part records are illustrated in the following figure.

Head Record 1

Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Head Record 2

Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Head Record 3

Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Figure 1–3 Head and part records in a database

Using the demonstration database Carroll as an example, head records

made up of head fields now contain all of the chapter information contained in

two books by Lewis Carroll—number and heading, the list of persons

performing actions in the text and the title of the book from which the text was

taken. The part fields within the part records hold the page information, and

include the speakers in the text as well as all of the text fields.

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 24 of 416

Head Record 1

Book Chapter Chaptnr Person

Part Record 2
Speaker
Txt
Verse
Txt2

Part Record 3
Speaker
Txt
Verse
Txt2

Part Record 4
Speaker
Txt
Verse
Txt2

Part Record 5
Speaker
Txt
Verse
Txt2

Part Record 1
Speaker
Txt
Verse
Txt2

Head Record 2

Book Chapter Chaptnr Person

Part Record 2
Speaker
Txt
Verse
Txt2

Part Record 3
Speaker
Txt
Verse
Txt2

Part Record 4
Speaker
Txt
Verse
Txt2

Part Record 5
Speaker
Txt
Verse
Txt2

Part Record 1
Speaker
Txt
Verse
Txt2

Figure 1–4 Carroll’s head/part record structure

Each of the twenty-four main (chapter) records in Carroll has from one to

thirty-seven part (page) records clustered beneath it.

The following figures illustrate head and part record terminology.

• The head record, containing all of the head fields.

Figure 1–5 A head record

• The part record, consisting of one set of part fields.

Head Record 1

Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Figure 1–6 A part record

• Record entities 1, 2, 3 etc. represent the union (or sum) of head

record 1 and part record 1, head record 1 and part record 2,

head record 1 and part record 3, etc.

Head Record 1
Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Head Field 1

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Figure 1–7 A record entity

Head Record 1

Head Field 1 Head Field 2 Head Field 3 Head Field 4 Head Field 5

Part Record 1
Part Field 1
Part Field 2
Part Field 3
Part Field 4

Part Record 2
Part Field 1
Part Field 2
Part Field 3
Part Field 4

Part Record 3
Part Field 1
Part Field 2
Part Field 3
Part Field 4

Part Record 4
Part Field 1
Part Field 2
Part Field 3
Part Field 4

Part Record 5
Part Field 1
Part Field 2
Part Field 3
Part Field 4

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 25 of 416

• A composite or meta-record is the union of the head record and

all of its part records.

Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Head Record 1
Head Field 1 Head Field 2 Head Field 3

Figure 1–8 A composite record

• Record components are the unit records (individual head and part

records) in the database.

Head Field 4 Head Field 5

Part Record 1

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 2

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 3

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 4

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Part Record 5

Part Field 1

Part Field 2

Part Field 3

Part Field 4

Head Record 1
Head Field 1 Head Field 2 Head Field 3

Figure 1–9 Record components

File Structures

TRIP employs an inverted file organisation, in which the contents of every

field within the database can be indexed. Consequently, the contents of every

field can be searched, and records can be retrieved on the basis of these

searches.

A logical database within TRIP (one whose structure is governed by the

nature of the information contained within it, rather than the properties of its

storage media) consists of three separate physical files, the BAF (BAse File),

BIF (Base Index File) and VIF (Vocabulary Index File).

The BAF contains data, while the BIF and VIF are indexes to that data and

are used during data retrieval. The two index files are hashed tables, in which

any given term has a unique location.

The BAse File (BAF)

This file holds the database information itself. Within the BAF, the conceptual

level records are broken into a number of internal level records. In particular,

TExt fields within records are broken up and stored as individual paragraph

records within the BAF. This limits needless indexing of large TExt fields in

their entirety, since only paragraphs which have been modified since the last

indexing are reindexed.

The Base Index File (BIF)

This file is used to store positional information for terms in the BAF. During

the indexing process, the records in the BAF are scanned, and each term is

extracted separately. As each term is read, its position within the database is

recorded.

The Vocabulary Index File (VIF)

This file is in effect the index file for the TExt or PHrase fields which occur in

the BIF. Indexing here involves dissecting each term in the BIF into single

PART 1: DATABASE ADMINISTRATION

CHAPTER 1: FUNDAMENTALS

Page 26 of 416

(unigram), double (bigram) and triple (trigram) letter combinations, each of

which then becomes a term in its own right and is posted in the VIF.

Note:

It is important to understand this concept when using TRIP’s FUZzy search

capabilities. Refer to the TRIPmanager User Guide and CCL Command

Reference for further information regarding FUZz and Find FUZz.

The Session Index File (SIF)

The SIF stores all the information required to restart a search session

following an unscheduled disconnection, this includes search and print order

histories, search language (English, Swedish etc.), open thesauri and any

maximums, minimums or mapping that have been defined. Sessions may

also be intentionally saved to a SIF file using the CCL STOP SAve order:

See the CCL Command Reference for more information.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 27 of 416

Chapter 2:
Databases

Notes on File Locations

The recommended method for administration of TRIP database physical

paths is to create logical names in the tdbs.conf file, to be used as pointers to

the locations of the database files.

This recommendation is to ease administration, as any later changes to file

locations will only necessitate the altering of a single logical name, rather

than having to alter many individual database designs.

In order to encourage this behaviour, the TRIPmanager Database creation

wizard has been designed to offer a drop-down selection box containing only

those logical names found in the tdbs.conf file; although it is possible to edit

these for direct physical file paths at a later stage, if absolutely necessary.

Further details on how to create logical names are contained in the section

entitled ‘Physical File Locations’.

Creating the Database

To create a database, activate the ‘New Database Wizard’ by clicking on the

‘Action’ menu item, ‘New Database’:

Figure 2–1 New Database Wizard

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 28 of 416

Clicking on the New Database Wizard’s ‘Next’ button will take you to the

general properties form:

Figure 2–2 New Database General Properties

General Database Properties

Database Name

First you will need to enter the name of the database you wish to create.

A database name in TRIP may have, at most, 16 characters. The first

character must be a letter; the others may be letters, digits, or underscores (

_).

Figure 2–3 Database Name Entry Field

Type an appropriate (and preferably descriptive) name in the entry box

beside ‘Name:’.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 29 of 416

Physical File Locations

This portion of the form allows you to specify the location of the database files

within the hosts file system. TRIP creates the physical database files when

these specifications are saved, and the default file location (unless otherwise

indicated) is the first item in the drop-down list.

Figure 2–4 The Database File Location Selection Boxes

Clicking on the down arrow at the right-hand end of the ‘Available locations

names:’ drop-down selection list, will display a list all available selections

allowing one to be chosen. The greyed-out ‘Current mapping:’ box below the

drop-down selection list, shows the physical path associated with the chosen

logical name.

Creating TRIP Logical Names

To create a new logical name, first quit any running instances of

TRIPmanager (and/or TRIPclassic), then open the tdbs.conf file in your

preferred text editor.

Next, anywhere in the [Non Privileged] section of the file, add a line of the

format

Logical_Name=Physical_Path

where Logical_Name is the name chosen for the new TRIP logical name

and Physical_Path is the actual operating system path to be mapped to the

logical name; for example:

In Windows:

MyApp=C:\Users\Albert\TRIPapps

Would map the logical name MyApp to the path

C:\Users\Albert\TRIPapps

In UNIX:

MyApp=/home/sally/TRIPapps

Would map the logical name MyApp to the path /home/sally/TRIPapps

Transaction Log

A transaction log records all changes made to the BAF, whether by data

entry, global updating, or the loading of another TForm file. Should the most

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 30 of 416

recent BAF be damaged between backups, the log file and the BAF backup

can be used to restore the BAF to its previous condition.

You can attach a transaction log file to the database by checking the ‘Use a

transaction log file for backup / restore’ check-box shown below:

Figure 2–5 Transaction log selection

Remember that a log file is associated with a backup of a database. After

creating a backup you should create a new empty version of its log file, for

example:

in UNIX,

rm filename 

touch filename 

in Windows,

del filename.log 

type nul > filename.log  (In a command window)

or

Remove-Item filename.log 

New-Item filename.log -type file  (In Windows Power
Shell)

alternatively in Windows, you can delete the old log file, create a new text file,

then rename it to the original name.

When attempting to reconstruct a damaged BAF, you should retrieve the last

‘good’ BAF from backup and then apply all subsequent log files to that BAF

before backing up again. This is done using the database load/index menu

(described in Chapter Nine of this manual), which specifies each log file in

turn as the TForm file to be loaded into the BAF.

Note:

When restoring the BAF, you should delete the transaction log name from the

database design. If you do not, the old transaction log will be loaded as an

input TForm file and written redundantly to the new transaction log. After

restoration, you should replace the transaction log name to ensure the safety

of your data.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 31 of 416

XML Enabling the Database

Should it be necessary to create a database that will be used with TRIPxml,

then check the check-box labelled ‘database should be XML enabled’.

Figure 2–6 XML Enabling a Database

Description of the Database

The last field listed on the General Properties form is the database

Description field.

Figure 2–7 The Database Description field

Here you can enter a description of the database to a maximum of 255

characters. This will be part of the information given when the database list is

shown in the right-hand panel of the mmc, when the database properties are

selected in the mmc, or when a CCL STatus command is issued for that

database.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 32 of 416

Saving the database design

Clicking on the ‘Next’ button at the bottom of the ‘General Properties’ form

takes you to the completion page of the New Database Design Wizard:

Figure 2–8 New Database Design Wizard Completion page

And clicking on the ‘Finish’ button saves the database design. This is

confirmed with a pop-up dialogue box:

Figure 2–9 DB Creation Confirmation

Clicking on ‘OK’ opens a new dialogue box, asking if you wish to create the

database’s fields at this time:

Figure 2–10 Specify Field Collection Query

If you do wish to create the fields now, click on ‘Yes’. If you wish to create the

fields later, click ‘No’.

If you wish to go directly to database fields creation, turn to the section

entitled, “

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 33 of 416

Field Definition” on page 58 of this guide.

The next sections look at other database configuration parameters and how

to modify them.

Modifying Database Properties

Database Properties (1) – General

The ‘Create Database Wizard’ creates a database with mostly default

selections. Should it be necessary to alter these defaults, then it will be

necessary to access the database properties sheet.

The properties for a selected database can be accessed via the ‘Properties’

entry on the Action menu. Selecting this entry displays a four tabbed form

similar to that shown below:

Figure 2–11 The Database General Properties Form

The first tab displayed is always the ‘General’ properties tab. This tab has six

information fields (non-editable) and three user updatable fields. The non-

editable information fields are:

• Record count: A count of the total number of records in the

database

• Last update date: The date that the database was last updated

• Last index date: The date of the last index to be performed in

the database

• Record name field: Which field, if any, is the Record Name field

• Part name field: Which field, if any, is the Part Record Name

field

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 34 of 416

• Record number field: Which field, if any, is the Record Number

field

The user definable fields are detailed in the following sections and are:

• Character Set:

• Default Report:

• Default Entry Form:

• Classification scheme:

• Description:

Character Set:

This drop down box is used to select the default character set for the

database.

Note:

This value can only be changed in an empty (i.e. new) database

Default Report

The Default Report (formerly known as the Default Output Format) for the

database, may be selected from the drop-down list of available reports.

If you do not provide the name of a default report, the system will show all

output using its built-in default report ‘Dump’. This report presents all non-

empty fields contained within the database, headed by their field names.

Unless a SORt or Show REVerse order has been given, records appear

sorted in increasing record number order. Fields within records are output

according to their field type, in this order:

PHrase, NUmber, INteger, DAte, TIme, TExt

The fields are listed in field number order within those field types.

The sample below was taken from the demonstration database Alice, using

the CCL command

Show Format=dump 

In it, the PHrase fields chapter and person (field numbers two and three) are

output first, then the INteger field chaptnr, and finally the TExt field txt:

Figure 2–12 Sample SYSTEM default report, ‘Dump’

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 35 of 416

Designating a default report allows the use of a simple Show command in

CCL without a preceding DEfine Format statement. For example, rather than

using the series

BASe alice 

Find tweedle 

DEfine Format=outputformatname 
show 

a user may simply enter

BASe alice 

Find tweedle 

show 

after a search.

The DEfine Format statement is not needed if a report has been specified.

Default Entry Form

The default Data Entry form for the database may be selected from a drop-

down list of existing Entry Forms.

If the database is to be updated using interactive data entry (as opposed to

global or TForm updating), you should name a default entry form, whether or

not one or several different entry forms are to be used for the database.

If you have specified a default data entry form, TRIP will automatically

provide the name of the default entry form after a user enters the name of

that database.

Naming a default entry form also allows the CCL command

edit 

to be used without a preceding entry form name definition. For example,

rather than using the command series

BASe alice 

Find dee 

DEfine EForm=entryformname 

edit s=0 

a user may simply enter

BASe alice 

Find dee 

edit s=0 

after a search.

The DEfine EForm statement is not necessary if the default entry form has

been included in the database design form above.

For greatest efficiency, the default form should be designed generically

enough so that as large a population of write-privileged users as possible

may have recourse to it. See the section entitled ‘Creating a Data Entry Form’

in Chapter Five of this manual for more information.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 36 of 416

Classification scheme

This drop down box can be used to attach a classification scheme to a

database.

To do this, simply choose the name of any available classification scheme

from the 'Classification scheme:' drop down box. The database will then need

to be re-indexed to be classified, and any new or subsequently modified data

will be processed for classification during normal indexing procedures.

Note:

For more detail on how to create and manage classification schemes, see

the relevant section in Appendix B and also the white paper entitled, "TRIP

Document Classification", included with the TRIPsystem documentation.

Database Description

The database description, if one was entered during database creation, may

be modified here or, if required, may be added here.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 37 of 416

Database Properties (2) – Files

Clicking on the ‘Files’ tab of the Properties will change the display to show the

Database Files Property form. This form has two sections, one for collectively

locating files by logical name and another for specifying individual file

locations.

It is this the lower half of this form, ‘File locations are specified individually’,

that should be used if you wish to locate files using full path names:

Figure 2–13 The Database Files Properties Form 1

Files are located collectively using a logical name

If the radio button is clicked for, ‘Files are located collectively using a logical

name’, only three options will be available to the user:

• A drop-down selection box entitled ‘Location’.

• A text entry box entitled, ‘File Name’.

• A checkbox for selecting ‘Database uses a transaction log’.

These are the same three entries that were made on the Create database

Wizard’s general Properties form and need no further explanation here.

Should you wish to alter these entries the methods described in creating a

database also apply here.

Individually specified File Locations

Clicking on the ‘Files locations are specified individually’ radio button will

change the Database Files Property form display so that it becomes similar to

below:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 38 of 416

Figure 2–14 The Database Files Properties Form 2

As can been seen from Figure 2-13, each individual file location can now be

altered and (though this is not recommended) should it be absolutely

necessary, a physical file location could be entered for any or all of the files.

This is also where the location for transaction log files can be specified.

Note:

Both a transaction log file name and file path, or file name and logical name

representing a path, must be specified. If no log file location and/or name

are entered, no transaction log will be created.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 39 of 416

Database Properties (3) – Indexing

Clicking on the ‘Indexing’ tab of the Properties will change the display to show

the Database Indexing Property form.

Figure 2–15 The Database Indexing Properties Form

The upper section of this form has drop-down selection boxes for ‘Natural

language’, ‘Folding class’ and ‘Segmentation’ and a text entry box for

specifying additional searchable characters, while in the lower section there

are controls for specifying the rules used when creating database indexes.

These subjects are covered in more detail in the following sections:

Character handling

Figure 2–16 Natural Language Treatment selection box

The ‘Natural Language’ drop-down selection box allows for the selection of a

default language for use in indexing the selected database. The current

alternatives are: ‘None’ (default), ‘English’, ‘Swedish’, ‘German’, ‘Finnish’,

‘Chinese’ and ‘Norwegian’.

Notes:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 40 of 416

• The language selected here will be used as the default for stemming

searches (See the “CCL Command Reference – Display STEMming”

section for more information.)

• If no language is selected here, the value defined by TDBS_LANG will

be used.

• As detailed in the next section, the ‘Segmentation’ selection box will

only ever be activated when ‘Natural language’ is set to ‘Chinese’.

Chinese word segmentation

If the natural language chosen is set to Chinese, you can also choose to use

smart work tokenization, which switches on a special algorithm that attempts

to split Chinese character streams into words. If you index a database in

Chinese without this option, each character in the character stream is treated

as a separate word.

Note:

If Chinese is stored in a database that is not setup for Chinese natural

language processing, that data will be unsearchable.

TRIP supports four different methods for Chinese Word Segmentation:

• M – Maximum

This method selects the maximum length Chinese words from a

string, based on a dictionary containing words of length 2-10 Chinese

characters. This method also handles cross-ambiguities and

continuous-cross-ambiguities of Chinese words correctly.

• W – Word

This method is similar to method M and adds re-segmentation of all

words longer than three Chinese characters.

• A – All

This method segments every possible Chinese word as well as all

single-character Chinese words.

• N – None

This method indexes every single Chinese character as a word on its

own.

Folding class

Every text database system intended for use in more than one country must

possess a sort method for multinational characters, which encompasses

those characters not found in the system designer’s native language. An

overview of these special characters follows:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 41 of 416

A C E I N O S U Y

À È Ì Ò Ù

Á É Í Ó Ú Ý

 Ø

Â Ê Î Ô Û

Ã Ñ Õ

Ä Ë Ï Ö Ü

Å

Æ OE

 Ç

 ß

Table 2–1 Special characters

The Folding Class selection box allows the database designer to specify how

characters outside his or her native language will be treated during sorting

and indexing, where one letter is regarded as having the same indexed value

as another letter. Databases using different character folding methods cannot

be searched simultaneously.

The character folding classes available are English, Swedish, German,

Finnish and Norwegian.

The default is that no character folding is done; e.g. an é is a singular

character and is separate from e, ä is not indexed as a, and so forth.

The folding class English, does not recognize diacritics or umlauts, so that é,

è, ê (and so on) are folded onto e, ä onto a, ö onto o, etc.

The folding class Swedish, is identical to English except that å, ä, and ö are

recognized as singular characters.

The folding class German, is identical to English except that ü and ö, ä and ß

are recognised as singular characters.

The folding class Finnish, is identical to English except that ä and ö are

recognised as singular characters.

The folding class Norwegian, is identical to English except that Æ, ü and ø

are recognised as singular characters.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 42 of 416

The ways in which the five main classes treat various characters are outlined

below.

Note:

CHInese is handled separately, using a different character set (GBK):

Latin1

(MULtinational)

ENGlish SWEdish GERman NORwegian

À A A A A

Á A A A A

Â A A A A

Ã A A A A

Ä A Ä Ä Æ

Å A Å Å Å

Æ A Ä Æ Æ

Ç C C C C

È E E E E

É E E E E

Ê E E E E

Ë E E E E

Ì I I I I

Í I I I I

Î I I I I

Ï I I I I

Ñ N N Ñ Ñ

Ò O O Ò Ò

Ø O O Ø Ø

Ó O O O O

Ô O O O O

Õ O O O O

Ö O Ö Ö Ö

OE O O OE OE

ß S S ß S

Ù U U U U

Ú U U U U

Û U U U U

Ü U U Ü Ü

Ý Y Y Ý Ý

Table 2–2 The character folding classes

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 43 of 416

Additional searchable characters

The searchable characters in the text parts of a TRIP database are letters

and digits by default. However, you may add to this set of characters by

specifying extra searchable characters in the Additional searchable

characters input box.

Figure 2 - 1 Additional searchable characters input box

Any character except the single ['] and double ["] quotes may be made

searchable by typing the characters into the Searchable Special Characters

design field without separators.

Note:

You cannot combine multiple databases with disparate searchable

character sets in a search.

The characters used as truncation symbols, character masks, word masks,

delineators, operators or sentence separator defaults should not be

designated as searchable, since they have special functions in search orders.

These symbols are listed below:

Symbol Reserved Function

$ truncation and masking

truncation and masking

& masking

. masking, sentence separator

! truncation and masking,

sentence separator

? sentence separator

: truncation and masking

() delineators

+ AND operator

Table 2–3 Truncation, masking and special symbols

The sentence separator defaults are included in the table above since during

the execution of a word-string search order, TRIP searches for the given

terms only within the same sentence (or subfield), unless the meaning of the

space character is redefined by the CCL order, DEfine SPACE.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 44 of 416

Characters not defined as searchable are treated as space characters, both

during searching and indexing. For example, unless the hyphen [-] has been

included in the searchable character set for a database, TRIP will interpret

both ‘on-line’ and ‘on line’ as dual-word rather than single-word terms.

Refer to the CCL Command Reference for further information regarding

DEfine SPace, truncation and masking.

Scanning Rules

The scanning rules section of the database properties ‘’ form, permits the

modification of TRIPsystem’s scanning rules for indexing sentences and

paragraphs.

Figure 2 - 2 The Indexing Scanning Rules sub-form

The system defaults for each category are presented as seen in Figure 2 - 2

above.

Sentences and Paragraphs

Unless otherwise instructed, TRIP will separate text into paragraphs and

sentences by defaulting to a set of predefined rules. The internal text

separation rules can be altered by customizing the sentence and paragraph

delimiters from the General Database Properties form, causing TRIP to

separate the text into paragraphs and sentences accordingly.

Character Classes

Ten character classes are available to facilitate paragraph and sentence

recognition specification. Each character is by default assigned to only one of

the following categories:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 45 of 416

Char.

Class

Content

Description

Contents Alter

Definition?

L Lower Case Letters a b c ... z No

U Upper Case Letters A B C ... Z No

D Digits 0 1 2 ... 9 No

S Space Equivalents ASCII values 0-32, minus Class N No

N New Line Equivalents <LF> <VT> <FF> No

H Hyphen - No

R Reset Variable Yes

B Special Sentence Begin (<[{«'" Yes

I Ignore)>]}» and <CR> Yes

E Sentence End .!? Yes

Table 2–4 The character classes

Of these, L, U, D, S, N and H cannot be changed, i.e. no characters can be

added to or removed from these classes.

Classes B, I and E may have character sets defined for each (default

contents are shown in the preceding table).

Class N consists of the <LF> (Line Feed), <VT> (Vertical Tab) and <FF>

(Form Feed).

With the exception of the <CR> (Carriage Return), which is permanently

assigned to Class I, Class S contains the space character (ASCII value 32)

as well as all control characters (ASCII values 0-31) not belonging to Class N.

Class R contains those characters that do not belong to any of the other

classes. Characters that are added to or removed from the B, I or E classes

are automatically removed from or added to Class R respectively.

Classes L, U, D, H and B are known collectively as the ‘Sentence Begin’

classes, in which any characters from these classes can define the start of a

new sentence.

Defining a Sentence

The fields shown below allow you to define the beginning, the end and the

separations between sentences.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 46 of 416

Figure 2 - 3 The Sentence Parsing fields

The default values for sentence parsing are shown in Figure 2 -18 above. A

more detailed description of these conditions follows.

Parse sentences

Checking or clearing the ‘Parse sentences’ checkbox will respectively switch

sentence separation on and off

If you choose to have sentence separation switched on and then attempt to

perform a non-exact match PHrase search in CCL such as:

Find mad hatter 

the terms ‘mad’ and ‘hatter’ will not be found unless they appear as

contiguous terms in the text and are in the same order as specified in the

CCL command.

If you choose No, the terms can be split across what would normally be

considered as several sentences, and TRIP will still find them.

If you choose Yes and your text contains errors (perhaps during import from

OCR) such that extraneous characters have been accidentally inserted into

one or more phrases (for example, a period [.] or other character from Class

E), then these corrupted terms will not be found during straightforward CCL

searching.

Using the ‘mad hatter’ example above, if ‘mad’ became modified to ‘ma.’,

TRIP would consider ‘ma.’ and ‘hatter’ to reside in separate sentences, and

would not find the term ‘mad hatter’ wherever this has occurred.

Choosing No for Sentence Separation may be advantageous in instances

such as the one above, where you may be unsure of the integrity of your

incoming data. Since TRIP does not parse for sentences, this may also be

faster; however, without Sentence Separation you will be unable to perform

CCL proximity searching with constructs such as AND.S.

If you choose No, import data to your database and then change your

separation selection to Yes, you must then rebuild the database (that is, print

the database into TForm, delete the database and reload it from TForm),

since TRIP will not reparse the data that was already loaded (parsing occurs

only on the instream, or incoming data).

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 47 of 416

Extra characters that mark start of sentence

This option specifies which character(s) belong to Class B. If characters are

removed from Class B, and not placed in Classes I or E, they will be moved

to Class R. This option cannot exceed thirty-two characters. The default

system values are (< [{ « ' "

Characters that mark end of sentence

This option, represented by Class E, specifies which character(s) will identify

the end of a sentence. If any characters are removed from this class and not

placed in Classes I or B, they will be moved to Class R. This option must

contain between one and sixteen characters, unless you select No for

Sentence Separator (see below). The default system values are .!?

Characters classes that separate sentences

This option specifies which character(s) will identify the separator(s) between

a Sentence End and a Sentence Begin. Only characters from Classes S and

N are allowed, and the number of characters required signifies the

separation, e.g. 2SN means 2 characters from Class S or one from Class N.

This option must contain at least one character from either class, but cannot

exceed nine characters for each of the classes. The default system values

are SN (or 1S1N), meaning that in order for two legal sentences to be legally

separated, there can be either one space or one character from Class N

between them.

Characters classes that begin sentences

This option specifies which character(s) will be used to identify the beginning

of a sentence, and can include one or more values from the character

Classes L, U, D, H or B. Class B can be used to specify characters that are

not present in the predefined classes L, U, D or H. This option must include

between one and five classes. The default system classes for this option are

UB.

Defining a Paragraph

The fields shown below allow you to define the beginning, the end and the

separations between sentences.

Figure 2 - 4 The Paragraph Parsing fields

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 48 of 416

The default values for paragraph parsing are shown in Figure 2 -19 above. A

more detailed description of these conditions follows.

Parse paragraphs checkbox

Checking or clearing the ‘Parse sentences’ checkbox will respectively switch

paragraph parsing on and off

Paragraph separation is recommended for performance reasons, since a

single-character modification in a document that exists as a single large block

of text would require reindexing of the entire document. If paragraph

separation is operative, only the altered paragraph in the document needs to

be indexed again.

As with Sentence Separation, if incoming data quality is uncertain you may

wish to deactivate Sentence Begin/Sentence End Required and use the

Paragraph Separation classes to section the data. If you have filled your

database without specifying Paragraph Separation and change this option to

Yes, you will need to rebuild the database as discussed previously.

Character classes that separate paragraphs

This option specifies which character(s) satisfy the requirements for a

paragraph break, the default being two characters from Class N, or 2N

(usually 2 <LF>). The number of characters required from Class N followed

by the number of characters from Class S defines a Paragraph Separation,

e.g. 2N4S means two characters from Class N followed by four characters

from Class S. The number of characters from Class N must be greater than

the number of characters from Class N for Sentence Separation (if any has

been specified). This option must contain at least one character from Class

N, but cannot exceed nine characters for each of the classes.

To continue with the example from Sentence End usage:

[A] .. Mother Goose Rhymes: <CR><LF>

 ... <CR><LF>

 ... (1) The cow jumped over the moon. <CR><LF>

 ... <CR><LF>

 ... (2) Old Mother Hubbard lived in a cupboard.

 ... <CR><LF>

 ... <CR><LF>

 ... (3) Hickory Dickory Dock, the mouse ran up the

clock. <CR><LF>

If the Paragraph Separator is 3N (three new lines), then [A], (1), (2) and (3)

constitute a single paragraph; if 2N, then each of them forms one new

paragraph.

Paragraphs must begin with a valid sentence

This option specifies whether a sentence begin character is required, i.e.

whether a character from the Sentence Begin classes (as specified above

Sentence Separation) must be received to complete a paragraph break.

Alternatives include Y (Yes) or N (No); the system default is N.

Again using the preceding example:

[A] .. Mother Goose Rhymes: <CR><LF>

 ... <CR><LF>

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 49 of 416

 ... (1) The cow jumped over the moon. <CR><LF>

 ... <CR><LF>

 ... (2) Old Mother Hubbard lived in a cupboard.

 ... <CR><LF>

 ... <CR><LF>

 ... (3) Hickory Dickory Dock, the mouse ran up the

clock. <CR><LF>

If Sentence Begin Required is No (where a paragraph need not begin with a

valid sentence begin character), the Paragraph Separator Class is 2N, and

Class B is not included in the Sentence Begin classes, then [A], (1), (2) and

(3) represent individual paragraphs. If the Paragraph Separator class is 3N,

then they form a single paragraph.

If Sentence Begin is Yes (where a paragraph must begin with a valid

sentence begin character) and Class B is not one of the Sentence Begin

classes (which it is by default), then [A], (1), (2) and (3) form a single-

sentence paragraph.

Therefore, a paragraph separation can be defined as:

1 a text block

2 one character from Class E (if Sentence End is required)

3 specified number of characters from Class N

4 the specified number of characters from Class S

5 one character from the Sentence Begin classes (if Sentence Begin is

required)

6 a text block, as illustrated in the table that follows:

Text Block 1 from Class

E

? from Class N ? from Class

S

1 from Begin Next Block

ABC0123 . .

.

. ! ? <LF><VT><FF> ASCII 0-32 ABC(<['" DEF4567 . .

.

Table 2–5 Paragraph definition in TRIP

The illustration above shows two paragraphs and their separators.

Paragraphs must end with a valid sentence

The options are checked for Yes and cleared for No; the system default is

Yes.

This option specifies whether a Sentence End Character is required (i.e. a

character from Class E must be detected) to indicate the beginning of a new

paragraph, or paragraph break.

The following outline illustrates Sentence End usage:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 50 of 416

[A] .. Mother Goose Rhymes: <CR><LF>

 ... <CR><LF>

 ... (1) The cow jumped over the moon. <CR><LF>

 ... <CR><LF>

 ... (2) Old Mother Hubbard lived in a cupboard.

 ... <CR><LF>

 ... <CR><LF>

 ... (3) Hickory Dickory Dock, the mouse ran up the

clock. .. <CR><LF>

The dotted lines in the illustration above represent white space.

If Sentence End is defined as Yes and the colon [:] is not part of the

Sentence End classes, then Sentence [A] and Sentence (1) constitute the

same paragraph. If Sentence End is No and the [:] is not included in the

Sentence End classes, then Sentences [A] and (1) exist as separate

paragraphs, depending on the Paragraph Disconnection and Sentence Begin

Required options that were chosen.

Note:

Exercise caution when choosing characters designating a Sentence End.

Adding characters that occur frequently in normal text (such as colons,

parentheses etc.) may cause problems in text division.

Setting characters to ignore

The fields shown below allow you to define the beginning, the end and the

separations between sentences.

Figure 2 - 5 The Ignore Character field

The default values for ignoring are shown in Figure 2 -19 above. A more

detailed description follows.

Ignore these characters when parsing

This option specifies which character(s) will belong to Class I (Ignore

characters). If characters are removed from Class I, and not placed in

Classes B or E, they will be moved to Class R. This option cannot exceed

sixty-four characters. The default system values are) >] } »

Therefore, a sentence separation can be defined as:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 51 of 416

1 a text string

2 one character from Class E

3 default sentence separation (characters from Classes S or N) or user-

defined separation

4 one character from the Sentence Begin classes (one or more of L, U,

D, H or B)

5 a text string, as shown below:

Text String 1 from Class E 1 from Class S/N 1 from Begin Next string

ABC0123 ! ? <LF> ABC(<['" DEF4567 . . .

Table 2–6 Sentence definition in TRIP

The illustration above shows two sentences and their possible separators,

where represents a single space.

Considerations for Altering Scanning Rules

• Be careful when changing the default settings for a pre-existing

database. You must extract all data before the changes are made and

reload it into the new design.

• If Sentence Separation is required without Paragraph Separation,

then TRIP will automatically set the Sentence End required option to

Yes, Sentence Begin required option to No and clear the Paragraph

Separator classes option.

• If Paragraph Separation and Sentence Begin and/or End is required

without Sentence Separation, then the Sentence End and Begin

classes options must still be specified.

• Characters of Class I are ignored if found after the character that

initiates a sentence or paragraph break (normally a Class E

character), but before the break is complete.

• Characters from Class R, if found in the same position as above, will

inhibit the current break and cause the program to scan for the next

character that will commence a sentence or paragraph break.

• Characters from Classes L, U and D that are not specified as

Sentence Begin classes will be treated as belonging to Class R.

• Characters from Class H that are not specified as Sentence Begin

classes will be treated as belonging to Class I.

• Characters from Classes S and N will be treated as belonging to

Class I when they do not appear as Sentence or Paragraph

Separators.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 52 of 416

Database Properties (4) – Links

The link properties for a database comprise items that affect the integrity of
data within the database, and how that integrity should be maintained
and/or enforced with regard to other databases in a multi-database system.

Clicking on the ‘Links’ tab of the Properties will change the display to show
the Database Links Property form. For example:

Figure 2- 6 The Database Links Properties Form

In this case, the DBA established a link between the ALICE database and

the CARROLL database, stating that the "Chapter" field in both databases

holds a shared value (a "foreign key" in relational database terms). Further,

the link specifies how that sharing is to be enforced in the case of updates

or deletes -- in this case, deletes are not allowed, whilst updates are to be

cascaded through the link.

Links in general exist to stop data in one database getting out of synch with
data in another database. For example, imagine that you setup a database
holding code/name pairs:

CODE NAME

ABC ACME Broadcasting
Corporation, Inc.

MOX Ministry of Xenological Affairs

RAZ Rationing Association of
Zodiacs, Corp.

Now further imagine a production database that stores the code within its
own data and uses this "lookup" database when reporting to translate
codes into names. All's well until at some later point, you decide to update
the code "MOX" to "MOXA".

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 53 of 416

Users confronted with the above situation have two options when searching
(through a MAP, for example) for the Ministry:

• Always add wildcard prefix and suffix notation to every search they

ever do, just in case the code changes slightly

• Report the problem to the DBA, who has to resort to a global update

to correct the issue

Using a link allows the DBA to specifically allow or deny certain operations,
and to ensure that if updates or deletes are performed on the "lookup"
database (in this case), those updates or deletes are reflected back onto
the production database.

The types of action that you can specify to take place in the face of either
an update or delete are:

• RESTRICT -- disallow the operation if it would affect any records in

the linked database

• CASCADE -- reflect the update (or delete) on the linked database --

for example in our case described above, if the code "MOX" were

updated to "MOXA", then when the record is committed to the

"lookup" database, the production database is also updated

automatically to change every occurrence of "MOX" to "MOXA".

• SET_NULL -- any records containing the affected value will be

blanked in the linked database.

• SET_DEFAULT -- any records containing the affected value will have

that field reset to its default value, whatever that might be.

• NO_ACTION -- the default (and the traditional behaviour of TRIP).

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 54 of 416

Database Properties (5) – Advanced

Clicking on the ‘Files’ tab of the Properties will change the display to show

the Database Files Property form:

Figure 2- 7 The Database Advanced Properties Form

The final tab is the ‘Advanced’ properties tab. This tab has three areas:

• Background Task Execution

• Data Loading

• Flags

These areas are describe in detail in the following sections.

Background Task Execution

This feature allows different indexing and queue submission criteria to be

defined for each database, and is used when loading, global updating and

indexing jobs are submitted from TRIP.

Figure 2- 8 The Background Task Execution form

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 55 of 416

Batch queue for task submission

This is a logical name by which the TRIPdaemon separates and serialises

execution of tasks on different databases. The default for all platforms is

"TDBS_BATCH"; this is simply a "catch-all" queue.

Notify On Completion

If this flag is set, the TRIPkernel will signal to the TRIPdaemon that when the

background task completes, it should notify the end user of this fact.

Depending on the platform being used, this notification is more or less

successfully delivered. Typically in a web-based environment, for example,

such notifications are lost.

Print Log File

If this flag is set, any log file generated by a background task will

automatically be submitted for printing when the task completes.

Keep Log File

If this flag is not set, any log file generated by a background task will

automatically be deleted when the task completes.

Data Loading

This section of the Database design properties ‘Advanced’ form defines the

calling of any ASEs necessary for loading of TForm records.

Figure 2- 9 The Data Loading form

Here you may enter the names of any ASEs you wish to call either before or

after saving records to the BAF.

ASE To Be Called Before Submission

An ASE can be called after all processing for a TRIP job has completed and

before it is submitted to the batch queue, allowing customized checks to be

incorporated into the submission process. Consult the Appendix in this

manual for further information.

ASE To Be Called After Submission

An ASE can be called if and after the job has been submitted to the batch

queue specified. For further details, refer to the Appendix in this guide.

Note:

See Appendix C of this manual for more information regarding ASEs.

Flags

The final section of the Database design properties ‘Advanced’ form allows

for the setting of four flags.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 56 of 416

Figure 2- 10 The Database Flags Form

The flags are as follows:

Database contains XML documents

If set, TRIP allows path-specific searches to be accomplished that take

advantage of the structure of the XML documents stored within the database.

Without this flag set, any XML documents stored in the database are simply

treated as text.

Note:

XML can only be performed at the moment of database creation; hence this

checkbox is automatically greyed out and cannot be altered. If the database

was created as XML enabled, then the checkbox will be checked. If not, the

checkbox will remain unchecked.

Automatically reorganise index files as needed

It is not uncommon in large database environments for an update to the

database to require significant physical storage and time as that update

causes a reorganization of the index files. This process can significantly

impact both the performance and the availability of the database, and so

administrators can clear this flag to stop the TRIPkernel from performing such

automatic reorganization. When the database does need reorganization, the

indexing log files will reflect the need and the administrator must then run the

TRIPkernel utility REBIF to perform the reorganization (for detail on the

usage of this utility, consult REBIF.PDF in the TRIPsystem installation).

Note:

This checkbox is set by default.

Log deleted records to the transaction log file

Set this flag to force the content of deleted records to be logged in the

transaction log file. This can be useful to administrators when attempting to

decide if a given record should be reinstated to the database, or if a user

inadvertently deletes a record and then wishes to recover it. In such a

circumstance, the administrator can simply locate the record in the log file,

extract the contents and minimally edit them to turn it from a delete to an

update.

Use an audit log file to capture database events

In certain extreme circumstances, notably when tracking down complex bug

scenarios, it might be necessary to be able to see every search performed

against the database. Establishing an audit trail is the means by which this is

made possible.

Simply checking this option does not turn on the audit file and this option is

not supported unless you are being guided by customer support, as there are

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 57 of 416

other steps that must be undertaken as well. This policy is for the protection

of database administrators, as unwittingly turning on this option will

significantly degrade the performance of any operations on the database.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 58 of 416

Field Definition

Defaults and Restrictions

The following table presents the defaults and restrictions (and defaults if

defined) for each of the TRIP field types TExt, PHrase, NUmber, INteger,

DAte, TIme and STring.

Restrictions TE PH NU IN DA TI ST

Field name A A A A A A A

Field type A A A A A A A

Field is included in index       X

Layout retained   X X X X X

Part field       

Field can have subfields A A A A A A A

Can have valid value type X A X X X X X

Can have valid value X A A A A A X

Description A A A A A A A

Table 2–7 Field Defaults and Restrictions

 Default: Checkbox is checked

 Default: Checkbox is cleared

A Applicable for this data type

X Not applicable for this data type

The Modify Fields Collection Form

If you chose yes to the dialogue box presented at the end of the database

design wizard, you will be immediately taken to the ‘Modify Fields Collection’

form. If you chose ‘No’ in response to the dialogue box, then you will need to

select the database for which you wish to create fields and choose the

‘Modify Fields Collection…’ action from the menu.

Note:

Depending on which field type is selected and which options for that field

are chosen, different areas of the ‘Modify Filed Collections’ form will

automatically be made available or unavailable as appropriate.

For example:

• The ‘Record name field’ selection box will only be unavailable if the

field is of type, Phrase.

• The ‘Record number field’ selection box will only be unavailable if the

field is of type, Integer.

• If the selection box for ‘Field is included in index’ is left cleared, then

the other two selection boxes in the ‘Index mode’ area of the form will

be unavailable.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 59 of 416

Once you chose to modify the fields collection, you will be presented with a

form similar to figure 2-10 overleaf, showing the default state of this dialog

with a simple database design loaded (in this case, the example database

CORR):

Figure 2- 11 Modify Fields Collection Form

There are two basic mechanisms for interacting with the fields collection

through this dialog:

Editing or deleting existing fields

In order to modify or delete an existing field, select it in the list to the top right

of the dialog. Selecting such a field will cause the field's properties to be

displayed in the dialog.

To edit the field's properties, simply make the changes required and click the

"Save Field" button.

Note:

The "Save Field" button will not be available until a valid modification is

made).

To delete the field, simply click the "Delete Field" button

Note:

The "Delete Field" button will only be available if the database is empty.

In order to clear the dialog back to its default state (for example, after loading

an existing field and before creating a new one), click the "Reset" button.

When you have completed your changes to the fields collection, you must

commit the changes to the database design. To do this, simply click the

"Commit" button.

Creating new fields

In order to create a new field, simply specify the field name and choose the

type from the drop-down. Everything else is optional and will default to

"sensible" values. If you have no need to customise the field further, simply

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 60 of 416

click the "Save Field" button and the new field will be added to the list of fields

shown in the control at the top right of the dialog.

The controls on the dialog are described in the following sections, starting

with the field name entry box and the field type drop-down selection box:

Figure 2- 12 Field Name Entry and Field Type Selection

The Field List

After defining or modifying (and then saving) one or more fields, they will be

visible in the filed list window on the ‘Modify Fields Collection’ form.

Figure 2- 13 The Field List

To select a field from the list for closer inspection or alteration, simply click on

it. To save any changes, click on the ‘Save filed’ button. To leave the list

without selecting, click on the ‘Reset’ button; this will rest the form to its

default state.

Field Name

Choose a field name which is unique to the parent database for the new field

you wish to define, and type it in the ‘Fieldname’ box.

Note:

A field name in TRIP may contain from one to sixteen alphanumeric

characters, must start with a letter and may include the underscore (_).

Field Type

Use the drop down selection box to select one of the following field types;

either, TExt, PHrase, NUmber, INteger, DAte, TIme or STring.

Depending on the field type chosen, the rest of the dialog will be initialized

accordingly, so as to only make available those options that are valid for the

field type.

Note:

When editing fields, you cannot modify the type of a field if the database is

not empty.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 61 of 416

Index Mode

Indexing makes the data in each field available for searching. If a field is

defined as ‘Not Indexed’, the contents can only be displayed, not searched.

The indexing modes are Indexed, Unindexed, Field-specific Indexing and

Word-based Indexing.

Figure 2- 14 Index Mode Selection

You can set the indexing mode by checking, or unchecking, one of three

checkboxes described below:

Field is included in index

Checking this checkbox sets the indexing category to Indexed. Leaving the

checkbox unchecked sets the category to Unindexed.

Indexed is the default or normal indexing mode, in which each word, phrase

and their component grams (uni-, bi- and trigrams) are indexed.

For TExt fields, each word and word gram is indexed separately.

With PHrase fields, each complete phrase is indexed as an individual term in

addition to its words and word grams. This allows use of the CCL construct

Find fieldname='a phrase' 

which performs exact matching for ‘a phrase’ on an entire subfield of a

PHrase field.

The numeric field types (INteger, NUmber, DAte and TIme) are indexed by

field number rather than field content.

STring fields are non-indexable; however, the field number is indexed to allow

for use of the CCL construct

Find fieldname=$ 

which will find all records where fieldname has content.

Create field-specific index

This checkbox selection is available only for PHrase and TExt fields. Terms

occurring in a field so designated will have a default index plus an additional

posting list (separate index) for occurrences in this field.

This is valuable in those instances where the field contents contain

identically-spelled homonyms of terms commonly found in the general

database. For example, many applications use code words or acronyms that

are also common words in the general vocabulary, but have a different

meaning, such as the stock exchange company identifiers ‘THE’ and ‘IBM’

(Figure 2-28). Since these business abbreviations may occur far more

frequently in the TExt fields of the database at large than in this particular

field, separate indexing would save searching time and resources.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 62 of 416

 1 2 3 n

Term
Postings: Individual OccurrencesNumber of

STD 8903 9706 - - - - - - - - - - - -

IBM 4371 5724 - - - - - - - - - - - -

SAT 1289 2833 - - - - - - - - - - - -

DIN - - - - - -

Number
of Records Occurrences

Default List

1 2 3 n

Postings: Individual OccurrencesNumber of

 103 189 - - - - - - - - - - - -

 52 67 - - - - - - - - - - - -

 371 424 - - - - - - - - - - - -

12 33 - - - - - - - - - - - -

23 27 - - - - - - - - - - - -

Number
of Records Occurrences

Separate Index

THE 115852 273451 - - - - - - - - - - - -

Record number

Field number

Subfield or paragraph number

Sentence number (TExt fields only)

Word number

Word position

Figure 2- 15 Separate Indexing

Each posting box contains a record number, field number, subfield or

paragraph number, sentence number (in a TExt field), word number and word

position, all of which is represented by dashes in the illustration above.

Create word-based index

This option applies to PHrase fields only, where words and their

corresponding grams are indexed rather than the entire phrase. This is

advantageous in those instances where you wish to maintain the utility of a

PHrase field, but have no need to Display entire phrases. Word indexed

PHrase fields are displayed in the same manner as TExt fields, i.e. words are

shown individually rather than as constituents of phrases.

This category saves file space; however, exact matching during searching is

not possible.

Enforce Unique Field Values

If the field is of type PHrase, you can select this checkbox to make TRIP

check each entry into this field to ensure that it occurs in no other record in

the database.

Non-Boolean Inclusion

Check this flag to include the contents of this field in all Non-Boolean

calculations, including processing required for the ABOUT() search function

and also for document classification.

Notes:

• For more detail on using the ABOUT()function, consult the "Define" and

"Find" sections in the "CCL Command Reference", included with the

TRIPsystem documentation.

• For more detail on non-Boolean searching, see the white paper entitled,

"TRIP Non-Boolean Searching", included with the TRIPsystem

documentation.

• For more detail on how to create and manage classification schemes,

see the relevant section in Appendix B and also the white paper entitled,

"TRIP Document Classification", included with the TRIPsystem

documentation.

Field Attributes

The Field Attributes include whether the field is a Record name (or number)

field, is a Part Field, is Required or is Layout Retained and are available

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 63 of 416

depending on which field type is selected. E.g. The figure below shows the

default attributes for a Phrase type field.

Figure 2- 16 Field attributes selection

Record name field

TRIP automatically numbers each record with a unique record identifier as it

is entered into the database. In some applications it may be desirable to have

a record name field as well. This must be a PHrase field of 255 characters or

less, and its contents in a record must be unique in the database.

For example, a technical reports database system may have a record name

field consisting of three parts: a location code, a database name code and a

document number. This three-code arrangement will produce a unique record

name value for each technical report in the system, as seen below:

Location Database Report

Number

Record

Name

Chemistry Organic_Chemistry 0001984 Chemistry_Organic_Chemistry_0001984

Chemistry Physical_Chemistry 0023132 Chemistry_Physical_Chemistry_0023132

Chemistry Nuclear_Chemistry 0005767 Chemistry_Nuclear_Chemistry_0005767

Table 2–8 Use of the record name field

Although this feature can be extremely useful, it is widely overused.

Nonjudicious inclusion of record name fields in a database design results in

needless performance degradation during data loading, as both the BAF and

the BIF must be updated.

Record number field

The record number given by the system may be put in a record number field.

The contents of that field will be searchable in the usual way, but cannot be

changed.

Record number fields are not necessary with new database designs. They

are included here solely to maintain compatibility with older designs, for which

the CCL construct

find R=n 

was not available.

Part

Checking this checkbox makes this field a part field in a part record; Leaving

it unchecked makes it a head field in a head record.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 64 of 416

The default for this design field is unchecked and if no fields in the database

have been designated as part fields, this becomes a ‘head’ or ‘flat’ record.

For more information on part fields, see Chapter 2, ‘Records’.

Note:

When editing fields, this value can only be changed in an empty database.

Record Part Name Field

If your database design employs head/part record structure, you should

always utilise record part name fields, which allow the unique identification of

parts within a composite record.

Required

This is a courtesy flag that simply sets the minimum number of subfields or

paragraphs to 1 (or to zero, if the checkbox is cleared). This checkbox can be

modified at any time, although doing so has no effect on records already in

the database.

Layout Retained

For TExt fields, Layout Retained ensures the preservation of formatting

characteristics such as <Tab>, <LF>, and blank lines in the BAF, exactly as

they occur in the entered text. In PHrase fields, <Tab> and multiple spaces

are maintained.

The default for PHrase fields is No, meaning that a series of spaces or tabs

will be compressed to a single space when the record is loaded into the BAF.

The default for TExt fields is Yes. A No in a TExt field causes <Tab> to be

converted into a single space, multiple spaces into a single space and

carriage returns/line feeds to be removed.

Field Organisation (Subfields and Paragraphs)

Figure 2- 17 Subfield specification

The above two fields accept up to three digits each, and can be used to

define the field organisation of any data type except String – See note below.

They allow you to define the minimum and maximum number of subfields

allowed for all field types except TExt, for which they specify the minimum

and maximum number of paragraphs.

Assigning a TExt field a maximum means that it must not contain more

paragraphs than that number. If a maximum of one paragraph is defined and

that definition is changed after data has been loaded into the database, the

database must be rebuilt.

If the minimum number of paragraphs is one or more, the field must contain

at least that number of subfields, and entry into that field is mandatory.

Note:

Due to their internal structure, it is strongly recommended that STring type

fields not be limited to a set number of subfields or paragraphs, as to do so

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 65 of 416

will result in an error message when trying to write paragraphs of greater

than 1MB in size.

Setting Field Restrictions

All field types are unrestricted by default. However, if required, field

restrictions can be set by selecting one of the three radio buttons; ‘List if valid

values’, ‘database reference’ or ‘Pattern’.

Valid Values

You may specify a comma separated list of accepted values for a field by

clicking on the ‘List of values’ radio button and then clicking on the ‘Add’

button.

Figure 2- 18 List of valid values

This will cause an entry box to appear:

Figure 2- 19 Valid values entry box

Type the desired values into the entry box and click on the ‘OK’ button to add

them to the list of values in the ‘Values’ text area.

Each element in the list represents the contents of a subfield. The list may

contain at most twenty elements, for a maximum length of 255 characters.

To delete an unwanted entry from the list, simply select it from the ‘Values’

window and click on the ‘Remove’ button.

Database Reference (Dictionaries)

Selecting the ‘Database reference’ radio button signifies that the field

currently being defined is to be restricted by a database reference (‘Data

dictionary’) that is held in a specific field of a particular database.

For example, selecting the field ‘Chapter’ in the database ‘Alice’ using the

database reference drop-down selection boxes:

Figure 2- 20 Database reference selection

means that entries are validated against the field ‘Chapter’ in the database

‘Alice’.

Note:

To specify that entries must NOT occur in the dictionary, use the NOT

modifier, e.g.

NOT Alice.person

in the Valid Value field (Figures 2-18 and 2-19).

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 66 of 416

The dictionary can also consist of fields from more than one database, for

example:

Alice.person,Alice.speaker,Corr.rname

where the fields are combined with OR operators.

In this way an entry found in only one of the fields is enough to permit entry

of a term into the database.

Pattern

A pattern is a regular expression giving the total number of words or

characters and the set of characters themselves that may be entered in each

subfield of the PHrase field.

Patterns represent the fastest method of data validation available in TRIP,

and are especially useful with figures such as inventory control or part

number data. For example, a pattern for the TRIP version number V2.4–11

could be defined in this way:

Letter V + digit + . (period) + digit + optional - (hyphen) + optional digit(s)

Patterns may be disadvantageous to the database designer in those

instances where the complexity of the pattern itself dictates pattern

development costs that far outweigh any potential benefit. They may also be

confusing to the user who, when attempting to access data entry Help for a

pattern-controlled field, will receive only a display of the pattern the field is

restricted against, without explanation.

Figure 2- 21 Pattern entry

A pattern is defined by selecting the Pattern radio button and entering the

valid pattern in the entry field next to it. There can be only one pattern for a

PHrase field.

A pattern may consist of a number of parts, including the following:

Symbol Usage

() control characters indicating start/end of

word pattern

* start of character set specification

w,e,s,x,0,

9

letters are case-insensitive (see table below)

.. ‘from . . to’

/ named characters following / are to be

added to or deleted from set

// characters following // are identified by

ASCII values

+ add characters to character set

- subtract characters from character set

Table 2–9 Symbols used in pattern specification

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 67 of 416

An asterisk [*] marks the start of a character set specification. A word pattern

consisting of a single word pattern part with no character set specification (i.e.

without the asterisk) specifies a list of words. For example, (2..*9) represents

a word pattern, while (2) designates two words.

Each word pattern part must be surrounded by parentheses, if it contains

more than one or more explicitly given characters that are to be matched.

This is a generic clause, and indicates that more than one possible character

will be accepted for any one position in a pattern. All multinational characters

are valid as matching characters as long as the string does not conflict with

what is stated within parentheses. Letters are not case sensitive, neither as

matching characters nor in a character set specification (an a in the pattern

will accept both A and a). Any character will match itself.

An interval is symbolized by two dots [..], and character sets are represented

by letters and digits (see table following). A slash [/] immediately following a

character set name signifies that explicitly given characters should be added

to [+] or subtracted from [-] the given character set. A double slash [//] directly

after a character set name signifies that the characters following it will be

given by their ordinal numbers in the DEC multinational character set.

The six predefined character sets are outlined in the table below.

Symbol Character Set

w digits and multinational

letters

e English letters

s Swedish letters

x non-space characters

0 empty set

9 digits

Table 2–10 TRIP’s predefined character sets

The simplest patterns are those which require one or more characters from

any character set to be entered, for example:

Expression Character Function

(1*e) (start word pattern part

 1 exactly one character

required

 * ‘of’ or ‘from’

 e the English letter character

set

) end word pattern part

Table 2–11 A simple pattern

For example, to ensure that a data value will contain three English letters

followed by a slash, then three digits, a hyphen and a single digit

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 68 of 416

(for example, abc/123-7), the pattern (3*e)/(3*9)-(1*9) would be entered

without spaces or commas:

Expression Character Function

(3*e) (start word pattern part

 3 three characters required

 * ‘of’ or ‘from’

 e the English letter character set

) end word pattern part

/ slash required at this position

(3*9) (start word pattern part

 3 three characters required

 * ‘of’ or ‘from’

 9 the Digits character set

) end word pattern part

- hyphen required at this position

(1*9) (start word pattern part

 1 single character required

 * ‘of’ or ‘from’

 9 the Digits character set

) end word pattern part

Table 2–12 A more complex pattern

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 69 of 416

Examples of some easily applied patterns follow.

Pattern Coding Meaning

12 (2..*9) Strings of two or more digits.

a4c/123-7 or

1b3/123-7 or

abc/123-7 or

123/123-7

(3*e+9)/(3*9)-(1*9) Three English letters, a slash, three

numeric characters, a hyphen and

one numeric character.

abc/123-7 or

ab/123-7 or

a/123-7

(1..3*e)/(3*9)-(1*9) One to three English letters, a

slash, three numeric characters, a

hyphen and one numeric character.

a . . . z/123-7 (1..*e)/(3*9)-(1*9) One to 249 English letters, slash,

etc.

/123-7 (0..*e)/(3*9)-(1*9) Any number of English letters,

slash, etc.

abc or a12 or

12a

(3*e+9/-09876543) or

(3*e+0/+12)

Three English letters or digits or a 1

or 2, slash, etc.

a(b) (4*e+0//+40,41) Four English characters or

parentheses.

a b c (1..3) Strings of one to three words.

a1!b2@c3#d (10*x) A word of ten characters.

äåö (3*s-e) Three letters from the Swedish

character set minus the English set.

äåö äåö 012 (1..*s) (0..*s) (1..3*9) Strings of one or two words of

Swedish letters, and one word of

one to three digits.

a ä æ (1..*w) (0..*w) (0..*w) Strings of one to three words of

digits and/or multinational letters

A1b0c a(1*9)(0..*e+9) A string consisting of one word

starting with the letter ‘A’ and a

digit, optionally followed by a

sequence of English letters and/or

digits

Table 2–13 More patterns

Word patterns can specify sets of legal characters for each of their parts. You

can also use combinations of predefined sets with explicitly given characters

added to or taken from the combinations. If no character set is specified, the

set consists only of multinational characters.

Note:

Remember what was said at the start of this section about the asterisk

marking the start of a character set specification, and about the

parentheses that must surround each word pattern part!

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 70 of 416

Examples of combined sets are:

Character Set

Configuration

Meaning

9+s Digits and Swedish letters.

s-e The three extra vowels in Swedish.

e+9/-089 The English letters and the digits 1 to 7

0/+AEIOU The vowels a, e, i, o, and u.

9//+40,41 The digits and left and right parentheses

Table 2–14 Sample combined character sets

In the last example the parentheses are specified by their ordinal numbers in

the DEC multinational character set; note the double slash.

The following paragraphs detail the valid field restrictions available to each

field type.

TExt Fields

The contents of a TExt field cannot be restricted to valid values. For a PHrase

field, however, there are several ways of doing this.

PHrase Fields

A PHrase field may be restricted to valid values in three ways; by entering a

list of valid values, by entering a reference field, or by entering a pattern:

NUmber

A NUmber field may be restricted to a specified list of values and/or intervals,

with the elements separated by commas. The list may contain at most twenty

elements or 255 characters, and is entered in the entry field at the bottom of

the screen. An interval is symbolized by two dots [..], in the same way as in a

pattern specification for a phrase field.

A list of valid NUmber values might look like this:

-2..5.5, 20..

meaning that numbers between or equal to -2 and 5.5, and equal to or

greater than 20 will be accepted. As this example contains a real number, it

could not be used for INteger.

INteger

An INteger field may also be restricted to a value/interval list, with at most

twenty elements or 255 characters separated by commas. The list is also

entered in the entry field at the bottom of the screen, with intervals

symbolized by two dots [..].

A list of valid INteger values might look like this:

-2..5, 20..

meaning that numbers between or equal to -2 and 5, and equal to or greater

than 20 will be accepted.

Another INteger restriction could be

..5, 7..

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 71 of 416

which would make all possible integers (with the exception of 6) valid.

DAte

DAte fields may also be restricted to a specified list of values and/or intervals,

the elements separated by commas. The length of the list is restricted in the

same way as for a number; however dates may be specified using their full

format (YYYYMMDD), year and month (YYYYMM) or year only (YYYY). A

DAte list could look like this:

19850625..19851031, 1986

meaning that any date in 1986 as well as dates from June 25, 1985 up to and

including the whole of October 1985 will be accepted.

If this date form is employed (digits, year followed by month and day, and no

separators), any acceptable private date form may be used in data entry.

Restrictions given in other date forms will accept only dates of the same form

in data entry.

Note:

Refer to the section entitled ‘Date Form’ in Chapter 10 of the TRIPclassic

User Guide for a listing of available date formats.

TIme

The rules for TIme fields are similar to those for DAte fields. A list of TIme

values and intervals could look like this:

10:10:00..13:30:10, 15

Note:

The ‘15’ in the example above indicates 3:00PM exactly (15:00:00), not

3:00:01PM to 3:59:59PM inclusive.

We now continue with our description of the remaining ‘Modify Fields

Collection’ form elements.

Defining Field ASEs

Field ASEs are specified in the two ‘ASE’ boxes on the ‘Modify Fields

Collection’ form:

Figure 2- 22 Field ASE specification boxes

Here you can specify ASEs to be called on a per-field basis, either when

loading a record from TForm or when indexing a record. An ASE is called

once per field.

Accounting Information

This part of the form allows the selection of a field containing the record

copyright holder and a unit cost for examining the onscreen and printed

contents of that field.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 72 of 416

Figure 2- 23 Accounting Information specification

For example, if you download information from an online subscription service

(host a copyrighted database), you could specify a copyright holder for the

downloaded records for chargeback purposes, which will be reflected in the

DEBIT.LOG file.

Refer to Chapter Four, ‘System Logging Functions’ for information regarding

accounting functions, and the ‘Output Format Reference Guide’ section in

Chapter Six of this manual for details on the <debit> filter.

Description

This is a storage area for field descriptions and instructions regarding field

content, and consists of free text up to 255 characters in length. Its contents

will be displayed with the CCL commands STatus, Show BASe, and Print

BASe, as well as during data entry if field help is activated.

Saving a field design

To temporarily save the design for this field, before moving on to create or

modify further fields, click on the <Save field> button, located to the bottom

left-hand corner of the form. You will now be able to continue working with

other fields in the database.

Notes:

• Saved new and modified fields will not be committed to the database

until you either:

a) Click on the <Commit> button, to the bottom right of the form

b) Click on the <Cancel> button, to the bottom right of the form and

respond <Yes> to the ‘Save changes to DATABASE_NAME

design’ confirmation dialogue.

• In both (a) and (b) above, the alteration of the database design will be

confirmed by a pop-up TRIP message, ‘Database design for

DATABASE_NAME altered’. Click the <OK> button, or press the

<Enter> key on the keyboard to continue.

Committing field designs and changes to the
database

To commit the designs for any new and modified fields to the database, click

on the <Commit> button to the bottom left-hand corner of the form.

Note:

The alteration of the database design will be confirmed by a pop-up TRIP

message, ‘Database design for DATABASE_NAME altered’. Click the <OK>

button, or press the <Enter> key on the keyboard to continue.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 73 of 416

Deleting a field design

To delete the design for a field, click on the <Delete field> button in the

bottom left-hand corner of the form. You will now be able to continue

designing the other fields for the database.

Note:

If the field being deleted was previously committed to the database, a

confirmation dialogue, ‘Are you sure you want to delete FIELD_NAME?’ will

first appear. Otherwise, if the field has been saved, but not yet committed to

the database, it will be deleted without further warnings.

Saving a Database Design

Saving a new database design entails entering it as an item in the Control

system file that controls the database. To save an entire design specification,

press the <OK> button, or the keyboard <Enter> key from the General

Database Properties form.

The BAF, BIF, VIF, and the Log file (if specified) are created when the

database design is saved.

Modifying a Database Design

You may alter anything in a database design as long as no data has been

entered into the database.

If, however, data has already been loaded into your design, keep in mind the

following recommended actions for implementing common design changes:

Type of Change Required Recommended

Action

Field name None

File location None

Default form (entry and output) None

Searchable characters Reindex database

Character folding Reindex database

Index mode Reindex database

Delete field from design Rebuild database

Add/remove/change special

field*

Rebuild database

Sentence/paragraph definition Rebuild database

Field type Rebuild database

Layout retained Rebuild database

Field organisation Rebuild database

Head/part status Rebuild database

Table 2–15 Modifying a database design

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 74 of 416

* The record name, record number and part name fields are special fields.

‘Reindex database’ means to reset the index status of the database by

running $TDBS_EXE/bafini (%TDBS_EXE%/bafini in Windows) and providing

a database name at the prompt. You will then need to index the database.

‘Rebuild database’ means to print the database contents into TForm, rename

the database BAF, BIF and VIF, alter the database design as necessary, load

data into the modified database design from TForm, index the newly-filled

database and delete the renamed BAF, BIF and VIF.

Note:

If you change field names or types, you must edit all entry, output and search

forms which refer to those fields to ensure uniformity among field name and

data type references.

To remove a field from the database design, bring up the ‘Modify Fields

Collection’ form and choose the field to delete from the field list; then click on

the ‘Delete field’ button; the deletion of a field is automatically committed to

the database after Yes has been selected from the Yes/No prompt which

appears.

Note:

All currently open TRIP sessions will have to exit and re-enter before any

changes that have been made become apparent; this is because, for

performance reasons, TRIP caches the design of any open database for any

given session and does not reread the design until a new session is started.

Deleting a Database Design

Select the database you wish to delete from the list of databases in the mmc

window, and select ‘Delete’ from the Action menu.

This will delete the database from the Control file as well as its associated

BAF, BIF, or VIF files, as long as there is no data in the database.

If the database which has content, the delete option will not appear on the

action menu, so you must first delete the database’s BAF, BIF and VIF, after

which all associated forms and formats will also be deleted.

Copying a database Design

In the mmc main window, select the database you wish to copy and select

‘Copy’ from the ‘Action’ menu.

Next, select the ‘Databases’ root node in the TRIPmanager window, the

select ‘Paste’ from the action menu. A dialogue box will appear, requesting

the name for the new database copy:

Figure 2- 24 Choose Name for Copy

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 75 of 416

If you also wish to copy all forms and formats with the database design,

check the ‘Copy everything’ checkbox. A confirmation dialogue box will then

appear to confirm the copy.

Note:

When attempting to perform the ‘Paste part of the above operation, if you do

not have the ‘Databases’ root node selected , the context sensitive ‘Paste’

option will not appear as it makes no sense to paste a copy of a database on

top of an existing database.

Once the new database copy has been created, you can alter it using the

‘Modify Fields Collection’ form.

Note:

To create the files BAF, BIF, VIF and Log of the copy database, you must

modify the database properties and save the design. This is important

because, before the files are created, other users cannot be granted write-

access to the database if the directory where the files are to reside is write-

protected by the operating system.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 76 of 416

Related CCL Commands

Note:

It is necessary to select ‘CCL Order’, from the ‘Action’ menu, in order to be

able to enter any CCL commands.

STatus

When you have completed and saved the database design, you can look at

the result by using the CCL command STatus to review general information

about your database.

The form of a STatus order is

STatus databasename 

Figure 2- 25 STatus for database Alice

Here the BAF, BIF and VIF name specifications are given, as well as the

names of the reports and those of any other forms belonging to the database.

When there is data in the database, the total number of records and the

dates of the latest database update and indexing are also provided.

The list of field names for that database will be presented in field number

order, with their data types, field numbers (necessary for TForm data input),

and comments, if any.

Show

An overview of all databases created by a user is obtained by giving the CCL

order:

Show BASe

The list will contain, for each database, the same information as the STatus

command gives for a single database.

This order lists the databases in a shorter format than Show BASe:

Show BASe List

Print

Use Print instead of Show to send output to a printer or file.

The system manager may add R=ALL to the order and have a list of all of the

databases in the system, if the Control file has been indexed.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 77 of 416

IMPOrt and EXPOrt

To produce an ASCII definition file for a database design, use the CCL

command EXPOrt:

EXPOrt BASe=databasename [path=mypath]

FILe=filename 

For example, on Windows:

EXPOrt BASe=mybase path=C:\Tieto\exports

FILe=myfile.def 

Or on UNIX:

EXPOrt BASe=mybase.* path=/user/home/fred

FILe=myfile.def 

to export the database design and any associated reports and entry forms for

Mybase as well. If the (optional) path is not specified or does not exist, the file

will be written to the local working directory.

This definition’s description can be used to move the database description

between Control files, or to create a new database description in the same

Control file rather than using the Copy function. To use the definition file in

this manner, use the CCL command

IMPOrt BASe=databasename [path=mypath]

FILe=filename 

For example, on Windows:

IMPOrt BASe=mybase path=C:\Tieto\exports

FILe=myfile.def 

or on UNIX:

IMPOrt BASe=mybase.* path=/user/home/fred

FILe=myfile.def 

to import the database design and any associated reports and entry forms for

Mybase as well. If the (optional) path is not specified or does not exist, an

attempt will be made to read the file the local working directory. If the file

cannot be located, a file not found error will be generated.

Database Clusters

Creating a Cluster

You can define static or permanent database clusters (as opposed to

dynamically from CCL) by selecting the ‘Databases’ root icon, in the mmc

windows and, from the ‘Action’ menu, selecting ‘New’ then ‘database cluster’

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 78 of 416

Figure 2- 26 Create New Database Cluster

The New Database Cluster’ wizard will then start.

Figure 2- 27 New Database Cluster Wizard

The wizard will present you with a form in which to select up to thirty

database cluster members.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 79 of 416

Figure 2- 28 Database selection form

Enter a name for the database cluster into the ‘Cluster name’ entry box and

select the desired databases (and / or other clusters) for the cluster, by

holding down the <Ctrl> key on the keyboard, whilst clicking on databases in

the ‘Databases:’ window.

Optionally enter a description in the ‘Description:’ window, to a maximum of

255 characters in length.

Finally, click on the ‘Next’ button to continue, or the ‘Cancel’ button to quite

the wizard.

The finishing page of the wizard will appear. You can then click on the ‘Finish’

button to create the cluster.

Note:

The design of static database clusters is still limited to 30 members;

however a workaround is to create database clusters containing other

database clusters.

Warning:

Whilst using the workaround above, it is theoretically possible to exceed the

maximum limit on simultaneously opened databases (250), however such a

cluster would immediately be unusable and care should be taken to avoid

exceeding this limit.

Modifying a Database Cluster

In the mmc main window, select the cluster you wish to modify; then choose

‘Properties’ from the ‘Action’ menu.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 80 of 416

Figure 2- 29 Modify a Database Cluster

A window will appear showing the cluster properties:

Figure 2- 30 Cluster General Properties

The first tab on the cluster properties form is the ‘General’ tab. This tab

displays the cluster name and can also be used modify the database cluster’s

description. The name of a database cluster cannot be changed. You can,

however, copy the cluster to a new name.

The other tab on the database cluster properties form, is the ‘Members tab:

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 81 of 416

Figure 2- 31 Cluster Member Properties

You can modify the cluster member list by adding or removing databases

(and / or other clusters) from the ‘Current members’ list. To add a database

select it in the ‘Available databases’ list and click on the ‘Add’ button. To

remove a database, select it in the ‘Current members’ list and click on the

‘Remove’ button. Multiple selections can be made by holding down the <Ctrl>

key, whilst clicking on the databases to select.

Deleting a Cluster

Select the cluster in the mmc window and then select ‘Delete’ from the action

menu. A Yes/No confirmation box will appear before the cluster is removed

from TRIP. Deleting a cluster has no effect upon its component databases.

Related CCL Commands

Once a cluster has been opened, issuing the STatus command will give the

status of all database members of the cluster. However, the STatus

clustername command will give the actual status of the cluster, for example:

Figure 2- 32 A STatus screen for a cluster database.

PART 1: DATABASE ADMINISTRATION

CHAPTER 2: DATABASES

Page 82 of 416

Any database that you have access to can be a member of the cluster. Once

a cluster has been created, granting access to it is the same as for any other

database and is accomplished through the DB Access menu.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 83 of 416

Chapter 3:
Thesauri

What Is a Thesaurus?

A typical thesaurus that one might find on a library bookshelf or packaged

with a word processor is often nothing more than a collection of synonyms for

a given word or phrase. A structured online thesaurus, however, is more than

a single-level assortment of equivalent or synonymous terms. It is a

hierarchical, multilevel reference database of terms similar to a manuscript

outline that permits vertical as well as horizontal movement among terms and

their meanings. This structure allows a user who wishes to research a

particular expression to find a broader, more expansive classification for it, a

narrower, more divided subterm of it, and terms that are related to it as well

as synonyms.

A thesaurus can solve many problems when used while searching a

database:

• Finding the correct, accepted or established term for something. This

is very useful when a database designer wishes to create a controlled

vocabulary using synonyms, and is generally automated using an

ASE behind a TRIPclassic data entry form.

For example, if the only acceptable abbreviation for ‘United States’

during data entry is ‘US’, an ASE could be used to validate every

insertion made to the box in question via thesaurus. If the data enterer

types ‘United States’, and this term appears as an accepted term in

the thesaurus, it is valid. If ‘United States’ is listed as a synonym of an

accepted term, it will be replaced with ‘US’.

• Finding more general, ‘umbrella’ terms to use when the one you were

searching with gives no results.

For example, in a database containing race horse bloodlines and

breeding data, the broader or more inclusive term for a champion

thoroughbred brood mare called ‘Bonney Girl Blue’ might be

‘Thoroughbred Dam’.

• Finding more limited or precisely defined terms when the one in use

produces an enormous number of hits, or a search result consisting of

uninteresting generalities.

For example, in a pharmaceuticals thesaurus, narrower terms or

subcategories of the expression ‘painkiller’ might include ‘aspirin’,

‘acetaminophen’, ‘ibuprofen’, ‘codeine’, ‘morphine’ etc.

• Expanding a search laterally by locating terms that are somehow

related to or associated with the one being used for searching, that is,

using a synonym list or directory. Related terms may or may not be on

the same level.

For example, related terms for ‘daisy’ might be ‘rose’, ‘bluebell’ and

‘pansy’, or they could be ‘flowering plants’, ‘Shasta daisy’, ‘roadside

weeds’ and ‘composite flowers’.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 84 of 416

• Verifying the usage of a term by searching for its summary or

definition. Rather than searching a term and reading its description

dictionary-fashion, you could search a term’s synopsis for key words

and use these to search the database for appropriate expressions.

For example, if the definition of ‘painkiller’ were ‘a drug or narcotic that

alleviates physical suffering, i.e. pain palliative’, a productive search

might include the words ‘pain’ and ‘palliative’.

Many of these tasks could be accomplished with a good dictionary. An online

thesaurus, however, is faster to use, and its contents are tailored specifically

for applications with one or several databases.

A Simple Thesaurus

A small thesaurus containing terms related to train equipment, types of train

cars and the names of individual engines is here diagrammed vertically:

Railroad Equipment

 Locomotive

 Steam Engine

 The Flying Scotsman

 Stevenson’s Rocket

 Puffing Billy

 Electric Engine

 The Duke of Norfolk

 Belvoir Castle

 Diesel Engine

 # 2302

 # 4872

 Freight Car

 Passenger Car

 Work Equipment

 Crane

 Caboose

 Snow Plow

Figure 3–1 The ‘Train’ thesaurus, vertical representation

and here horizontally:

 Railroad Equipment

Locomotive Freight Car Passenger Car Work Equipment

 Steam Engine Crane

 The Flying Scotsman Caboose

 Stevenson’s Rocket Snow Plow

 Puffing Billy

 Electric Engine

 The Duke of Norfolk

 Belvoir Castle

 Diesel Engine

 # 2302

 # 4872

Figure 3–2 The ‘Train’ thesaurus, horizontal representation

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 85 of 416

In this example, the immediate sub groupings of the term ‘Railroad

Equipment’ are ‘Locomotive’, ‘Freight Car’, ‘Passenger Car’ and ‘Work

Equipment’, while the next subdivision of ‘Locomotive’ includes ‘Steam

Engine’, ‘Electric Engine’ and ‘Diesel Engine’, and so on.

Seen another way:

Term Broader Term Narrower Term(s)

Railroad Equipment - - - - - - Locomotive, Freight Car,

Passenger Car, Work

Equipment

Locomotive Railroad Equipment Steam Engine, Electric Engine,

Diesel Engine

Freight Car Railroad Equipment - - - - - -

Passenger Car Railroad Equipment - - - - - -

Work Equipment Railroad Equipment Crane, Caboose, Snow Plow

Steam Engine Locomotive The Flying Scotsman,

Stevenson’s Rocket, Puffing

Billy

Electric Engine Locomotive The Duke of Norfolk, Belvoir

Castle

Diesel Engine Locomotive # 2302, # 4872

The Flying Scotsman Steam Engine - - - - - -

Stevenson’s Rocket Steam Engine - - - - - -

Puffing Billy Steam Engine - - - - - -

The Duke of Norfolk Electric Engine - - - - - -

Belvoir Castle Electric Engine - - - - - -

2302 Diesel Engine - - - - - -

4872 Diesel Engine - - - - - -

Crane Work Equipment - - - - - -

Caboose Work Equipment - - - - - -

Snow Plow Work Equipment - - - - - -

Table 3–1 Record contents and thesaurus design for ‘Train’

In this illustration the term ‘Railroad Equipment’, which has no larger category

or broader term, is the top term in the hierarchy. Certain pieces of railroad

equipment such as ‘Passenger Car’ and articles of work equipment such as

‘Caboose’ are terminal expressions, since they contain no subcategories or

narrower terms. The names of individual locomotives such as ‘Puffing Billy’,

‘Belvoir Castle’ and ‘# 4872’, which have the greatest number of larger term

groupings above them and no narrower terms, are the lowest terms. A

terminal expression may or may not be a lowest term in the hierarchy;

however a lowest term is always a terminal expression.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 86 of 416

A thesaurus can be considered an upside-down ‘tree’, where the top term is

the root and the terminal expressions are the leaves.

There can be more than one tree in a thesaurus, that is, a thesaurus may

contain several top terms, each marking the highest level of an individual

tree.

Creating a Thesaurus

Several steps are necessary in building a thesaurus. First and foremost is the

conceptual data layout and physical database design, the default conceptual

layout being defined by the system.

Next, the planner must decide if the database will be filled manually (using

data entry) or automatically (via TForm file). If using data entry, the designer

must build a data entry form; if using TForm, he or she must create a

program to convert existing online thesaurus data to TForm, or manually

create a TForm file via the system editor.

Finally, the defaults should be defined, such as a report, entry form etc.

To create a thesaurus, highlight ‘databases’ in the mmc
window and select ‘New’ then ‘New Thesaurus…’ from the
action menu.

Figure 3–3 New Thesaurus Menu

This will start the New Thesaurus wizard. As this wizard is identical in form to

the Database design wizard, refer to the section on creating a new database

for more details.

Note:

A newly created thesaurus will contain fields according to the TRIP

thesaurus design template.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 87 of 416

Thesaurus Structure

TRIP provides a template for thesaurus creation, the structure of which is

shown below:

Field Acronym Field Type Indexed? Comments

CTX PHrase Yes Controlled Term

BTX PHrase No Broader Term

NTX PHrase No Narrower Term

RTX PHrase No Related Term

UFX PHrase Yes Synonyms

SNX TExt Yes Scope Note/term description

NRX PHrase No Hierarchical position designation used

for numerical decimal classification

Table 3–2 The thesaurus template

Note:

The PHrase field NRX may be used by a data entry facility to contain a

number expressing the level of the CT terms in the thesaurus. It is optional,

and has no other function.

Data Layout

In the following we will use the terms CT, BT and so on, instead of the field

names with the added ‘X’. That letter is added only because the thesaurus

terms are reserved words in CCL and can not be used as field names.

In the hierarchical or conceptual design of a thesaurus, each record contains

both a term and its nearest semantic relatives:

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 88 of 416

Field Acronym Field Contents Comment

CT term - - - - - -

BT CT’s parent nearest more general term(s)

NT CT’s children nearest more specific term(s)

RT other thesaurus CTs

that are related to

the term

except CT’s parent or child. This

can be any other relative, or even

a term with no ancestor in

common with the CT

UF other non-CT

thesaurus terms that

are synonyms or

near-synonyms of

CT

- - - - - -

SN description of CT - - - - - -

NR hierarchical number provided for compliance with

ANSI thesaurus structure

standard; not used by TRIP

Table 3–3 Record contents and thesaurus design

Using the first two levels of the train example illustrated in Figure 3-1 , the

hierarchical relationships of the top five terms are outlined below:

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 89 of 416

Terms

 Railroad

Equipment

Locomotive Freight Car Passenger

Car

Work

Equipment

CT Railroad

Equipment

Locomotive Freight Car Passenger

Car

Work

Equipment

BT - - - - - - Railroad

Equipment

Railroad

Equipment

Railroad

Equipment

Railroad

Equipment

NT Locomotive,

Freight Car,

Passenger Car,

Work

Equipment

Steam Engine,

Electric Engine,

Diesel Engine

- - - - - - - - - - - - Crane,

Caboose, Snow

Plow

RT - - - - - - Freight Car,

Passenger Car,

Work

Equipment,

Railroad

Equipment

Locomotive,

Passenger

Car, Work

Equipment,

Railroad

Equipment

Locomotive,

Freight Car,

Work

Equipment,

Railroad

Equipment

Locomotive,

Freight Car,

Passenger Car,

Railroad

Equipment

UF - - - - - - Engine Baggage Car,

Cargo Carrier

- - - - - - Maintenance

Gear

SN All vehicles

used to

transport or

maintain

persons,

objects or

equipment by

rail

The source of

power in a

railway

caravan,

operated by

steam,

electricity or

petroleum

fuels.

Any rail carrier

designed to

transport

cargo

shipments

rather than

people.

Any rail

carrier

intended to

transport

persons

rather than

cargo.

Any rail car or

accessory used

primarily for the

preservation

and restoration

of railway

equipment and

rights-of-way.

NR 1 1.1 1.2 1.3 1.4

Table 3–4 Hierarchical relationships of the ‘Train’ thesaurus

While the BTX and NTX fields must have content to form the hierarchical

structure of the thesaurus, the contents of the RTX, UFX, SNX and NRX

fields are discretionary and serve only to make the thesaurus more useful.

A term may be the CT term of more than one record, but only if the BT terms

of the records differ, that is, if they are either homonyms or the same term

seen from different aspects.

In each record the CT field holds exactly one term; that is, CT may not

contain more than one subfield. The number of terms or subfields is not

restricted for any other thesaurus PHrase field except BT, whose maximum-

single subfield default value can be altered.

CT is the only thesaurus field that can be defined as a record name field.

Each term in a BT, NT or RT field of a record must also appear as the CT of

another record, which is why they are not indexed (not searchable) in those

records where they are not the CT term.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 90 of 416

The UF terms, the synonyms or near-synonyms, must not appear as CT

terms with records of their own.

Note:

TRIP will not automatically detect a thesaurus design error wherein term 1A

has NT=1B and term 1B has NT=1A. The same is true if term 1A has NT=1.

Attempting to Display Down from a level above 1A can then result in a loop

and possibly a crash if the Display MAXimum definition is sufficiently large.

Care should be exercised to avoid such looping conditions when creating a

thesaurus.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 91 of 416

Thesaurus Database Design

General Thesaurus Properties

Refer to Chapter Two of this guide, ‘Creating a Database’ and ‘Modifying the

Fields Collection’ for background information on designing a thesaurus.

Special Thesaurus Fields

As the CTX field is the only mandatory field, it could be made a record name

field with the understanding that the contents of CTX must then be unique in

the database. The ‘Part Record Field’ option is unavailable for thesaurus

design.

Defaults

The default report is the same as for database design.

Be cautious in designing customized reports for use with a search form, as

the same report will be used for both Show and thesaurus Display orders.

Although it is possible to override the format used to display thesaurus output

by designating another default, we strongly suggest that you contact your

local TRIP agent for guidance before doing so.

Character Sets

You may select a character folding class as for an ordinary database.

Description of the Thesaurus

The thesaurus description appears on STatus requests as with a standard

database.

Other Thesaurus Properties

The ‘ASE (Application Software Exit)’, ‘Sentences and Paragraphs’ and

‘Index/Update Submission’ screens are identical to those provided for

standard database design.

Field Definition

To create fields in addition to those provided in the thesaurus template or

modify the attributes of the pre-existing fields, use the ‘Modify Fields

Collection’ form. Any customised appended fields will not be shown in a

Display of the thesaurus, however.

The ‘Index’ specification for any of the seven predefined thesaurus fields

cannot be altered.

Although each field has been provided with a brief description, you may add

additional comments and/or restrictions.

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 92 of 416

Filling The Thesaurus

Using TForm

If your thesaurus data exist in a commercially-procured or editor-constructed

text file, the file can be converted to TForm, the input format of TRIP and then

loaded into TRIP. To do this you should first design the thesaurus on paper,

either manually or using a thesaurus maintenance tool, to ensure that all

reciprocal terms within the data are correct. You will also need the field

numbers of the thesaurus design, which are displayable using a STatus order

after the thesaurus has been created.

See the Appendix in this guide for more information on creating a TForm file.

Using Data Entry

To fill a thesaurus manually, the thesaurus designer must first build a data

entry form containing at least the CTX, BTX and NTX fields, and preferably

the other fields as applicable. Data entry then proceeds as usual,

constructing term relationships one record at a time. You must enter as many

records as there are terms or nodes in the thesaurus tree.

See Chapter Six of the TRIPclassic Manager Guide for more information on

building data entry forms.

Related CCL Commands

Thesaurus designs can be EXPOrted and IMPOrted in the same manner as

standard database designs, so that any additional fields that may have been

appended to the thesaurus design will be maintained during a move between

CONTROL files.

STatus

You can use the CCL STatus command to review general information about

your thesaurus once the design has been completed and saved:

STatus databasename 

Figure 3–4 STatus for thesaurus ‘Thesali’

Show

Show BASe 
Show BASe LIST 

PART 1: DATABASE ADMINISTRATION

CHAPTER 3: THESAURI

Page 93 of 416

IMPOrt/EXPOrt

IMPOrt THESaurus=thesaurusname file=filename 
EXPOrt THESaurus=thesaurusname file=filename 

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 94 of 416

Chapter 4:
System Logging Functions

Overview

System logging functions include accounting, auditing and event monitoring.

Auditing is the logging of certain user activities and the time each was

performed on the TRIP system. These may include the databases a user has

opened and closed, searches performed and output produced.

Accounting is a cost accrual for all records shown or printed by a user

according to a predesignated unit cost per field specified in the database

design. The costs recorded can be affected using the DEBIT output function

(for more information, see the ‘Debit’ section in Chapter Six, ‘Output Format

Reference Guide’ of this manual).

Event monitoring is a feature that allows the TRIP systems administrator or

DBA to output events from TRIP sessions.

Activating System Accounting Functions

The simplest method of switching on logging functions is to create a blank file

called DEBIT.LOG in the directory pointed to by TDBS_SYS.

If you have a directory for the storage of accounting files defined under the

logical name TDBS_ACCDIR, TRIP will create an accounting file

automatically according to the value specified by the logical name

TDBS_ACCFLG. See the next section for more information.

Assigning Field Costs for Accounting

Assigning a cost to a field when a record is output is done in the database

specification. See Chapter Two, ‘Database Design’ for more information

regarding field cost assignment.

Accounting function Logical Names

There are two logical names that control the user logging functions in TRIP.

The first, TDBS_ACCDIR defines a directory in which the system accounting

logs are kept.

For both UNIX and Windows, TRIP assumes the accounting file is kept in

TDBS_SYS if the logical name TDBS_ACCDIR is not defined. Any definition

of TDBS_ACCDIR that a user may have set up in his or her own environment

will be overridden by any definition in tdbs.conf, which is located in the conf

directory of the TRIPsystem installation.

The second logical name, TDBS_ACCFLG, can be used to customize the

name and content of accounting logs.

In UNIX and Windows, any definition of TDBS_ACCFLG in a user’s

environment will be overridden by a definition in tdbs.conf.

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 95 of 416

The value of TDBS_ACCFLG is an integer bitmask, whose value varies

between 0 and 255. The meaning of each individual bit (0–7) is explained

below.

TDBS_ACCFLG Bits

To compute the value required for the setting of TDBS_ACCFLG, simply add

the values of those bits that you wish to enable. For example, to enable all

possible logging and activate show focus accounting, set these bits:

Bit

Number

Bit Value

3 8 (23)

6 64 (26)

Therefore, the value of TDBS_ACCFLG should be (64+8)=72.

Bit 0

This bit (value 1) specifies the use of a user specific account file called

TRIPusername.LOG, if not otherwise specified by bit number 1. For example,

if the user name is ‘FRED’, then the user-specific accounting log in

TDBS_ACCDIR will be called ‘FRED.LOG’. Any pre-existing DEBIT.LOG file

will not be used.

Bit 1

This bit (value 2 or 21) uses the SIF file name as the name of the account file.

If this bit is set, then the name of the user-specific accounting log is the

filename portion of the SIF, as specified by the logical name TDBS_SIF.

If TDBS_SIF is defined as the UNIX path + filename

/usr/users/sif_files/jim_johnson.sif and the username is ‘FRED’, the

accounting file will be called $TDBS_ACCDIR/jim_johnson.LOG.

If TDBS_SIF is defined as the Windows path + filename

C:\users\jjohnson\sif_files\jim_johnson.sif and the username is ‘FRED’, the

accounting file will be called %TDBS_ACCDIR%\jim_johnson.LOG.

Note:

If TDBS_SIF does not contain a filename specification, setting this bit will

have no effect (see the section entitled ‘Logical Names’ in Chapter Twelve

of this manual for the definitions of TDBS_SIF).

Bit 2

This bit (value 4 or 22) uses the SIF file name as the identifier in the account

file, rather than the TRIP user name. By default, every entry written to the

accounting file contains the TRIP username involved.

Setting this bit instructs TRIP to replace the TRIP username with the filename

portion of the TDBS_SIF definition.

Bit 3

This bit (value 8 or 23) logs all possible information. If this bit is not set,

logging will not be performed when a database cluster is opened and when

the CCL orders Find, FRequency and MEasure are used.

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 96 of 416

Bit 4

This bit (value 16 or 24) specifies that TRIP should not accumulate database

statistics.

The accounting default is for TRIP to accumulate accounting information for

all actions taken, and to record this information only when the user logs off

the system. If this flag is set, an accounting line is written whenever

databases are changed with the BASe command. Statistics will be written for

the last database opened upon logout, therefore this flag will be of no use if

the user opens only a single database during their entire session.

Bit 5

This bit (value 32 or 25) specifies that TRIP should not collect output

statistics, but should write accounting information whenever a new Show

request is begun.

Setting this bit directs TRIP to record statistics for each Show command

separately, so that in the event of an abnormal termination only those

statistics for the last Show request performed will be lost.

Bit 6

This bit (value 64 or 26) switches accounting on for Show FOcus. The TRIP

default provides accounting information only for normal Show procedures,

and does not typically include Show FOcus.

Bit 7

This bit (value 128 or 27) dictates that only records in open databases can be

shown. This type of accounting prevents a user from Showing the results of

previous searches—to view these, the user must reopen the database

against which those searches were made. Print commands for prior searches

are still allowed.

Accounting Log File Format

The accounting log is a shared sequential file, with each ASCII-readable

record containing a maximum of 255 characters. The records or lines have a

predefined time of recording, starting and ending position (given in columns)

and length, and for convenience are referred to by a single-letter acronym

such as B-line.

Each user’s session as recorded in the accounting file may contain any

combination of the line types shown overleaf:

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 97 of 416

Line Name Line

Acronym

Starting

Position

Ending

Position

Length Field Description When Recorded

Beginning B-line
1

 3 50 48 Session identity At the beginning of a

session

Changing or

Closing

C-line 52

69

67

88

16

20

Database name

Closing date and time

On changing a

database or logging

out

Exit E-line
2

 52

72

71

171

20

100

Closing date and time

Operating system statistics

On exit from the

system

Field F-line 52

69

67

255

16

187

Database name

Copyright holder information

On output of a

copyright-protected

field

Multibase M-line 52 253 200 Logs database clusters Immediately after

opening

Opening O-line 52

69

67

88

16

20

Database name

Opening date and time

On opening a

database

FreQuency Q-line 52 253 200 Logs FRequency orders Immediately after

order has been

completed

MeasuRe R-line 52 253 200 Logs MEasure orders Immediately after

order has been

completed

Search S-line 52 253 200 Logs Find orders Immediately after

order has been

completed

Usage U-line 52

69

78

85

94

101

67

76

83

92

99

108

16

8

6

8

6

8

Database name

Database connect time

(hh:mm:ss)

No. records shown (right-

justified)

Cost of records shown

No. records printed (right-

justified)

Cost of records printed

On exit from the

system, but this may

be affected by the

value of

TDBS_ACCFLG

Table 4–1 Hierarchical relationships of the ‘Train’ thesaurus

1 For each user entering TRIP, a unique session identity, the B-Line, is

created from the date and time of TRIP entry and the operating system user

name, the TRIP user name or the SIF file name, depending on the setting of

TDBS_ACCFLG. This session identity is repeated on each line of the debit

file in character positions three to fifty, so that each user’s entries can be

grouped using a simple sort.

2 The operating system statistics captured by the E-Line include total TRIP

connect time and CPU time.

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 98 of 416

Example

The following example is a log file from a short single-user TRIP session. The

initial ten lines of code of the interactive user session reproduced below

(Table 4–2) generate the first fourteen lines of output in the accounting file

(Figure 4–1). The last line of code, the Print statement, executes a batch job

that produces the remaining nine lines of accounting output.

The user name for the session is JANNE, and the TRIP user name is

SYSTEM. A cost has been assigned to one of the fields of the database

CORR, but no copyright holder has been specified (that information is not

mandatory). Bit number three of TDBS_ACCFLG has been set.

The session consisted of the following TRIP orders:

Timepoint CCL Command

User’s Interactive

Session

base corr

 F $rip

 show

 base alco=alice,corr

 find alice

 show

 show reverse

 freq rname

 meas chaptnr

 f jabber$ or jan

Batch Print Job print file=x

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 99 of 416

The accounting log file would appear as follows:

 COLUMN POSITION

|------- Session Identity --------|--------------|----------------|--------|------||-------|------|--- 

3 51 69 78 84/85 94 101 

B JANNE SYSTEM 11-JAN-1991 09:27:15

O JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 11-JAN-1991 09:27:20

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find $rip 110

M JANNE SYSTEM 11-JAN-1991 09:27:15 BASe alco=alice, corr

O JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 11-JAN-1991 09:27:30

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find alice

Q JANNE SYSTEM 11-JAN-1991 09:27:15 freq rname

R JANNE SYSTEM 11-JAN-1991 09:27:15 meas chaptnr

S JANNE SYSTEM 11-JAN-1991 09:27:15 Find jabber$ OR jan

C JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 11-JAN-1991 09:29:20

C JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 11-JAN-1991 09:29:20

U JANNE SYSTEM 11-JAN-1991 09:27:15 CORR 00:02:02 2 0 0 0

U JANNE SYSTEM 11-JAN-1991 09:27:15 ALICE 00:01:49 2 0 0 0

E JANNE SYSTEM 11-JAN-1991 09:27:15 11-JAN-1991 09:29:23 ELAPSED: 0 00:02:07.75 

  CPU: 0:00:07.76 BUFIO: 08 DIRIO: 71 FAULTS: 56

B JANNE SYSTEM 11-JAN-1991 09:30:22

M JANNE SYSTEM 11-JAN-1991 09:30:22 BASe alco=alice, corr

O JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 11-JAN-1991 09:30:20

O JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 11-JAN-1991 09:30:20

C JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 11-JAN-1991 09:30:20

C JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 11-JAN-1991 09:30:20

U JANNE SYSTEM 11-JAN-1991 09:30:22 CORR 00:00:04 0 0 17 0

U JANNE SYSTEM 11-JAN-1991 09:30:22 ALICE 00:00:04 0 0 1 0

E JANNE SYSTEM 11-JAN-1991 09:30:22 11-JAN-1991 09:30:27 ELAPSED: 0 00:00:05.58 

  CPU: 0:00:03.50 BUFIO: 19 DIRIO: 71 FAULTS: 397

Table 4–2 A sample accounting file

Event logging

An event logger library has been added to TRIPsystem. This is able to detect

various events in TRIP sessions and log its findings to file.

Overview

Event monitoring is a feature that allows the TRIP systems administrator or

DBA to output events from TRIP sessions. If event monitoring is enabled,

each session gets its own event log file.

Events in this context are:

• Errors in the current session

• Changes to users (e.g. created, deleted)

• Changes and actions on databases (e.g. created, deleted, opened,

closed)

• Submitted batch jobs (index jobs, print jobs and global updates)

• Session changes (login, logout)

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 100 of 416

How to Enable Event Logging

Event logging is disabled by default. It is enabled by adding the following

property to the tdbs.conf file:

Property name Value description

TDBS_MONITOR_LIB Fully qualified path to the monitor

library file

It is also possible to generate performance measurements on query

executions. This is not enabled by default, even if event monitoring is

otherwise enabled, but may be enabled by setting the following property in

the tdbs.conf file:

Property name Value description

TDBS_MONITOR_QPERF “Y” or “1” to enable query

performance event logging

Example, with query monitoring enabled:

TDBS_MONITOR_LIB=${TDBS_HOME}/bin/libmonlog.so

TDBS_MONITOR_QPERF=Y

Monitoring is always enabled if the TDBS_MONITOR_LIB property is defined

and refers to the libmonlog shared object or DLL file.

Parameters

Additional parameters to the event monitor can be given by adding the

following properties to the tdbs.conf file:

TDBS_MONLOG_FLUSH

Determines if log statements should be forced to disk immediately as they

are written, or allowed to delay in the file system cache.

Enable by specifying Y. Default is N (false).

TDBS_MONLOG_MONOLITHIC

Determines if the monitoring event log is monolithic or per session. When

monolithic logging is enabled, all sessions share the same log file.

Default is Y (true). Disable by specifying N.

TDBS_MONLOG_MONOLITHIC_PERIOD

Determines the time period of monolithic logs. A new log file is created for

each new period. Valid values:

• HOUR

• DAY

• WEEK

• MONTH

• YEAR

Default is DAY.

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 101 of 416

TDBS_MONLOG_TSTAMP

Determines if a year-to-second time stamp should be included in the log file

for each log row.

Default is N (false). Enable by specifying Y.

Event Log Output

The format of the event log file is a comma-separated values (CSV) file. The

following tables describe the fields in the file.

Common fields for all message types:

Field nr Value Type Description

1 Process ID The process ID of the process from which

the event originated. This is typically the

TRIP Daemon (tripd), the TRIPserver

(tbserver), and TRIP classic (trip), but also

includes serverside TRIP processes that

directly use the TRIP kernel.

2 Time stamp Time stamp in the format “YYYY-MM-DD

hh:mm:ss”. This field contains an empty

value unless the

TDBS_MONLOG_TSTAMP property is set

to Y.

3 Hi-res time A nano-second time offset from the start of

the process from which the event

originated. The format of this value is

hh:mm:ss:mmm.uuu.nnn.

4 Message

Type

Indicates the type of the information on the

current row. The value types of the

remainder of the fields are determined by

this value.

The following fields apply to message type PROCINFO, which denotes basic

process information. This information is sent when the monitored process is

starting up.

Field nr Value Type Description

5 Process
Type

The type of the process. This is “TRIP
kernel” for a TRIP session or “Tieto
TRIP daemon” for the TRIP Daemon
(tripd).

6 User name The name of the currently logged on
user

7 Is Session Indicates if the process currently hosts
an active TRIP session, i.e. a logged on
user.

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 102 of 416

The following fields apply to message type EVENT, the most common entry

in the event monitoring log.

Field nr Value Type Description

8 Severity The severity of the event. Possible values

are INFO, WARNING, ERROR and

CRITICAL.

9 Resource

Type

The type of resource associated with the

event. Typical values are USER and

DATABASE. Additional possible values

are SESSION, HOST, PROCESS and

JOB.

10 Resource ID The identity name of the resource

associated with the event.

11 Event Type The type of the event being signalled.

Valid values are:

• STARTED – e.g. a successful user

login

• STOPPED – e.g. a logout

• OCCURRED – a generic event

• CREATED – e.g. a database was

created

• DESTROYED – e.g. a database was

deleted

• ERROR – e.g. an error has been

raised

• WARNING – e.g. a non-critical error

has occurred

• FAILED – e.g. generic non-erroneous

failure

MEASUREMENT – e.g. query

performance

12 Event Name Display name or title for the event. In

case of errors and warnings, this

indicates the code of the TRIP error.

13 Description Human-readable event description. In

case of errors and warnings, this is

typically the TRIP error message.

Log File Location and Name

The event log is written to the directory indicated by the TDBS_LOG property

in the tdbs.conf file.

The name of the file is determined by whether monolithic mode is enabled

(see the description of the property TDBS_MONLOG_MONOLITHIC) and the

period of the monolithic logging (see the description of the property

TDBS_MONLOG_MONOLITHIC_PERIOD).

If monolithic logging is disabled, the log file name will be:

eventlog_<year><month><day><hour><min><sec>_<pid>.

log

PART 1: DATABASE ADMINISTRATION

CHAPTER 4: SYSTEM LOGGING FUNCTIONS

Page 103 of 416

If monolithic logging is enabled, the log file names depend on the time period:

• HOUR
 eventlog_<year><month><day><hour><min><sec>.log

• DAY
 eventlog_<year><month><day>.log

• WEEK
 eventlog_<year><dayofyear>.log

• MONTH
 eventlog_<year><month>.log

• YEAR
 eventlog_<year>.log

Year is always a 4-digit number. The values for month, day, hour, minute and

second are all zero-padded 2-digit numbers. The value for ‘dayofyear’ used

for WEEK time period is a zero-padded 3-digit number that denotes the day

of the year for the Monday in the current week.

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 104 of 416

Part 2:

Forms

PART 2: FORMS

CHAPTER 5: DATA ENTRY FORMS

Page 105 of 416

Chapter 5:
TRIPclassic Data Entry Forms

Data entry is the process of manual insertion of data into a database. To do

this, the database manager or a user with access to the database designs a

screen form giving access to the fields of the database.

A data entry form consists of one or more screen pages for the entering of

the records. Headers, frames and visual characteristics of different kinds may

be added to the form. The data entry form can be used both for entering new

records and editing old ones. The records created using the form are added

directly to the BAF file.

To view the existing data entry forms for a given database, expand its sub-

tree in the mmc window then click on the ‘Entry Forms’ icon. A list of entry

forms will then appear.

Figure 5–1 Entry forms for database CORR

Selecting an entry form and choosing ‘Properties’ from the action menu, will

list the properties for that form.

PART 2: FORMS

CHAPTER 5: DATA ENTRY FORMS

Page 106 of 416

Figure 5–2 Properties for CORR entry form FULL

Creating and Modifying TRIPclassic Data Entry
Forms

TRIPmanager currently has no means of carrying out these operations. It is

hoped to include this functionality in a later release. For now, consult the

TRIPclassic user guide for details of how to perform these actions.

Copying TRIPclassic Data Entry Forms

To copy a data entry form, click on ‘Entry Forms’ in the chosen database sub-

tree, select the form to copy and select ‘Copy’ from the action menu.

Next click in the right hand pane of the mmc to deselect the Entry Form being

copied, then select ‘Paste’ from the action menu.

Figure 5–3 Copy a Data Entry form

PART 2: FORMS

CHAPTER 5: DATA ENTRY FORMS

Page 107 of 416

A dialogue will appear, in which you may enter the name for the new Entry

form copy and click on the ‘OK’ button to confirm the action.

Figure 5–4 Name New Data Entry Copy

a new Entry Form creation confirmation will then appear.

Figure 5–5 Data Entry Copy Confirmation

Clicking on the ‘OK’ button will clear the confirmation. The copy of the new

form has now been created.

PART 2: FORMS

CHAPTER 5: DATA ENTRY FORMS

Page 108 of 416

Deleting TRIPclassic Data Entry Forms

To delete a data entry form, click on ‘Entry Forms’ in the chosen database

sub-tree, select the form to erase and select ‘Delete’ from the action menu.

Figure 5–6 Delete a Data Entry form

A ‘Yes/No’ confirmation dialogue will appear. Click the ‘Yes’ button to confirm

the action, or the ‘No’ button to cancel it.

Figure 5–7 Delete Data Entry form confirmation

Clicking on ‘Yes’ will cause a deletion confirmation to appear.

Figure 5–8 Data Entry form Deleted

Clicking on the ‘OK’ button will clear the confirmation. The selected data entry

form has now been deleted.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 109 of 416

Chapter 6:
Reports / Output Formats

Notes:

• In keeping with modern database terminology, TRIP’s output formats

are often now referred to as 'reports'. However, in reality, persistence in

using the original title 'output format' means that the two terms are, in

effect, interchangeable.

• Due to TRIPclassic's legacy of having been designed in the era of

'dumb' terminals (e.g. the venerable VT100), which all utilised fixed

width fonts arranged in columns and rows, many of the character

positioning functions used when designing TRIP reports for textual

output are based on an imaginary, user pre-defined, screen grid with

each square on the grid containing one character. Calculations as to

text and output box positions, therefore, relate to the dimensions of this

underlying grid; a fact which should be kept in mind when reading this

section.

• In contrast to designing textual output reports, when designing reports

for (e.g.) HTML, or XML outputting, the report designer is free to include

whatever tags they wish and the screen grid can largely be considered

an irrelevance.

A report, or output format, specifies how a record in a database is to be

output. It produces a user-specific data summary containing only the pieces

of information required by the user, in the blueprint or configuration most

useful to him or her. Using specialised symbols and functions, a user may

specify which parts of the record should be output, how the different parts

should be separated, in what position on the page (screen or printed page)

they should be written, and what additional information should accompany

them.

Any user with read-access to a database may create such a tailored report

and send it either to screen or printer, but only the author of a report or the

database administrator (DBA) may edit or delete it.

All specifications (with the exception of text string literals) are case-

insensitive.

The Report

A report specifies how a single record in a database should look when

printed, which TRIP uses as a template to print one record after another. A

report consists of the left chevron or less-than symbol [<], one or more layout

box definitions and the right chevron or greater-than symbol [>].

Since records vary in length, an output page may not be identical to the

previous one.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 110 of 416

We recommend that you diagram one page of your report before attempting

to create the code, so that you have some idea of how it will (or should) look:

Box 1
dm
al
aj
pqowidnvfhb

qlcnvjfhaydcb

bkogidu nvb

Box 2mn
ds
pfhbnj

hayfdayupoom

lpiycnvoiut mnjhi

Box 3

kfjrueoosmcnhgk
nmhlkfutiymb
kgoepqmcnb

cmvkfjrueoosmcnhgk
kfu
cvkgoepqmnbmcnb

 jruesm
 jhuukfu
 pqmn

 pfhbnj

 mdoayupo

 cnvoiut

cnkfj gisueori fkv r itusnd bvn eoe0q0e97tj snsn

cnkfj gisueori fk vn eoe0q0e97tj

a fkghssieufb gnc ajh dhfg wu euyr
ak sjhdfiuryt cnv jfk ghtuyrenv

sloghguts nfjghf ru t ruwywoejfjr gngjtiig hoohd

Box 5

1827364.39495

485,284,345.01
112.67 873.39

 Gnnckfj gbisueoriv r itu snd bvn eoe0q0 e97tj vmfkvsnsn irutoen

slo ghguts fvnffjghf flgrutiu bt ruwyw oejfjr gngjb bjtiig hoohd

sshdjhfyr eyrt rheufhggntue eyru ryr tyyetetsbban anab sbns bd absa
rgngjb bjtiig hoohd d.

 No ghguts fvnffjghf flgrutiu bt ruwyw oejfjr gngjb bjtiig hoo hd
shdgf tyuey. Mdjeuyrit wi ldk irur tdjj, fndjhf rury
kajsuerr whs mv jfhgitiyu dlkfjgit. Sdh eruytbd cb

zmzkjdue. Nieur fb dbdfvf fmdnf rj fjjrueyrv. Mbfor

ndjhf rury rnchf, sjdhure ndhf gjj tmkbjg irutncmf cnvjdhuy dbfbna
xnbv.

 Ghguts fvnffjghf flgrutiu bt ruwyw oejfjr gngjb bjtiig hoohd dnc

mckdjf ruty s hfhshgf fgeeh rge ehrgrueu3 vmfb. Njfig snfbfd, dhf

znxksd dncjhfuryt saus dycndjf cmnvjf. Hueirut snabshdeuq sbdvf a

mcnvjfhg, adjf eufh abdfghq9qwi fhsjhf snd fbsnfjqi wiei.

 Bnabsh ldkff kjsduerf, vnjhudf eue f ehqjqhw dbehqjh wn ehdjfh

jshdjfnv. Mkjdiuer fhuueuyri fidi wdbfruiw ndbf uei.

 N cnvjf flklfgk v vc.dld;lfk w'el; f,fgm/sf,rl s;wiur.
 Najushd hsgdyer jdhfur ajbsjdhuu euruydfj bfhdg qiq0iwue djedioei

mdnfjg.

 Njahusye dsmjdhf ueyt sbfb sb didiywireyr sisidfu wieu fndhrhe aq

ffjghf flgrutiu bt ruwyw oejfjr gngjb bjtiig hoohd d.

Box 6

Box 4

Figure 6–1 Report layout and construction

To produce the desired layout, a report is divided into boxes, which in turn

contain the items to be printed, as illustrated below.

 Format Layout Box Box Content

<
format-level
 operations

 box 1
 box 2
 box 3
 box 4
 box 5 <box contents> <t=These are the box contents.>
>

Figure 6–2 Report components

The basic element of a report specification is the box, a block of data that

may be placed anywhere on the screen or printed page. Each box consists of

a box definition, comprised of one left chevron, the word ‘box’, the contents of

the box and one right chevron, all positioned somewhere within the format

definition.

Boxes may contain any or all of the following constituents:

• contents of one or more fields

• field headers, separators and trailers

• text string insertions and constants

• functions and filters

• control characters

Report elements appear in a particular order within the report:

1. The elements of the report specification must be inside the delimiters

of a box or box group. There are three exceptions: text variable

declarations, a specification of page size (for Print statements), and

<Sortfields> must all appear immediately after the ‘Begin Format

Specification’ marker.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 111 of 416

2. Headers, separators, trailers, <For> constructs and control variable

declarations are the only elements that can be placed outside a box,

after the ‘Begin Box Group’ delimiter.

3. The elements of a format specification can be sorted into two groups,

let us call them A and B. Group A contains the output control

elements, or headers, separators, trailers, control variable

declarations and free-standing functions such as <Indent> and

<Noorig>. Group B encompasses box content, including text inserts

and names signalling output of field contents (field and data type

names).

4. Within a box definition, all members belonging to group A appear

before everything that belongs to group B. While the internal order of

the elements in group A has no affect on the output, the internal order

of the elements in group B will determine the order of the output of the

groups.

5. A format is read one line at a time during system processing, therefore

it is not possible to refer to a box or variable that has not yet been

defined. Such a reference will generate an error message when you

create (attempt to save) the format.

Copying Reports

It is often labour-saving to base new reports on the structure of similar ones.

If you need to adapt formats to a standard, you can do that easily using the

same technique described in the “Copying TRIPclassic Data Entry Forms”

section of the “Forms” chapter in this manual.

Notes:

• At the moment, if you wish to copy a report from one database to

another using TRIPmanager, you will get an error if the source report

references fields that do not exist in the target database.

• As a workaround, you can either use TRIPclassic to perform this action

(See the TRIPclassic Administration guide), or you must first create a

new report in the target database (See “Creating a New Report”, below),

then edit the source report and copy-past it’s contents into the new

target report’s open editor, ensuring that any field name issues are

resolved before saving the new report.

Deleting Reports

A format that is no longer used should be deleted. This can be dome by

selecting the report (or reports) to be removed, then using the Delete option

in the Action menu of TRIPmanager.

Creating a New Report

After creating a default report for a database, you should select the default

report name on the database design properties, ‘General’ tab, using the

‘Default report’ selection box.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 112 of 416

To create the default report, click on the plus (+) sign in the mmc window next

to the desired database in order to expand its sub-tree, select the ‘Reports’

sub tree branch, then select ‘New’ and ‘New Report...’ from the ‘Action’ menu.

Figure 6–3 New Report Menu

You will then be brought into the welcome page of the New Report Wizard.

Clicking on <Next> will take you to the General information entry dialog:

Figure 6–4 New Output Format name entry dialog

Here you can enter a name and a description for your new output format.

When you have done so, click on <Next> to proceed to the new report

Properties entry form:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 113 of 416

Figure 6–5 New report Properties dialog

The Properties dialog, in Figure 6–5, short-circuits some of the basic report

setup steps that need to be performed every time you create a new report. As

can be seen, the dialog has two main areas:

In the left hand area, you can <Shift> or <control> click to select multiple

fields to be included in your report.

In the right hand area, the following options are available for creating different

format types:

• "Printer and screen use" sets the report up to specify a page size.

o If you specify a number of columns, the page size is divided by

that number.

• Choosing "Textual output" will generate a report something that looks

a lot like the TRIP DUMP format

Note:

You can use the CCL command Show Format=DUMP to see an

example of the TRIP DUMP format.

• Choosing "XML output", will generate a simple, well-formed, XML

document.

o To include an XML header in the new report (e.g. "<?xml

encoding="..." ?>, etc.), select the “Include XML header”

checkbox.

• Choosing "HTML tabular output", will generate a simple HTML table

similar in layout to the TRIP DUMP format, where each field name

and contents generates an individual table cell in the report definition.

Note:

If any of the fields chosen are part fields, a part loop variable is created to

control the output of the various components.

Clicking on <Next> will bring you to the dialog previewing the report's

content prior to it actually being committed to the server:

ms-its:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Databases/Reports/New_Content.htm
ms-its:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Databases/Reports/New_Content.htm

PART 2: FORMS

CHAPTER 6: REPORTS

Page 114 of 416

Figure 6–6 New report Content dialog

Clicking on <Edit> will bring you into the default external text editor which, for

Windows, is ‘Notepad’. This can be used to create and modify the

specification file for the report. When this file is saved, TRIP checks the new

or altered format for syntax errors and, providing there are none, the format is

then created. If TRIP does detect an error it will send a message detailing

where and what the problem is, and you can re-edit the file as necessary.

Defining Layout Boxes

Simple Boxes

The simplest format is one that contains only one box, and the simplest box

instructs TRIP to output the contents of a single field. The contents of a

particular field are output by including the name of the field in the box.

This example,

<<box content>>

which we will call ‘Corr_Out’, writes only the data from field ‘Content’ of the

demonstration database Corr, beginning on the first free line and in the first

empty column on the screen or page. The first record prints in the top and

leftmost position on the page, and subsequent records are written on the line

immediately after the preceding record with no intermediate linefeeds.

The outer symbols [<] and [>] mark the beginning and end of the report

specification (format definition enclosures), while the inner [<] and [>]

symbols identify the start and stop of the box description (box definition

enclosures).

If the following statements were entered in the CCL command window:

BASe corr 

Find R=3,5,6 

Show format=corr_out 

the output would look like this:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PART 2: FORMS

CHAPTER 6: REPORTS

Page 115 of 416

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist

Sirs,

 I would be grateful if you could send me any information available

on the free-text retrieval system 3RIP, marketed by your company.

 Thank you.

 Sincerely,

 George Hodge

To make a report specification easier to read, we recommend the use of

spaces, tabs and linefeeds to align box and box group definitions. These are

editing helps only and do not affect the final appearance of the output.

Adding spaces, linefeeds and comments to improve comprehension and

readability, the report outlined above might look like this:

! This is a report:

<

 <box content>

>

This format may be summarized as follows:

Component Explanation

! This is an... Comment

< Begin format specification

<box

content>

Begin box specification, define box, print

contents of field ‘Content’ and end format

specification

> End format specification

This specification will work exactly as the single-line specification given

previously, as the spaces and linefeeds will not affect the output. The

exclamation mark [!] signifies a comment, and any text from the [!] to the end

of the line will be ignored.

For maximum readability, if a box contains only a single item place the ‘Begin

Box Specification’, box definition, box content and ‘End Box Specification’ on

the same line.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 116 of 416

If the box contains more than one item, place the ‘Begin Box’ chevron and

box definition on one line, each content item on its own line and indented

slightly and the ‘End Box’ symbol on the line below the last item, aligned with

the ‘Begin Box’ mark:

<

 <box

 sname

 scomp

 saddr

 scountry

 >

>

As this is a very simple report lacking defined linefeeds and separators, the

output for record numbers three, five and six looks like this:

Mr. Ron SmithThe Sparkler Institute16 Sparkling RoadSparkletownUSA

Mats G. LindquistPARALOG ABBox 2284103 17 STOCKHOLMSverige

George HodgeThe Response ProjectP.O. Box 53DallasTexas 75265USA

Note:

The string tstamp is used to output the timestamp of a record (the date and

time when the record was created or updated). It is treated as a field name

and accepts headers, separators etc. like a field.

Output of Specific Field Elements

To output the entire contents of a box, use only the field name in the box

specification. To output only part of a non-TExt field, use the field name

followed by a full stop and the number of the element you wish to print. For

example, to write only the second subfield of the Corr field sname you would

use

<<box sname.2>>

Similarly, to print a particular sentence from a certain paragraph of a TExt

field use the field name, a full stop, the paragraph number, full stop and the

number of the sentence. This example,

<<box content.2.1>>

outputs the first sentence of the second paragraph of field Content for each

record, and

<<box content.*.1>>

outputs the first sentence of every paragraph.

Record components are numbered, the head record being zero and the parts

numbered from one upwards. To output only a certain field in a part record for

each part record, use a full stop, the part number or index and the field name.

Using the field Txt from the demonstration database Carroll, this example

outputs the first sentence, second paragraph, fourth part:

<<box .4.txt.2.1>>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 117 of 416

Box Numbering

To prevent confusion, it is always preferable to use directed box

specifications rather than ambiguous or non-specific statements, therefore we

recommend numbering each box consecutively as it is defined. The previous

example with box numbering looks like this:

! This is a report:

<

 <box 1 content>

>

in which the first box to be defined in this format is Box Number 1. Again, the

output is the same as the previous <<Box content>> example.

Box Positioning

The simple format example above prints the data from one ‘Content’ field

after another, without intervening lines to mark the beginning and end of the

records. This produces ‘run-on data’, which can hinder readability.

One way to create record boundaries in reports is through text box

positioning on the page, which defines where the upper left-hand corner of

each box should be placed.

A layout location may be given in several ways:

• directly, by giving the number of the line and the column (page

coordinates) relative to the current record

• indirectly, by referring to the top or bottom line or right- or left-most

column of a pre-existing or preceding box, which may be either the

last box written or a box identified by a number.

• Absolute and relative positions may be combined within a format in

any way you find suitable. Both line and column can be given either

as a relative position or an absolute position.

Positioning Using Coordinates

With reports, any statement using line and column positioning or absolute

placement refers to the last written line of the preceding record (Line Number

0), not to a line on the screen or printed page. When you do specify a

coordinate position you must give both line and column, separated by a

comma.

If the ‘Box content’ example is rewritten using coordinates like this:

<

 <box 1 at 2,10 content>

 <box 2 rname>

>

Box 1 will begin on the second line (the last written line of the preceding

record being line 0) and in the tenth column of the screen or paper page. As

no coordinates were provided for Box 2, it will appear on the next free line in

column one with no separators.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 118 of 416

If the format is used to output records three, five and six of database Corr as

before, the output will look like this:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. LindquistMats Lofstrom

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist

Mr. Ron Smith

Sirs,

 I would be grateful if you could send me any information available

on the free-text retrieval system 3RIP, marketed by your company.

 Thank you.

 Sincerely,

 George Hodge

The information contained in the ‘Content’ field of record number three will

begin printing on line two, column ten. When all ‘Content’ data from record

three has been output, TRIP will descend two lines from the last line written,

move to column ten and begin printing the output from record five, and so on

until all records have been output.

If no box position is provided, the box will start printing in the first column of

the first empty line by default. We recommend using box numbering and

positional ‘at’ statements wherever possible.

Positioning Using Preceding Boxes

Building on the previous example, the initial line position for Box 1 appears

below in relation to the bottom line of the last box printed:

<

 <box 1 at b(*)+2,2 content>

>

This specification can be summarized as follows:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 119 of 416

Component Explanation

< Begin format specification

<box 1 Begin box specification and define Box 1

at b(*) Position cursor on bottom line of last box

written

+2,2 Add two linefeeds and move to column two

of the new line

content> Print contents of field ‘Content’, each line

beginning in column two; end box

specification

> End format specification

and the output:

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist

Sirs,

I would be grateful if you could send me any information available

on the free-text retrieval system 3RIP, marketed by your company.

Thank you.

Sincerely,

George Hodge

In addition to the bottom line, you can also use the top line (T) or the

rightmost (R) or leftmost (L) columns of another box as reference points. You

must refer to a numbered box when using T, R, or L.

Some examples follow overleaf:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 120 of 416

Box at T(1),41 The box is placed at the top line of box number 1, in

column 41.

Box at T(1),R(1)+2 The box is placed at the top line of box number 1, two

columns to the right of it.

Box at 10, L(2) The box is placed on line 10, starting in the same left

column of box number 2.

As with box positioning using coordinates, if no box position is provided the

box will start printing in the first column of the first empty line by default. We

again recommend using box numbering and positional ‘at’ statements

wherever possible.

Box Proportions

The dimensions of a box may be defined using any of the following:

• number of lines and columns

• number of lines, with columns unspecified

• number of columns, with lines unspecified

• neither lines nor columns specified.

If the field contents of a box occupy less room than has been provided in the

box definition, the text block will be padded with empty lines and spaces as

necessary.

Proportioning With Lines and Columns

The height and width of a box can be simultaneously defined by using the

‘Size’ directive and providing both the number of lines to be output and the

line length in characters, separated by an asterisk [*, pronounced ‘by’]. For

example:

<

 <box 1 at b(*)+2,2 content>

 <box 2 at b(1)+1,40 size 2*20 rname>

>

outputs box number two as a two line by twenty column block, beginning in

column forty of the line below the final line printed for box number one as

shown on the next page:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 121 of 416

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist

Mats Löfström

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

Best regards,

Mats G. Lindquist

Mr. Ron Smith

[]

Sirs,

I would be grateful if you could send me any information available

on the free-text retrieval system 3RIP, marketed by your company.

Thank you.

Sincerely,

George Hodge

We will use empty brackets [] as a convention in output examples such as

the one above to indicate empty lines inserted by TRIP.

If both line and column figures are given there must be no space between

each total and the asterisk.

Proportioning With Lines Only

To define only the vertical or top-to-bottom box size, give only the number of

lines to be output for box height with the ‘Size’ instruction, like this:

<

 <box 1 at b(*)+2,2 size 4 content>

 <box 2 at b(1)+1,40 size 2*20 rname>

>

Box one will be four lines in length, and as is evident by the output below, a

considerable amount of text has not been printed due to the lack of defined

space:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 122 of 416

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

Mats G. Lindquist

Mats Löfström

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

Mr. Ron Smith

[]

Sirs,

I would be grateful if you could send me any information available

Proportioning With Columns Only

To specify only the horizontal or left-to-right dimension, give only the size in

columns for box width, leaving a blank space between ‘Size’ and the asterisk:

<

 <box 1 at b(*)+2,2 size *45 content>

 <box at b(*)+2,2 size 2*20 rname>

>

Box 1 will be forty-five columns wide, as shown by the output below:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 123 of 416

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF

TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE

PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist

Mats Löfström

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system

for VAX under VMS,

called TDBS, is under development. A first

prototype will be

at hand this summer. I will mail further

information.

Best regards,

Mats G. Lindquist

Mr. Ron Smith

Sirs,

I would be grateful if you could send me

any information available

on the free-text retrieval system 3RIP,

marketed by your company.

 Thank you.

Sincerely,

George Hodge

If the width in columns is not given, the default line length will be the width of

your screen or your defined printer page size, whichever is applicable.

Box Grouping

Boxes may be assembled into box groups, collections of boxes designed to

save typing, permit the creation of simpler reports and enable the sharing of

material between several boxes without repeating the instructions for each

box. This is done by assigning common attributes or conditional statements

to more than one box, i.e. several boxes may share headers and separators.

Two or more boxes may be joined to form a box group by surrounding their

definitions with box group definition enclosures, the less-than [<] and greater-

than [>] symbols. Most report instructions must be enclosed within a box or

box group.

In this example we have added a second box, which will print the contents of

the field rname (Receiver’s name) directly after content. The additional < and

> delimiters join the two boxes in a box group:

<

 <<Box group functions>

 <box 1 at b(*)+2,2 size *45 content>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 124 of 416

 <box at b(*)+2,2 size 2*20 rname>

 >

>

This definition is summarized below:

Component Explanation

< Begin format specification

<<Box group

functions>

Begin box group specification; begin and

end functions that will affect all boxes in

this group

<box 1 Begin box specification; define Box One

at b(*) Position cursor on bottom line of last box

written

+ 2,2 Add two linefeeds and move to column two

of the new line

size *45 Make this box forty-five columns wide

content> Print contents of field content, each line

beginning in column two; end box

specification

<box 2 Begin box specification; define Box Two

at b(1) Position cursor on bottom line of Box One

+ 2,2 Add two linefeeds and move to column two

of the new line

size 2*20 Make this box two lines long and twenty

columns wide

rname> Print contents of field rname; end box

specification

> End box group specification

> End format specification

Background Text

A text string is any collection of characters printed to screen or paper that is

not native to (contained within) the database being output, and may be used

in text inserts, headers, separators, and trailers. These are classified

according to their dependence on field content, and may consist of text

constants, data produced by output functions or the contents of format text

variables.

The word element as it appears below and throughout this chapter is taken to

mean those portions of a record normally accessed by a report, the field,

subfield, paragraph or sentence.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 125 of 416

Text String Type Written As Function

Text Insert t outputs where and as it

appears in format

Header h.element labels or headlines that

preface an element (field,

subfield, paragraph or

sentence)

Separator s.element separates the elements, and

is not output before the first

element or after the last one

Trailer tr.element outputs after each element

has been printed

Table 6–1 Types of background text

None of the last three types are output when the unit the text is supposed to

head, follow or separate is empty, and all three affect only the box or box

group in which they occur.

TRIP recognizes certain text string reserved characters in all text string types,

the meanings of which change depending on the manner in which they are

used. The less-than [<] and greater-than [>] symbols in a text string signal the

beginning and end of functions. The slash character [/] in a text string

signifies a linefeed, and an exclamation point [!] marks a comment. To use

one of these characters as literals in a text string, each must be preceded by

an underscore [_].

These are outlined below:

Reserved

Character

Function

When Used Alone

Function

When Used With

Underscore

/ <CR><LF> literal slash [/]

< begin function literal less-than symbol [<]

> end function literal greater-than symbol

[>]

! comment literal exclamation point [!]

_ literal precursor literal underscore [_]

Table 6–2 Text string reserved characters

A series of spaces or tabs in a text string will be output exactly as they are

written, as long as there is no linefeed in the series. If any text string in a

format specification contains a series of spaces, tabs and linefeeds, one of

which is a linefeed, the entire group of formatting characters will be replaced

with a single space when the text is output, irrespective of their number.

A carriage return/linefeed (<CR><LF>) inside the text string of a header will

not result in a carriage return/linefeed in the string that is output. To create a

<CR><LF> inside a text string, you must use the slash [/], one per linefeed.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 126 of 416

Field-Dependent Text Strings

A field or field type-specific text string is output only if a field has content; i.e.,

if it is not empty. This type includes headers, separators and trailers.

Headers

A header, abbreviated ‘h’, is a headline that begins a field, a subfield, a

paragraph, or a sentence. The h must be followed by a period [.] and a

notation for what it will head, like this:

To begin a ... Use …

Field h.field or

h.fieldtype or

h.fieldname

Subfield h.sub

Paragraph h.p

Sentence h.s

Table 6–3 Headers

A header applies only to the box or the box group in which it is written, and

must appear before any field names in the text box definition. As with the

other field-specific text string types, if the field or fields that a header is

attached to are empty in a record, the header is not output.

Note:

If a box or a box group contains several potential field headers, the one

which is most specific to that field will have priority. For example, if a box

which prints the contents of the Corr field rcomp (correspondence receiver’s

company name) contained instructions for h.field, h.phrase, and h.rcomp,

the field-specific h.rcomp would be used.

Separators

A separator (abbreviation: s) segregates fields, subfields, paragraphs, or

sentences, and therefore will begin printing after the first element in an output

list. In the same way as for headers, the s must be followed by a full stop

(period, [.]) and a notation for what it will separate:

To separate a ... Use …

Field s.field or

s.fieldtype or

s.fieldname

Subfield s.sub

Paragraph s.p

Sentence s.s

Table 6–4 Separators

The same rules apply to a separator as to a header when it comes to placing,

contents and scope.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 127 of 416

Using headers and separators and the example discussed previously under

‘Text Box Grouping’, we have altered the box definition to create columnar

output for the rname and sname fields, more clearly demarcate the boundary

between records and divide the text of content into cleaner paragraphs:

<

 <box 1 at b(*)+2,2

 <h.content=**/>

 <s.p=/ >

 content

 >

 <<s.sub=/>

 <box 2 at b(1)+2,2 size *40 rname>

 <box 3 at t(2),40 size *40 sname>

 >

>

The box specification summary appears below.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 128 of 416

Component Explanation

< Begin format specification

<box 1 Begin box specification; define Box One

at b(*) Position cursor on bottom line of last box written

+ 2,2 Add two linefeeds and move to column two of the

new line

<h.content Begin header specification; define field header

=**/> Type two asterisks, then perform one linefeed; end

header specification

<s.p Begin separator specification; define paragraph

separator

= > Perform one linefeed, then type (indent) three

spaces on next line; end separator specification

content Print contents of field content, each line beginning

in column two

> End box specification

<<s.sub=/> Begin box group specification; separate subfields

with one <CR><LF>

<box 2 Begin box specification; define Box 2

at b(1) Position cursor on bottom line of Box One

+ 2,2 Add two linefeeds and move to column two of the

new line

size *40 Make this box forty columns wide

rname> Print contents of field rname; end box specification

<box 3 Begin box specification; define Box 3

at t(2), Position cursor at top of Box Two

40 Move to column forty of the new line

size *40 Make this box forty columns wide

sname> Print contents of field rname; end box specification

> End box group specification

> End format specification

Boxes 2 and 3 inherit the <s.sub=/> statement from their parent box group.

Records one, three and five in Corr are considerably easier to read when

output using the edited report:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 129 of 416

**

Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows:

the central modules of the system are completed and work on

the user interface is underway. We will exhibit the system

in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

 The first version of the system is, as you know implemented

on a VAX in Pascal. He will make the system portable to other

machines, e. g. IBM, in the near future.

 Hoping that you can hold out a little bit longer, I remain

Yours sincerely,

Mats G. Lindquist

Marketing Manager

Mr. Ron Smith Mats G. Lindquist

**

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

Mats G. Lindquist Mr. Ron Smith

Mats Löfström

**

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

 Best regards,

 Mats G. Lindquist

 Mr. Ron Smith

Trailers

A trailer, written as ‘tr’ in the format specification, follow the same rules and

use the same elements as headers and separators:

To end a ... Use …

Field tr.field or

tr.fieldtype or

tr.fieldname

Subfield tr.sub

Paragraph tr.p

Sentence tr.s

Table 6–5 Trailers

Field-Independent Text Strings

Headers, separators, and trailers are dependent on the field content; that is, if

the entities they are meant to label are empty in one of the records, they will

PART 2: FORMS

CHAPTER 6: REPORTS

Page 130 of 416

not be output for that record. If a string must be output regardless of the

contents of the record, you must use text inserts or field-independent text

strings (short form: t) instead.

Text Inserts

The text strings of text inserts follow the same rules as the text strings of

headers and separators, in that they may contain anything that can be built

into headers, separators, and trailers, and vice versa.

The only major difference between header/separator/trailer text and inserted

text is that a text insert is independent of the contents of the records, and so

is always output according to its position in the format specification.

The exception to this rule is that a text insert may occur in a box by itself. This

is not possible with headers, separators or trailers, as these must be placed

in the same box or box group as the units they head, separate or follow.

If a header marks the start of a new record, as it does in the previous

example, it should be output regardless of whether the particular field that it

identifies is empty or not and should be rewritten as a text insert.

If we edit the specification file from this example to make the first header a

text insert, the revised code looks like this:

<

 <box 1 at b(*)+2,2

 <t=**/>

 <s.p=/ >

 content

 >

 <<s.sub=/>

 <box 2 at b(1)+2,2 size *40 rname>

 <box 3 at t(2),40 size *40 sname>

 >

>

and the output will be exactly the same as that of the previous version, except

that the ‘**’ string will be output even if the content field is empty.

Note:

In the database Corr the content field is never empty, so a header would

have worked in the unedited version.

Functions

Text String Functions

There are many functions that will import information from a database, search

or TRIP itself for use in text inserts, headers, separators or trailers. Here is a

list of simple output functions that can be used in text strings:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 131 of 416

Function Output

<base> database name

<call> result of an external user-written function

<chr> unprintable characters

<curdate> current date

<dateform> date format

<ff> form feed

<hits> total number of hit records in a search

<numform> numerical date format

<occs> number of occurrences

<pageno> number of the printed page

<parts> total number of record parts within the

current record

<rid> number of the record in the database

<ris> number of the record in the search

<rname> record name

<subrid> number of the record part being output

within the record

<substring> substring isolated from a given element;

also used to produce right-justified output

<timeform> time format

<weight> rank of a record after a fuzzy search, or

the number of hits after a non-fuzzy

search

Table 6–6 Text string functions

Note:

For a detailed presentation of each function, refer to the ‘Output Format

Reference Guide’ at the end of this chapter.

Building on the previous example, we have chosen to output the field scomp

(Sender’s company) rather than rname in Box Two, and added the <RID>

function to the text insert that prefaces each printed record. This will output

the database record number of the record being printed:

<

 <box 1 at b(*)+2,2

 <t=** Record No. <rid> **/>

 <s.p=/ >

 content

 >

PART 2: FORMS

CHAPTER 6: REPORTS

Page 132 of 416

 <box 2 at b(1)+2,2 size *40 scomp>

 <box 3 at t(2),40 size *40 sname>

>

Here is the output for record numbers one, three and five using the altered

format:

** Record No. 1 **

Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows:

the central modules of the system are completed and work on

the user interface is underway. We will exhibit the system

in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

 The first version of the system is, as you know implemented

on a VAX in Pascal. He will make the system portable to other

machines, e. g. IBM, in the near future.

 Hoping that you can hold out a little bit longer, I remain

Yours sincerely,

Mats G. Lindquist

Marketing Manager

Paralog AB Mats G. Lindquist

** Record No. 3 **

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IS IT NOW

AVAILABLE ON VAX11/780? WHAT IS THE PURCHASE PRICE? DOES THE

SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

The Sparkler Institute Mr. Ron Smith

** Record No. 5 **

Dear Mr. Smith,

3RIP runs only on DEC10 and DEC20. A system for VAX under VMS,

called TDBS, is under development. A first prototype will be

at hand this summer. I will mail further information.

 Best regards,

Mats G. Lindquist

PARALOG AB Mats G. Lindquist

Field-Dependent Text Functions

The ‘t=’ functions listed previously may be used either as text or conditional

(field-dependent) functions. In addition, there are six conditional or <For>

loop functions whose use is dependent on field content, as listed in the table

below:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 133 of 416

<For> Loop Function Returns:

<fieldname> field name, in capital letters

<fieldtype> data type

<fieldnumber> number of the field within the record

<subfieldnumber> number of the subfield within the field

<paragraphnumber> number of the paragraph within the

field

<sentencenumber> number of the sentence within the

paragraph

Table 6–7 Field type-dependent functions

Note:

The above functions can only be used in headers, trailers and separators,

not in text inserts.

The lengths of output functions of all types may be made consistent, as

shown in this example:

<h.field=<fieldname(10)>>

This format writes the field name left-aligned, followed by as many spaces as

are needed to make the item ten characters long, and trims it if it is longer

than ten characters.

Sample Output Format

We can construct a report that can be used with any TRIP database by using

many of these functions. To make the format independent of particular fields,

we will use data type names rather than field names to output field contents,

as seen below:

<

 <box at b(*)+4,2

 <t=//Record No. <rid>>

 <h.field=//<fieldname> (type <fieldtype>):/>

 <h.s=/<paragraphnumber>.<sentencenumber>: >

 <s.field=/><s.p=/>

 <h.sub= <subfieldnumber>: ><s.sub=, >

 text phrase number date time

 >

>

This format prints all non-empty fields of a record, each headed by its name

and field type. The fields are output in the order given by the list of data types

(TExt fields first, then PHrase, etc.), and in ordinal field number order within

data type.

Here, record number one in Corr is shown in the new format:

PART 2: FORMS

CHAPTER 6: REPORTS

Page 134 of 416

Record No. 1

CONTENT (type TExt):

1.1:

Dear Mr.

1.2: Smith,

Thank you for your telex.

1.3: The status of TDBS is as follows:

the central modules of the system are completed and work on

the user interface is underway.

1.4: We will exhibit the system

in Stockholm in November, and at that time will have some

new material about the system, which I will send you.

2.1: The first version of the system is, as you know implemented

on a VAX in Pascal.

2.2: He will make the system portable to other

machines, e. g.

2.3: IBM, in the near future.

3.1: Hoping that you can hold out a little bit longer, I remain

Yours sincerely,

Mats G.

3.2: Lindquist

Marketing Manager

RNAME (type PHrase):

 1: Mr. Ron Smith

RCOMP (type PHrase):

 1: The Sparkler Institute

RADDR (type PHrase):

 1: 16 Sparkling Road, 2: Sparkletown

RCOUNTRY (type PHrase):

 1: USA

SNAME (type PHrase):

 1: Mats G. Lindquist

SCOMP (type PHrase):

 1: Paralog AB

SADDR (type PHrase):

 1: Box 2284, 2: 103 17 STOCKHOLM

SCOUNTRY (type PHrase):

 1: Sverige

MODIFIED (type PHrase):

 1: SYSTEM, 2: SYSTEM, 3: VIOLA

DAY (type DAte):

 1: 15-Jun-84

MODDATE (type DAte):

 1: 17-Aug-93, 2: 17-Aug-93, 3: 18-Jun-93

PART 2: FORMS

CHAPTER 6: REPORTS

Page 135 of 416

MODTIME (type TIme):

 1: 10:50:44, 2: 10:50:18, 3: 11:51:42

Since there is only one box, all fields share the headers and separators,

which in the specification are placed before the single text insert and the data

type names that signal the output of field contents. Every sentence (TExt

fields only) is headed by its paragraph and sentence numbers, and every

subfield (all other data types) is headed by its subfield number. The fields as

well as the paragraphs are separated by a single line feed, and the subfields

by a comma and a space.

Box Functions

These standalone functions affect either the manner in which data is output in

boxes and/or box groups or the information that is output by the entire box or

box group.

Function Output

<at_end> causes output generated by its host box to be

printed only once, after the last record

<case> outputs values that are dependent on the

value of an element

<if-changed> causes output only if the value to be output

has changed since the record was last printed

<if-empty> causes output only if the appropriate element

is empty

<if-nonempty> causes output only if the appropriate element

is not empty

<if-

unchanged>

causes output only if the value to be output

has not changed since the record was last

printed

<indent> indents all lines except the first by n number of

characters

<link> causes output from a secondary database

depending on the value of a given field in the

current database

<noorig> suppresses the default output layout

<once> causes output generated by its host box to be

printed only once, before the first record

<orig> returns text field output to its original layout

<trace> gives search history preceding the search

result being output

Table 6–8 Box and box group functions

PART 2: FORMS

CHAPTER 6: REPORTS

Page 136 of 416

Format Functions

These functions have a global effect on the format, and all except <noff> and

<nolf> work on the record level.

Function Effect

<text

variables>

defined on a per-record basis as a

placeholder for later record output

<call> allows pre-output modification of

record content (in memory)

<debit> sets minimum and maximum unit

cost for any output created with a

format

<noff> suppresses automatic FF in printed

output

<nolf> Suppresses automatic line planning

<sortfields> defines fields to be used as sort keys

Table 6–9 Format functions

<For> Loops

General Structure

<For> loops allow the user to define a variable to run using either a range or

a list of values where:

• the default is one up to the maximum number of parts or subfields

being output by the box(es) in the loop

• the maximum value is dictated by the use to which the variable is put

within the boxes in the loop.

Note:

Be careful to use a variable ONLY for subfields OR parts, NOT both.

<For> loops use this general syntax:

<For <variable>

  boxes 

>

The <For> construct enables looping through the record components in

records with record parts, and is also useful for outputting field elements.

<For> is analogous to a box group in that headers, separators, trailers and

box group functions can be used outside of boxes within a <For> loop. A

control variable associated with <For> may either cycle through all the

components of a record, or only those located via search.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 137 of 416

Function Effect

<loop

variables>

represented by any alpha character

from A to Z and used to denote the

current loop index

<append> prevents positioning of the box to be
executed from the second through
the nth loop

<hitlist> causes the list of values for the FOR

loop to be restricted to those part

records located by the search being

output

Table 6–10 FOR loop functions

PART 2: FORMS

CHAPTER 6: REPORTS

Page 138 of 416

Examples

The first example is taken from the head/part demonstration database Carroll,

the structure of which is outlined in the figures below.

Example 1:

In Carroll, the field person is a head field and speaker and txt are part fields.

This format outputs the chapter and book names, persons acting in each

chapter, speakers in the text, verse and text of each part record:

<

 <box 1 at b(*)+1,1

 <t=Chapter >

 chaptnr

 <t=, '>

 chapter

 <t=' from ">

 book

 <t=">

 >

 <box 2 at b(*)+2,3

 <s.sub=,/>

 <h.field=Persons in Chapter : >

 <indent(21)>

 person

 >

 <for <a>

 <s.s= ><s.p=/ >

 <box 3 at b(*)+2,3

 <s.sub=,/>

 <h.field=Speakers on Page : >

 <indent(21)>

 .a.speaker

 >

 <<s.s= ><s.p=/ >

 <box 4 at b(*)+2,3 .a.txt>

 <box 5 at b(*)+2,3 .a.verse>

 <box 6 at b(*)+2,3 .a.txt2>

 >

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 139 of 416

The first and part of the second subfield of Record 1 are shown below in the

new format:

Chapter 1, 'Down the Rabbit-hole' from "Alice's Adventures in Wonderland"

Persons in Chapter : Alice's sister

White Rabbit

Alice's family

Dinah

Speakers on Page : White Rabbit

Alice was beginning to get very tired of sitting by her sister on the bank,

and of having nothing to do: once or twice she had peeped into the book her

sister was reading, but it had no pictures or conversations in it, "and what

is the use of a book," thought Alice, "without pictures or conversations?"

So she was considering, in her own mind (as well as she could, for the hot

day made her feel very sleepy and stupid), whether the pleasure of making a

daisy-chain would be worth the trouble of getting up and picking the daisies,

when suddenly a white rabbit with pink eyes ran close by her.

Speakers on Page : White Rabbit

There was nothing so VERY remarkable in that: nor did Alice think it so VERY …

Example 2:

The fictional database in the next example contains results from the Olympic

games. The head record contains the event location and dates, and there is

one record part for each event and its winners.

The structure of hypothetical database Olympic_Games is shown below:

Field

name

Type Part Comment

Place PHrase N Location of games

When DAte N Date of event

Event PHrase Y Name of event

Medal PHrase Y Medal awarded

Winner PHrase Y Winner’s name

Nation PHrase Y Winner’s nation

Result PHrase Y Winner’s score

Table 6–11 Structure of Olympic_Games

This format prints the name of each Olympic event, the medal won, the

winning score and the name and home country of each medal winner.

<

 <box 1 at b(*)+1,1

 <t=Olympic Games, <dateform(when.1,15,//)> at >

 place

 >

 <for <x>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 140 of 416

 <box 2 at b(*)+2,3

 <t=In the >

 .x.event

 >

 <for <y>

 <box 3 at b(*)+1,3> .x.medal.y>

 <box 4 at t(3),10 .x.result.y>

 <box 5 at t(3),20 .x.winner.y

 <box 6 at t(3),40 <t=from >.x.nation.y>

 >

 >

>

Note:

Only one index variable may be used for all part loops in a format (i.e.

constructs of the type .x.event).

The record for the summer games of 1976 has been output using this format

as shown below:

Olympic Games, 15/Jul/1984 at Montreal, Canada

 In the Men’s Basketball

 Gold from USA

 Silver from Yugoslavia

 Bronze from Bulgaria

 In the Women’s Basketball

 Gold from USSR

 Silver from USA

 Bronze from Bulgaria

 In the Men’s Archery

 Gold 2571.2 D. Pace from USA

 Silver 2502.3 H. Michinga from Japan

 Bronze 2495 G. Ferrari from Italy

 In the Women’s Archery

 Gold 2499.2 L. Ryon from USA

 Silver 2460.3 V. Kovpan from USSR

 Bronze 2407 Z. Rustamova from USSR

PART 2: FORMS

CHAPTER 6: REPORTS

Page 141 of 416

Example 3:

This example prints the location and date of the games, and the medal and

winning country for each event.

<

 <box 1 at b(*)+1,1

 <t=Olympic Games at >

 place.1

 <t=, >

 when.1

 >

 <for <x>

 <box 2 at b(*)+2,3

 <t=In the >

 .x.event

 <t=/>

 >

 <for <y>

 <box 3 at b(*)+1,5>

 <append>

 <s.field= - >

 <s.sub=_/_/ >

 .x.medal.y>

 .x.winner.y

 .x.nation.y

 .x.result.y

 >

 >

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 142 of 416

Sample output for the 1976 summer games is given below:

Olympic Games at Montreal, Canada, 1-Jun-1976

 In the Men's Basketball

 Gold - USA // Silver - Yugoslavia // Bronze - Bulgaria

 In the Women's Basketball

 Gold - USSR // Silver - USA // Bronze - Bulgaria

 In the Men's Archery

 Gold - D. Pace - USA - 2571.2 // Silver - H. Michinga - Japan - 2502.3 //

 Bronze - G. Ferrari - Italy - 2495

 In the Women's Archery

 Gold - L. Ryon - USA - 2499.2 // Silver - V. Kovpan - USSR - 2460.3 //

 Bronze - Z. Rustamova - USSR - 2407

Page Control

Page Level Boxes

Up until now we have been considering output only as a continuous stream,

however TRIP makes provision for the arrangement of paged output, for

example, printing a trailer at the bottom of a hard-copy page.

Figure 6–7 Paged output

Headers and footers can be defined for an output page using header_box

and trailer_box constructs. Page headers and trailers are not output if the

format is used when FOcus is active.

Header_Box

A header_box is output at the top of each page. If the box contains any

record-specific information, the data of the top record on the page is used.

For example, this code,

<header_box size 1*11 <t=Page Header>>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 143 of 416

results in the text ‘Page Header’ being printed at the top of each output page.

Note:

TRIP does not recognize or act on positional information (i.e. at 1,1) used in

header or trailer boxes.

This code from database Carroll,

<header_box size 1*80 <t=Book: > book>

results in the text string ‘Book:’ and the contents of the field book being

written on the first line of each output page.

Note:

In this instance, when the value of book changes and the record that

institutes the change begins printing on any line on the page after the first

one, the previous value will be output. To avoid this, use <if-changed> and

<FF> statements in the box definition.

Trailer_Box

A trailer_box is output at the bottom of each page. If the trailer_box contains

any record-specific information, the data of the bottom record on the page is

used. For example,

<trailer_box size 3*40 <t=/End of Page/Page

 Number <pageno>>>

reserves three lines for the trailer_box at the bottom of each page. The first

line will be empty, the second one will contain the text ‘End of Page’, and the

third line the text ‘Page Number’ and the page number.

Page Size

The default page size for Print or hard-copy formats is the normal screen

size, twenty-four lines by eighty columns. To change to something more

suitable for a printer, include a size specification at the start of the format, as

in the following example:

<page size 72*60

 <box at b(*)+2,2

 <s.p=/ >

 <t=** Record no. <RID> **/>

 content

 >

 <box

 <h.field=/ >

 scomp

 >

>

This page size will be disregarded when the format is used with a Show

order, which uses the default size. The product of the number of lines and

number of columns must not exceed 8192 (8K).

PART 2: FORMS

CHAPTER 6: REPORTS

Page 144 of 416

Note:

If you are using header_box or trailer_box constructs, you must define a

page size, or these will be output using the default page size specification.

This will cause two or three headers and/or trailers to be printed on every

page.

Columnar Output

You may have the output printed in columns by giving the page size as

‘1*c/k’, where 1 is the number of lines on the page, c is the number of

characters in the line, and k is the number of columns on the page. Here is an

example of a format for printing the address labels from Corr in two-character

wide columns:

<page size 60*80/2

 <box 1 at b(*)+1,1 size 8*40

 <s.sub=/>

 rname

 rcomp

 raddr

 rcountry

 >

>

Output Formats for Database Clusters

When a user starts searching in a database cluster the default formats of the

individual databases are used. If a DEfine Format order is given, calling up a

new format, the system will look for this format for all the databases open,

and if it does not exist for one of them, the previous format will remain in use

for that database.

If the page size has been defined for one report in a cluster database, the

same page size must be defined for all databases in the cluster. An

alternative to this is to specify the page size in the print control file.

When the formats for the individual databases are uncoordinated, the user

can easily become confused, therefore we recommend that you keep this in

mind when constructing and naming formats for databases that are meant to

be searched and shown together.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 145 of 416

Related CCL Commands

To view a list of all the existing reports for a database, give the order:

SHOW format [BASe=databasename]

The Show window looks like this:

Figure 6–8 The Show Format window

PART 2: FORMS

CHAPTER 6: REPORTS

Page 146 of 416

Output Format Reference Guide

Each item in this section has been provided with a general description, a

scope of action, proper syntax, known side effects and examples.

<APPEND>

Description

If placed in a box within a <for> loop, this function directs the reporter to

ignore that box’s positioning clause for the second through nth iteration of the

loop. Positioning of elements is thus controlled by header/separator/trailer

usage rather than by box layout.

Scope

Layout box or box group function

Syntax

<append>

Side effects

• All fields to be output by the <for> loop being affected by the <append>

function must be contained within a single box.

• Trailers can be used in for loops containing <append>

Examples

Example 1:

<for <y> ! Subfield loop

 <box 1 at b(*)+3,1

 <append>

 <s.field= - >

 <s.sub= \\ >

 field1.y

 field2.y

 >

>

In this example, the positioning clause for box 1 (b(*)+3,1) would only be

obeyed for the first subfield output by the ‘y’ <for> loop. In all other cases, the

field separator would be used to position each field within the box, while the

subfield separator would be used to position each new instance of the loop.

Considering a record containing field values of :

Field 1 : a, b

Field 2 : d, e, f

PART 2: FORMS

CHAPTER 6: REPORTS

Page 147 of 416

we would see the output :

[]

[]

a - d \\ b - e \\ f

where the empty brackets [] indicate empty lines inserted by TRIP.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 148 of 416

<AT_END>

Description

If placed in a layout box, that box will only appear once in the resulting

output, during the display of the last record.

Scope

Layout box or box group function

Syntax

<at_end>

Side effects

None

Examples

Example 1:

To output a summary page for printed output:

<

 <box at b(*)+1,1

 <at_end>

 <t=This print was produced on <curdate>.>

 >

 ...

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 149 of 416

<BASE>

Description

Returns a string containing the name of the physical database from which the

record being output originates.

Scope

Text string function

Syntax

<base> or <base(n)>

where n is the width of the string to be returned. If the actual string length is

less than that specified by n, the string is padded with blank space characters

(ASCII 32).

Side effects

None

Examples

Example 1:

<box at b(*)+1,1

 <t=This record is from database <base>.>

>

which would result in output such as:

This record is from database ALICE.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 150 of 416

<CALL>–Format

Description

Directs the report formatter to place a call to a user-written subroutine before

attempting to format the record about to be output.

Scope

Format function

Syntax

<call (ase_name, literal)>

where ase_name is the name of the user-written subroutine to be called, and

literal is a quoted string such as ‘abc’, which is passed without modification to

the user-written subroutine.

Side effects

The record which is about to be formatted for output is contained in the

system record control structure, to which a handle may be retrieved by calling

TdbCurrentItem(). The contents of this structure may be modified in memory

(this is the intended function of the format level <call> function), but no

attempt should be made to write the modified record back to the originating

database.

Any attempt to alter the number of parts in a record or the number of

paragraphs in a TExt field will produce no effect in the output, as these values

are computed upon reading the record and cannot be changed during output.

For more information, please consult the Appendix in this manual.

Examples

Example 1:

<

 <call (my_ase, "") >

 <box at b(*)+1,1 field1 >

>

Assuming that the user-written subroutine ‘my_ase’ alters the value of the

field field1 in some way, the formatter will output the newly altered value

rather than the original value stored in the database.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 151 of 416

This function can be particularly useful when applied to the filling of blank or

dummy fields. Such fields exist in the database design solely for use during

report formatting, for example, to hold a computed value such as a number

field column total:

my_ase is:

total = 0

for each subfield in field values do

 total = total + current subfield of VALUES

done

put total into field column_total

which can be used in a report such as:

<

 <call(my_ase, "")>

 <box at b(*)+1,1

 <s.sub=/>

 values

 >

 <box at b(*)+1,1

 <h.field=--/>

 column_total

 >

>

resulting in (for example):

10

20

--

30

PART 2: FORMS

CHAPTER 6: REPORTS

Page 152 of 416

<CALL>–Text String

Description

Directs the report formatter to place a call to a user-written subroutine

specified, before attempting to format the text string for output. The user-

written subroutine is thus responsible for returning the text insert to be output.

For more information, please consult the Appendix in this manual.

Scope

Text string function

Syntax

<call (ase_name, field_element[, delay])>

or

<call (ase_name, literal[, delay])>

where ase_name is the name of the user-written subroutine to be called,

field_element is an element of a field, such as a subfield or sentence, which

is to be passed to the user-written subroutine for processing, literal is a literal

quoted string such as ‘abc’, which is to passed to the user-written subroutine

for processing, and delay is the point in the output at which the user-written

subroutine is to be called:

0 (or omitted) call immediately

1 call at end of page

2 call when user presses

the graphic key (in

TRIPclassic only;

<Gold><G>).

Side effects

None

Examples

Example 1:

<

 <box at b(*)+1,1

 <t=The result of MY_ASE is <call (my_ase,

 "", 0)>.>

 >

>

which, assuming that ‘my_ase’ returns a string such as ‘ZABULON’, would

give the output:

The result of MY_ASE is ZABULON

For information concerning the method of argument passing and string return

values, please consult the Appendix in this guide.

A simple example of the use of this type of ASE call is the computing of an

imperial or non-metric measurement from a stored metric measurement, a

conversion from Celsius to Fahrenheit, etc.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 153 of 416

<CASE>

Description

The <case> function results in a text string, which is dependent upon the

contents of a particular field element within the record being output. This text

string can be used either directly as output or to load a value into a text

variable.

For instance, if the record contains a simple Yes/No field in ‘Y’ and ‘N’ form,

but users would rather see ‘Yes’ and ‘No’, a case function provides a simple

method of achieving this. Thus:

 if the record contains ‘Y’ then

 output ‘YES’

 else if the record contains ‘N’ then

 output ‘NO’

Scope

Layout box or box group function

Syntax

<case (field_element, list)>

where field_element is the component of the record, typically a field plus

subfield combination, that is used as the ‘selector’ of the <case>, and list is a

comma-separated list of selector/value pairs that defines the output for a

given selector.

The format of the list is:

selector1 : value1, selector2 : value2, ..., [selectorn] : valuen

where the omission of the last selector (selectorn) signifies that when the

field_element value does not match any given selector, the last value (valuen

) will be output.

Note:

both selectors and values should be surrounded by single quotation marks

if they are to be interpreted as literal values. If not, they are interpreted as

field names.

Side effects

None

PART 2: FORMS

CHAPTER 6: REPORTS

Page 154 of 416

Examples

Example 1:

This example uses <case> instead of a field name for direct output:

<box at b(*)+2,10

 <case(yesno.1,

 'Y':'Yes',

 'N':'No',

 :'Maybe')>

>

which, depending on the value of the first subfield of the field yesno, will

output either ‘Yes’, ‘No’, or ‘Maybe’.

Example 2:

This example uses <case> to assign a value to a text variable, where the

value to be assigned originates in a different subfield of the current field than

that which is being used as the selector:

<

 <1=<case(selector.1,

 '0':selector.2,

 '1':selector.3,

 '2':selector.4,

 :selector.5)>>

 <box at b(*)+1,1 <t=<1>>>

>

If the field selector had values as shown below (where the comma delimits

subfields):

Record 1 : 0, Hello

Record 2 : 1, xxx, my

Record 3 : 2, xxx, xxx, name is

Record 4 : 3, xxx, xxx, xxx, Jim

the output would be:

 Hello

 my

 name is

 Jim

PART 2: FORMS

CHAPTER 6: REPORTS

Page 155 of 416

<CHR>

Description

In order to use unprintable characters in a report (such as the escape

character <Esc> or ASCII 27), you must use the <chr> function, which allows

any number of ASCII character values to be inserted into the output stream.

Scope

Text string function

Syntax

<chr (list)>

where list is a comma-separated list of ASCII decimal values that signifies the

unprintable characters to be output.

Side effects

If the format using <chr> is to be used for Show output, you must ensure that

the characters being used will not adversely affect the state of the user’s

output device, e.g. his or her terminal. Inserting an XOFF character within the

output, for example, would effectively lock the terminal from accepting input.

A <chr> character does take up a character position, thus influencing the

number of characters on a line.

Examples

Example 1:

The DEC printer escape sequence for enabling the ‘Bold’ character attribute

uses the ASCII escape value 27 (<Esc>[1m):

<t=<chr(27)>[1m>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 156 of 416

<CLASS>

Description

Retrieves the name of the class that has been associated with the currently

active record (if any). For more details on classification see "Appendix B –

Classification Schemes" on page 354 of this manual and the CCL Command

reference, "Display CLASS()" command.

Scope

Text string function

Syntax

<class>

Side effects

None

Examples

Example 1:

To list the category for the current record:

<t=CATEGORY: <class>>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 157 of 416

<CURDATE>

Description

Returns a string containing the current date in the format defined by the

user’s profile.

Scope

Text string function

Syntax

<curdate>

Side effects

This function may also be used in the date or time formatting functions

<dateform> and <timeform> to produce the current date or time in a particular

format. See the descriptions of <dateform> and <timeform> for more

information.

Examples

Example 1:

<box at b(*)+1,1

 <t=The date is <dateform(<curdate>,15,--)>/>

 <t=The time is <timeform(<curdate>,1)>>

>

which could result in the output:

The date is 7-Nov-93

The time is 19:30:57

PART 2: FORMS

CHAPTER 6: REPORTS

Page 158 of 416

<DATEFORM>

Description

The <dateform> function is used to modify the output form of a date value,

specified either by a DAte field or by using the <curdate> function to return

the current system date. The <dateform> function supports seventeen

different date formats:

Numbered Date

Form

Sample Date

1 1993-05-01

2 1993-5-1

3 93-5-1

4 1993-May-1

5 93-May-1

6 05-01-1993

7 5-1-1993

8 5-1-93

9 May-1-1993

10 May-1-93

11 01-05-1993

12 1-5-1993

13 1-5-93

14 1-May-1993

15 1-May-93

16 19930501

17 930501

Table 6–12 Date formats

Scope

Text string function

Syntax

<dateform(value, format, separators)>

or

<dateform(value, format)>

or

<dateform(value, 0, separators)>

where value is the DAte value to be output by the function. This value can be

specified as a DAte field, with or without subfield, or as the current system

date by using the <curdate> function.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 159 of 416

Format is an integer value between 1 and 17 (as outlined in the previous

table), where each value specifies a unique date format.

Separators are two literal characters which specify the separators to be used

between the date elements, i.e. the year and the month, and the month and

the day. If none are specified, the date separators are taken from the user’s

profile. Valid values for each separator character are slash [/], hyphen [-],

period [.], and colon [:].

0 (zero), which, when used as the format argument, specifies that the

function should use the format specified by the user’s profile. This is intended

to allow the format to output the user’s preferred date type, but with the

format designer’s preferred date separators.

Side effects

None

Examples

The <dateform> function can be used to output a date value in a specific

form, output the current date in a specific form or modify the date separators

in the user’s preferred date form:

Example 1:

<t=<dateform(my_date.2, 15, //)>>

Format the second subfield of the field my_date using date format 15, and

separators [//]. Assuming that the value of my_date.2 is 2nd October, 1993,

the output would be

2/Oct/93

Example 2:

<t=<dateform(<curdate>,15,-/)>>

formats the current system date using date format 15 and dash [-] and slash

[/] separators:

25-Nov/93

Example 3:

<t=<dateform(<curdate>,0,::)>>

formats the current system date using the user’s preferred date format, but

modifies the date separators to the double colon [::]. Assuming that the user

has a preferred format of 5:

93:Nov:25

Example 4:

<t=<dateform(my_date,15)>>

formats the first subfield of the field my_date using the date format 15, taking

the date separators from the user’s preferred settings (as specified in his or

her user profile). Assuming the separators to be double dashes [--] and

my_date to hold 1st October, 1993:

1-Oct-93

PART 2: FORMS

CHAPTER 6: REPORTS

Page 160 of 416

<DEBIT>

Description

When a database has an attached accounting function (as specified by a cost

for any of the fields of that database), the output cost of any record within that

database may be controlled by using the <debit> function. This function

allows the specification of a minimum and maximum value for record output,

for instance, to specify that each record will incur at least a unit cost of 5, but

never more than 15, regardless of the individual field costs specified in the

database design.

Scope

Format function

Syntax

<debit(minimum, maximum)>

where minimum specifies the minimum unit cost and maximum defines the

maximum unit cost that will be incurred for each record output by using this

report.

Side effects

None

Examples

Example 1:

<

 <debit(5, 15)>

 <box at b(*)+1,1 field1>

>

Sets the minimum cost of record output to 5, and the maximum to 15.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 161 of 416

<FF>

Description

Either fills the output page with blank space (during Show), or forces a hard

page throw (during PRint) by outputting a form feed character (ASCII 12,

<FF>). This function can be useful in many cases, from forcing a new page

when a value used in a page heading changes to protecting a user from

involuntary viewing of chargeable material.

Scope

Text string function

Syntax

<FF>

Side effects

None

Examples

Example 1:

Using the <ff> function to throw a page whenever a specified field value

changes:

<

 <header_box size 3*80

 <t=/----- > author <t=-----/>

 >

 <box at b(*)+1,1

 <if-changed(author)>

 <t=<FF>>

 >

 ...

>

which will begin a new page whenever the author field changes value. For

more detail on the use of <if-changed()>, consult its reference section later in

this chapter.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 162 of 416

Example 2:

Using <FF> to protect unwilling output of chargeable material:

<

 <box 1 at b(*)+1,1

 <t=Author's name: >

 author

 >

 <box 2 at b(*)+1,1

 <t=Document title: >

 title

 >

 <box 3 at b(*)+2,1

 <t=The viewing of the content of this >

 <t=document incurs a cost.\ >

 <t=In order to avoid this cost, use the >

 <t=command "Next".\ >

 <t=To view the content of the document, >

 <t=use the command "More"\.>

 <t=<FF>>

 >

 <box 4 at b(*)+1,1

 content

 <t=<FF>>

 >

>

which might result in output as follows:

Author's name: Slartibartfast

Document title: "Earth" - A Design Experiment

The viewing of the content of this document incurs

a cost. In order to avoid this cost, use the

command "Next". To view the content of the

document, use the command "More".

PART 2: FORMS

CHAPTER 6: REPORTS

Page 163 of 416

<FOR> Loops

Description

The purpose of a <for ...> loop is to direct the report formatter to loop over the

individual elements of the entities included within the loop, either subfields or

part records. This allows the report designer some control over the order and

placement of the subfields of a field, or over the part records from a meta-

record without having to know in advance how many subfields or part records

there are likely to be in a given record.

Using the standard entity addressing nomenclature of the report formatter,

any individual subfield, paragraph, sentence or part record can be output

using:

Element Example Explanation

subfield field_name.4 fourth subfield of any non-TExt

type field, such as PHrase,

NUmber, etc.

paragraph field_name.2 second paragraph of any TExt

type field

sentence field_name.2

.4

fourth sentence of 2nd

paragraph of any TExt type

field

part .2.any_field second part record of the

current meta-record

In most cases this type of addressing will be inadequate, as the number of

the subfields or parts, to be output will not be known at the time of report

design. The <for> loop allows the designer to treat the entire conglomerate of

elements as a single case, rather than having to write output code for each

subfield or part record.

Thus, when looping over part records in a meta-record, the part records to be

output are addressed using the construct:

.x.field_name

while an individual subfield within a field is addressed using a suffix construct:

field_name.x

where x in the above nomenclatures is the name given to the index of the

<for> loop, and has bounds from 1 to the maximum number of subfields or

parts which make up the entity being output.

For instance, if the meta-record being output in the first example had three

part records, then x would have bounds of 1 to 3. If the field being output by

the second example had 28 subfields (any of which may be blank), the

bounds of x would be 1 to 28.

The <for> loop construct can be used to output fields in a tuple, fields from a

part record, fields in a tuple from fields in a part record, etc.

Scope

Conditional function

PART 2: FORMS

CHAPTER 6: REPORTS

Page 164 of 416

Syntax

<for <idx>

 ... boxes containing element output code ...

>

where <for> loop name idx is a single alphabetic character between ‘a’ and

‘z’, and represents the current index of the loop.

Side effects

The <for ...> construct doubles as a box group, so any functions which have

group scope will also work correctly within a <for> loop. You can also nest a

box group within a <for> loop.

You should not use the same index name more than once in the same

format, as the results are unpredictable.

Examples

Example 1:

A typical use of a <for> loop is to control the output of fields, which have been

declared as belonging to a tuple on a data entry form. The output of such

fields must be controlled by a loop in order to stop the report formatter from

suppressing the output of blank subfields, which would destroy the integrity of

the tuple.

<for <a>

 <box 1 at b(*)+1,1 given_name.a>

 <box at t(1),30 surname.a>

 <box at t(1),60 middle_init.a>

>

This example uses the loop index ‘a’ to control the output of the subfields

from the fields given_name, surname and middle_init. This could result in

output such as:

Value of a: Given_Name Surname Middle_Init

1 Gwyn Fisher

2 Al Burgasser J

3 Slarti Bartfast X

PART 2: FORMS

CHAPTER 6: REPORTS

Page 165 of 416

As you can see, the position of the middle initial for ‘Al J. Burgasser’ is

maintained even though subfield 1 for field middle_init is empty. If this same

information had been output using:

<

 <

 <s.sub=/>

 <box 1 at b(*)+1,1 given_name>

 <box at t(1),30 surname>

 <box at t(1),60 middle_init>

 >

>

the results would be:

Given_Name Surname Middle_Init

Gwyn Fisher J

Al Burgasser X

Slarti Bartfast

which, as you can see, does not respect the blank subfield in middle_init.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 166 of 416

<HITLIST>

Description

When used as a modifier to a <for> loop variable, the <hitlist> function directs

the formatter to only output those part records which have been hit by the

search set being output. If the search being output only hit the head records,

or was a record search such as:

BASe xyzzy

or

Find R=FRom 1

or

Find

no part records will be output.

This function has no effect on the output of subfields in a tuple being

controlled by a <for> loop.

Scope

For loop function

Syntax

<for <x:<hitlist>> ... >

where x is the loop variable being used to control output of part records.

Side effects

None

Examples

Example 1:

The following format will only output the speaker field from those parts which

are hit by a search in the TRIP demonstration database Carroll. None of the

head fields will be output, but each record is marked by a banner to signify

the start of said record:

<

 <box at b(*)+1,1

 <t=Record <rid> from database CARROLL>

 >

 <for <a:<hitlist>>

 <box at b(*)+1,1

 <t=Part <subrid> :->

 >

 <box at b(*)+1,3

 <s.sub=/>

 .a.speaker

 >

 >

PART 2: FORMS

CHAPTER 6: REPORTS

Page 167 of 416

 <box at b(*)+1,1 <t=/> >

>

A search sequence such as:

S=1 <24> BASe CARROLL

S=2 <3> Find hatter

might result in:

Record 6 from database CARROLL

Part 17 :-

 Cheshire Cat

Part 22 :-

Record 7 from database CARROLL

Part 1 :-

 March Hare

 Mad Hatter

Part 3 :-

 March Hare

 Mad Hatter

Part 4 :-

 March Hare

 Mad Hatter

 Dormouse

etc.

Alternatively, the search sequence

S=1 <24> BASe CARROLL

S=2 <3> Find PERSON=hatter

would result in the following output:

Record 6 from database CARROLL

Record 7 from database CARROLL

Record 11 from database CARROLL

as person is a head field and thus no part records would be hit by the search.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 168 of 416

<HITS>

Description

Returns a text string containing the number of records hit by the search being

output.

Scope

Text string function

Syntax

<hits>

or

<hits(n)>

where n is the maximum number of characters that the string returned should

contain. If the string to be returned is shorter than n, the string is padded with

blank space (ASCII 32) characters.

Side effects

None

Examples

Example 1:

<

 <box at b(*)+1,1

 <t=The search being output consists of >

 <t=<hits> records.>

 >

 ...

>

which could result in:

S=n <10> Find XYZZY

The search being output consists of 10 records.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 169 of 416

<IF-CHANGED>

Description

Controls the output of a box or box group depending on whether the contents

of a field, or a number of fields, have changed since the last record output.

Optionally, the function can fail if this is the first record being output.

Note:

This function cannot be used to test whether a given subfield has changed;

thus, all tests are performed on the first subfield or sentence of the field(s)

in question.

Scope

Layout box or box group function

Syntax

<if-changed(field_name[, field_name...][, flags])>

where field_name is the name of a field or a list of comma-separated fields

whose contents are to be tested against their values during the last record

output, and flags is an optional integer which can take the following values:

1 Instead of applying an AND operation between the fields given, the

report formatter will use an OR. That is, if any of the fields listed have

changed, the function succeeds. If this is the first record being output,

the function will not succeed.

2 If this is the first record being output, the function will not succeed, i.e.

the box or group which the function controls will not be output for the

first record. If this is not the first record being output, all fields listed

must have changed in order for the function to succeed.

3 The report formatter uses an OR operation between the listed fields,

and succeeds if this is not the first record being output.

Side effects

This function can be applied in conjunction with any other conditional

function, such as <if-unchanged()>. The operator between the different

functions is always AND.

Examples

Example 1:

This example stops the output of a box unless the field well_name has

changed. As we are outputting a <ff> function if the function succeeds, we do

not want this to fire for the first record being output.

<box at b(*)+1,1

 <if-changed(well_name,2)>

 <t=<ff>>

>

Example 2:

This example outputs the name of a company (in field company) and the

corporate contact associated with it if either has changed.

<box at b(*)+1,1

PART 2: FORMS

CHAPTER 6: REPORTS

Page 170 of 416

 <if-changed(company, contact, 1)>

 company <t= _/ > contact

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 171 of 416

<IF-EMPTY>

Description

Controls the output of a box or box group, depending on whether a field or a

set of fields is empty. If so, the box or box group will be output. If any of the

fields listed have content, the box or box group will not be output.

Scope

Layout box and box group function

Syntax

<if-empty(field_name[, field_name...][, 1])>

where field_name is the name of a field or a comma-separated list of fields

whose contents are to be checked for emptiness. Each field name can be

qualified using subfield and/or part record nomenclature such as:

.2.field_name.5.2

which would test the emptiness of the second sentence of the fifth paragraph

of the field in the second part record.

‘1’ is an optional flag which directs the formatter to apply an OR operation

between the fields, rather than the default AND. If this flag is given, any of the

fields being empty will result in the function succeeding.

Side effects

This function can be combined with any of the conditional or <for> loop

functions within a single box or box group. In this case, the operator between

the various functions is always AND.

Examples

Example 1:

This example suppresses the output of a box if the field speaker has content.

<box at b(*)+1,1

 <if-empty(speaker)>

 <t=Speaker is empty...>

>

Example 2:

This example produces the following box if speaker, person or chapter are

empty.

<box at b(*)+1,1

 <if-empty(speaker, person, chapter, 1)>

 ...

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 172 of 416

<IF-NONEMPTY>

Description

Controls the output of a box or a box group, depending on whether a field or

a set of fields has content. If so, the box or box group will be output. This

function is the logical complement to the <if-empty> function.

Scope

Layout box or box group function

Syntax

<if-nonempty(field_name[, field_name...][, 1])>

where field_name is the name of a field or a comma-separated list of fields

whose contents are to be checked for non-emptiness. Each field name can

be qualified using subfield and/or part record nomenclature such as:

.2.field_name.5.2

which would test whether the second sentence of the fifth paragraph of the

field in the second part record had content.

‘1’ is an optional flag which directs the formatter to apply an OR operation

between the fields, rather than the default AND. If this flag is given, any of the

fields having content will result in the function succeeding.

Side effects

This function can be combined with any of the conditional or <for> loop

functions within a single box or box group. In this case, the operator between

the various functions is always AND; i.e. all of the conditions being tested

must succeed for the box or box group to be output.

Examples

Example 1:

This example suppresses the output of a box if the field speaker does not

have content.

<box at b(*)+1,1

 <if-nonempty(speaker)>

 <t=Speaker has the following content.../>

 speaker

>

Example 2:

This example produces the following box if speaker, person or chapter have

content.

<box at b(*)+1,1

 <if-nonempty(speaker, person, chapter, 1)>

 ...

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 173 of 416

<IF-UNCHANGED>

Description

Controls the output of a box or box group, depending on whether the

contents of a field or a list of fields have changed since the previous record

output. If said field contents have changed, the box or box group is

suppressed. Optionally, the first record being output can count as unchanged

or as changed (see flags).

Note:

This function does not support subfield comparisons; thus all tests for

difference are performed upon the first subfield or sentence of the field.

Scope

Layout box or box group function

Syntax

<if-unchanged(field_name[,field_name...][,flags])>

where field_name is the name of a field or a list of comma-separated fields

whose contents are to be tested against their values during the last record

output, and flags is an optional integer which can take the following values:

1 Instead of applying an AND operation between the fields given, the

report formatter will use an OR; that is, if any of the fields in question

are unchanged, the function succeeds. If this is the first record being

output, the function will not succeed.

2 If this is the first record being output, the function will succeed; i.e. the

box or group which the function controls will be output for the first

record. If this is not the first record being output, all fields listed must

be unchanged in order for the function to succeed.

3 This flag uses an OR operation between the listed fields, and

succeeds if this is the first record being output.

Side effects

This function can be used in conjunction with any of the other conditional or

<for> loop functions within a single box or box group. In this case, the

operator which is applied between the various functions is an AND operation,

i.e. all of the functions must succeed in order for the box or box group not to

be suppressed.

Examples

Example 1:

<

 <box at b(*)+2,1

 <t=Person= >

 person

 >

 <box at b(*)+1,1

 <t=Speaker= >

 speaker

PART 2: FORMS

CHAPTER 6: REPORTS

Page 174 of 416

 >

 <box at b(*)+1,1

 <if-unchanged(speaker,person,2)>

 <t= Record <rid> --- speaker and person didn't

change.>

 >

>

This example shows all fields for speaker and person. If there was no change

to either person or speaker since the previous record output, a comment to

that effect is provided.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 175 of 416

<INDENT>

Description

Directs the report formatter to indent the second through nth lines in the

current box or box group by a certain number of columns. This can be useful

when the box being output includes a label plus field content. If the field

content stretches to two or more lines, these subsequent lines should be

output so that their content lines up with where the content started on line 1—

i.e., after the label.

Scope

Layout box or box group function

Syntax

<indent(n)>

where n is the number of columns by which the second through last lines are

to be indented from the side of the box.

Side effects

If a TExt field which has been stored with ‘Layout Retained’ is output in a box

which makes use of the indent function, the <noorig> function should also be

used. If not, the data being output will be wrapped in the same way as it

appears in the BAF, which could be very confusing, or at least unattractive.

Examples

Example 1:

This report:

<

 <box at b(*)+1,1

 <indent(8)>

 <t=Label : >

 field_content

>

produces results such as:

Label : This is the field's content. As you can

see, it stretches over a single line. However, the

second and subsequent lines do not start flush

with the left hand side, but rather are indented

by eight columns.

Example 2:

This report is for the demonstration database Alice:

<

 <box at b(*)+2,1

 <t=Record <rid> content 'txt' in ALICE:>

 >

 <box at b(*)+1,1

 <indent(6)>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 176 of 416

 <t=TXT : >

 txt

 >

>

and produces an output like this:

Record 1 content 'txt' in ALICE:

TXT : Alice was beginning to get very tired of

sitting by her sister on the bank, and of having

nothing to do: once or twice she had peeped into

the book her sister was reading, but it had no

pictures or conversations in it, "and what is the

use of a book," thought Alice, "without pictures

or conversations?"

etc.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 177 of 416

<LINK>

Description

The report filter <link> provides an easy way to load data from another

database.

Scope

Layout box or box group function

Syntax

<link (link_fld.x, database, src_fld.y, sea_mode,

dum_fld)

where link_fld.x represents the field and subfield in the current database,

which will be used as the record name for the lookup in the source

database—hence identifying the required record. Database represents the

source database, and src_fld.y the field and subfield in the source record to

be picked up and displayed here.

Link databases without record name fields

In order to access a link database without record name field and to load a

PHRASE field, a non-exact search has to be made in the link database. This

is indicated by a fourth argument (sea_mode) with the following values:

 0 : Search in the record name field in the link database

(default)

 1 : Search in all TEXT fields

 2 : Search in all TEXT/PHRASE fields

 3 : Search in all PHRASE fields

 13 : Search for an exact match in all PHRASE fields

 field_name : Search in the specified field field_name

 ‘field_name’ : Search for an exact match in the field field_name

Retrieving a TEXT field

In order to load a TEXT field from a link database, a dummy TEXT field in the

target database must be defined and passed to the link filter as a fifth

argument (dum_fld). The link filter must also be called at the very start of the

report template (output format), i.e. before all box definitions. The dummy

TEXT field will be loaded with the complete TEXT field from the link database

and can then be output by the report generator in the usual manner.

Retrieving data from all records hit by a search

When retrieving several subfield hits the filter writes the data from all hits into

a dummy field in the database record being formatted, much like the handling

of getting the full TEXT field content from a link database. In order to use this,

you have to define such a field for the database that is being output.

A problem is how to handle the transfer of data from the link database if the

field to retrieve data from has a) many subfields or b) is a TEXT field. If this is

the case, this dummy field must be a "part field”. Otherwise, only the first (or

single) subfield from the link database will be loaded.

E.g. <link(F1,linkdb,load_fld,L1,dummy1)> will load data from all hits.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 178 of 416

If the dummy1 field is a "part field", all the data from the load_fld of the first hit

will be stored in the dummy1 field of the first part record. If the dummy1 field

is a regular field only the first subfield of load_fld will be loaded into the first

subfield of the dummy1 field.

The data from the second hit will be stored into part record two, and so on.

To summarize retrieving hits from several record hits:

− Needs a dummy field to store the data

− If the source field is TEXT or has several subfields, the target dummy

field must be a part field of the same type.

− Target dummy field is not a part field

− Data from each record found is stored in each subfield

− Target dummy field is a part field

− Data from each record found is stored in each part

− Use standard formatting features to show the contents of the dummy

field, either looping over subfields or both parts and subfields

Side effects

None

Examples

Example 1:

<box at b(*)+1,1

 <link(speaker.1,linkbase,anyfield.1)>

>

This example performs a record name search in database Linkbase for the

content of the first subfield of speaker, and then outputs the content of the

first subfield of anyfield from the record found in Linkbase (if any).

Example 2:

Use the <link> filter to search for the content of field F1 in the L1 field of a link

database:

<

 <box at b(*)+1,1

 <link(F1,link_db,load_fld,L1)>

 >

>

Example 3:

Use the <link> filter to search for the content of field F1 for an exact match in

the L1 field of a link database:

<

 <box at b(*)+1,1

 <link(F1,link_db,load_fld,’L1’)>

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 179 of 416

Example 4:

Use the <link> filter to search for the content of field F1 for a match in all

TEXT and PHRASE fields of a link database:

<

 <box at b(*)+1,1

 <link(F1,link_db,load_fld,2)>

 >

>

Example 5:

Using the <link> filter for a TEXT field:

Assume an existing dummy TEXT field of name dummy1 exists in the target

database. Note:

Exact matching using a field name has been chosen in the following

example.

<

 <link(F1,linkdb,load_fld,’L1’,dummy1)>

 <box at b(*)+1,1

 <t=Hello world!>

 >

 <box at b(*)+1,1

 <t=Here comes the text from the link database…/>

 <s.p=/>

 dummy1

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 180 of 416

<NOFF>

Description

This function turns off the automatic formfeed printed when page size has

been defined. Form feeds specified using <T=<FF>> will still work.

Scope

Format function

Syntax

<noff>

Side effects

<noff> must appear at the beginning of the report specification, before the

first box definition. It will not affect a page size definition stored in a printer

definition file; it will affect only the page size within the report itself.

Examples

Example 1:

<page size 60*132

<noff>

 <box …

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 181 of 416

<NOLF>

Description

This function turns off the automatic line planning.

Scope

Format function

Syntax

<nolf>

Side effects

<nolf> must appear at the beginning of the report specification, before the

first box definition.

Examples

Example 1:

<nolf>

 <box at …

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 182 of 416

<NOORIG>

Description

If a TExt field has been declared in the database design as being ‘Layout

Retained’ (i.e. all spaces, blank lines etc. are maintained in the BAF), the

<noorig> filter can be used to force stripping of such elements during output.

This can be especially useful if the output box is to be smaller than the data

entry box, or if the <indent()> function is used.

Scope

Layout box or box group function

Syntax

<noorig>

Side effects

None

Examples

Example 1:

This example outputs a layout-retained TExt field if using <indent()>. If

<noorig> is not used:

<

 <box at b(*)+1,1

 <indent(8)>

 <t=Label : >

 field_content

 >

>

and the data is, for example:

The fat cat from Jubaliyah's called up to Slim Jim

with an epithet of animalistic intent on his lips:

 Hey lazy dog, call your sister for me.

then the output could look like :

Label : The fat cat from Jubaliyah's called up

to Slim

Jim with an epithet of animalistic

intent on

his lips:

 Hey lazy dog, call your sister

for me.

As you can see, the original line breaks and spaces are maintained in the

output - to the detriment of the appearance of the data. Whereas, using the

<noorig> function:

<

 <box at b(*)+1,1 size* 46

PART 2: FORMS

CHAPTER 6: REPORTS

Page 183 of 416

 <noorig>

 <indent(8)>

 <t=Label : >

 field_content

 >

>

the output would be:

Label : The fat cat from Jubaliyah's called up

to Slim Jim with an epithet of

animalistic intent on his lips:

Hey lazy dog, call your sister for me.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 184 of 416

<NUMFORM>

Description

This function edits NUmber and INteger values. Headers, separators, and

trailers apply as if the fieldname was entered alone.

<Numform> takes several arguments:

• field name, with or without a subfield number

• length in characters

• number of decimal positions

• a character specifying a formatting convention.

The first argument is the name of the field containing the value to be

formatted.

The second argument can be zero, or any integer from one to the maximum

page width. If zero is used, TRIP adopts the current box size as the length in

characters.

The third argument can be any number from zero to the maximum page

width.

The fourth argument is a value of one to three or the character ‘e’. If this

argument is an odd number (one or three), the output will be divided into

groups of three, each group separated either by a comma [,] or full stop [.]. If

the argument is an even number (two) or an alpha character (‘e’), the output

will not be grouped.

The default setting outputs ungrouped digits using the decimal point, for

example, -12345.67.

Each number is output right-adjusted. If there is output overflow, where the

number to be output is too long for its specified string, the string is filled with

pound or number signs [#]. An empty subfield produces an empty string.

Scope

Text string function

Syntax

<numform(fieldname[.x],length[,precision[,format]]

)>

Side effects

None

Examples

Example 1:

<

 <box at b(*)+1,1

 <numform(n1,4)>

 <numform(n1,4,0)>

 <numform(n2.3,8,3)>

 >

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 185 of 416

The first two are equivalent, where the integer values of the NUmber field n1

are output right-justified in strings that are four characters in length. The third

example outputs the value of the third subfield of the NUmber field n2 in

strings of eight characters, with three decimal positions.

Assuming the value of ‘N2.3’ to be -12345.67, several examples are listed

with the output they produce in the table below.

<Numform> Statement Output Effect of Fourth

Argument

<numform(n2.3,10,2,e)> -1.23E+4 E denotes output in

normal scientific

notation

<numform(n2.3,10,2,1)> -12,345.67 1 causes output of

integers in groups of

three digits, using the

decimal point

<numform(n2.3,10,2,2)> -12345,67 2 specifies no grouping

of output, using the

decimal comma rather

than decimal point

<numform(n2.3,10,2,3)> -12.345,67 3 causes output of

integers in groups of

three digits and

specifies the use of the

decimal comma rather

than decimal point

Table 6–13 Samples of <Numform> output

PART 2: FORMS

CHAPTER 6: REPORTS

Page 186 of 416

<OCCS>

Description

Returns a text string containing the number of hit occurrences produced by

the last search performed.

Scope

Text string function

Syntax

<occs>

Side effects

None

Examples

Example 1:

To output the number of hits in a search:

<

 <box at b(*)+1,1

 <t=The last search had <occs> hit terms.>

 >

>

giving output of, for example:

The last search had 2578 hit terms.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 187 of 416

<ONCE>

Description

If placed in a layout box, that box will only appear once in the resulting

output, during the display of the first record.

Scope

Layout box or box group function

Syntax

<once>

Side effects

None

Examples

Example 1:

To output a cover page for printed output:

<

 <box at b(*)+1,1

 <once>

 <t=This print was produced on <curdate>.>

 >

 ...

>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 188 of 416

<ORIG>

Description

Gives an override in an individual box for a box group level <noorig>. Thus, if

one TExt field out of many being output by a box group is to be output using

its ‘Layout Retained’ feature, you should use <orig> in a specific box for that

field.

Scope

Layout box or box group function

Syntax

<orig>

Side effects

None

Examples

Example 1:

To output three TExt fields which are all ‘Layout Retained’, but only one of

which should be output in such fashion.

<

 <

 <noorig>

 <box at b(*)+2,1

 <indent(8)>

 <t=Label : >

 text_field_1

 >

 <box at b(*)+2,1

 <orig> ! Override <noorig>

 text_field_2

 >

 <box at b(*)+2,1

 <indent(8)>

 <t=Label : >

 text_field_3

 >

 >

>

which might output such as:

Label : This is data which was stored with the

Layout Retained attribute, but is being output

with that attribute suppressed.

This is data from a Layout Retained TExt field

which is being output with that attribute still in

place :...

 As you can see, blank lines and

PART 2: FORMS

CHAPTER 6: REPORTS

Page 189 of 416

 spaces are maintained.

Label : This is more data from a Layout Retained

TExt field which has its layout attribute

suppressed.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 190 of 416

<PAGENO>

Description

Returns a text string containing the current page number, relative to the start

of the current output.

Scope

Text string function

Syntax

<pageno>

Side effects

None

Examples

Example 1:

To output the page number at the top of every page:

<

 <header_box size 2*15

 <t=Page # <pageno>./>

 >

>

which might give output such as:

Page # 1.

... actual data ...

<ff>

Page # 2.

... actual data ...

PART 2: FORMS

CHAPTER 6: REPORTS

Page 191 of 416

<PARTS>

Description

Returns a text string containing the number of part records which are

associated with the meta-record currently being output.

Scope

Text string function

Syntax

<parts>

Side effects

None

Examples

Example 1:

To output a simple count of part records:

<box at b(*)+1,1

 <t=There are <parts> part records.>

>

which might give output such as:

There are 5 part records.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 192 of 416

<RID>

Description

Returns a text string containing the unique record number of the current

record being output.

Scope

Text string function

Syntax

<rid>

Side effects

None

Examples

Example 1:

Output the number of the current record:

<box at b(*)+1,1

 <t=This is record number <rid>.>

>

which might give output such as:

This is record number 42.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 193 of 416

<RIS>

Description

Returns a text string containing the index of the current record within the last

search performed. This index is an ordinal number between one and the

maximum number of records hit by the last search.

Scope

Text string function

Syntax

<ris>

Side effects

None

Examples

Example 1:

Output the number of the current record and its index within the last search

performed:

<box at b(*)+1,1

 <t=Record # <rid> is <ris> within search.>

>

which might give output such as:

Record # 32658 is 5 within search.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 194 of 416

<RNAME>

Description

Returns a text string containing the unique record name of the current record,

if applicable.

Scope

Text string function

Syntax

<rname>

Side effects

None

Examples

Example 1:

Output the name of the current record:

<box at b(*)+1,1

 <t=This is record: <rname>.>

>

which might give output such as:

This is record: CY93/1234

PART 2: FORMS

CHAPTER 6: REPORTS

Page 195 of 416

<SORTFIELDS>

Description

Allows a sort order to be embedded within the report itself. This sort order

consists of a comma-separated list of field names from the database being

output.

The <sortfields()> option must be placed before the first box is specified.

Scope

Format function

Syntax

<sortfields(field_name[, field_name...])>

Side effects

This function effectively disables the SORt modifier in CCL. Any attempt to

use Show or PRint SORt will result in an error message. If data is being

output from a database cluster, the data cannot be merged unless the user

issues a DEfine MERGe command.

Examples

Example 1:

A statement to sort output on the contents of the Corr fields day, rname and

raddr:

<sortfields(day, rname, raddr)>

PART 2: FORMS

CHAPTER 6: REPORTS

Page 196 of 416

<SUBRID>

Description

Returns a text string containing the unique number of the current part record

being output.

Scope

Text string function

Syntax

<subrid>

Side effects

None

Examples

Example 1:

To output the current part record’s unique number:

<box at b(*)+1,1

 <t=This is part record # <subrid>.>

>

which might give output such as:

This is part record # 32.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 197 of 416

<SUBSTRING>

Description

Returns a string extracted from a field, or subfield, where the extraction is

defined by a start position and a length.

Scope

Text string function

Syntax

<substring(field_name, start_position, length

 [, justification])>

where field_name is the field or subfield from which the string is to be

extracted, e.g. rname.1.

Start_position is the position within the field or subfield from which the

extracted string should begin. This position is based on 1 being the first

character in the field, or subfield.

Length is the number of characters to extract from the field or subfield in

question. If start_position + length is greater than the available data, the

resultant string will be padded with blank (ASCII 32) characters. If length is

zero (0), the extracted string will contain all characters from start_position to

the end of the field or subfield in question.

Justification is an optional argument, and can only take a single value, the

case-insensitive r. This argument specifies that the extracted string should be

right-justified within the output. For example, if length specifies twenty but the

available data only stretches to ten characters, those ten characters would

occupy positions eleven through twenty in the resultant string.

Side effects

None

Examples

Example 1:

<substring(p1,10,20)>

If p1 is a PHrase field, this function will create a string of twenty characters

from the first subfield of p1, beginning with the tenth character of the subfield

and padding the string with spaces to the right (if the subfield is less than

twenty-nine characters long).

Example 2:

To create a field header using substring:

<h.field=<substring(p1.2,10,0>>

Whatever information is contained in the second subfield of p1 from the tenth

to the last character will be output in the field header.

Example 3:

To create a text variable using substring:

<2=<substring(t1.2.3,1,8)>>

Supposing t1 to be a TExt field, the first eight characters of the third sentence

of its second paragraph will be loaded into the text variable <2>.

PART 2: FORMS

CHAPTER 6: REPORTS

Page 198 of 416

<Text Variables>

Description

A text variable can hold any number of characters, and can be used in any

place where you can use a text string. The text variables are <0>, <1>, <2>,

<3>, <4>, <5>, <6>, <7>, <8> and <9>.

Scope

Format function

Syntax

<variable=content>

<t=This is a use of a text variable : <variable>.>

where variable is an ordinal number between zero and nine inclusive, and

content is any text string, which may contain any text string scoped function.

Side effects

The text variables must be assigned before any boxes are coded within the

format, otherwise their use will be ignored by the formatter.

Examples

Example 1:

Loading, and using, a text variable:

<

 <1=TRIP Systems International, Inc.>

 <box at b(*)+1,1 <t=<1>... Yo!>

>

which would give output such as:

TRIP Systems International, Inc.... Yo!

Example 2:

Loading a text variable using a text string scoped function:

<

 <1=<substring(field1.2, 10, 10, r)>

 <header_box size 1*80

 <t=The contents of field1 are ... <1> >

 >

>

which might have output such as:

The contents of field1 are ... cy93/1234

PART 2: FORMS

CHAPTER 6: REPORTS

Page 199 of 416

<TRACE>

Description

This function causes the search history leading to the last performed search

to be output as it would appear in the search history window. This is useful for

tasks such as producing print job cover sheets.

Scope

Layout box or box group function

Syntax

<trace>

Side effects

None

Examples

Example 1:

To print a sample cover sheet:

<

 <box at b(*)+1,1

 <trace>

 <t=<ff>>

 >

>

which could produce output such as:

S=1 <475> BASe ALICE

S=2 <28> Find mad hatter

PART 2: FORMS

CHAPTER 6: REPORTS

Page 200 of 416

<TIMEFORM>

Description

Returns a string containing a time value formatted as specified by the time

format argument.

Scope

Text string function

Syntax

<timeform(time_value, time_format)>

where time_value is the value which is to be formatted by the function. This

value can either be field content, or the function <curdate>, which will yield

the current time in twenty-four hour notation.

Time_format is an integer value with the following meanings (default is 1):

Time Format 1 If the time value does not include minute or hour segments,

they will appear as zeros, e.g.:

Time Value Sample Output

1hr, 10min 1:10:00

59 seconds 0:00:59

Time Format 2 If the time value does not include an hour segment, the

output will also not include an hour segment; i.e. only the minutes and

seconds will be output by the function. If the time value does not include a

minute segment, it will appear as a zero:

Time Value Sample Output

1hr, 10min 1:10:00

59 seconds 0:59

Time Format 3 If the time value does not include an hour or minute

segment, the output will not include them:

Time Value Sample Output

1hr, 10min 1:10:00

59 seconds 59

Side effects

None

Examples

Example 1:

Output the current time:

<

 <box at b(*)+1,1

 <t=The time is <timeform(<curdate>,1)>.>

 >

>

which will produce output such as:

The time is 15:20:35

PART 2: FORMS

CHAPTER 6: REPORTS

Page 201 of 416

<WEIGHT>

Description

Returns a text string containing the value that the relevance rank engine has

associated with the current record, with assigned rankings normalized to a

percentile range. This function has no meaning unless the report in which it is

used is invoked following a fuzzy logic search (FUZz).

Scope

Text string function

Syntax

<weight>

Side effects

None

Examples

Example 1:

To output the rank of the current record:

<box at b(*)+1,1

 <t=Record <rid> has weight <weight>.>

>

which would produce output such as:

Record 36 has weight 97.

PART 2: FORMS

CHAPTER 7: SEARCH FORMS

Page 202 of 416

Chapter 7:
Search Forms

The search form is an easy and straightforward alternative to CCL searching

that does not require knowledge of command language syntax. It is a single

page form where the user types the search expressions into search fields,

which the search form then uses to generate a search order for TRIP to

perform. The hit record counts of all the fields combined are shown in the

form report line. There may also be individual hit record counts shown for

each field. A database administrator may create several search forms for one

or many databases, which can be linked together.

To view the existing search forms in TRIP, select the ‘Search Forms’ icon in

the mmc window. A list of search forms will then appear.

Figure 7–1 Search forms for a TRIP installation

Selecting a search form and choosing ‘Properties’ from the action menu, will

list the properties for that form.

Figure 7–2 Properties for search form ALICE_DEMO

PART 2: FORMS

CHAPTER 7: SEARCH FORMS

Page 203 of 416

Creating and Modifying TRIPclassic Search Forms

Unfortunately, TRIPmanager currently has no means of carrying out these

operations. It is hoped to include this functionality in a later release. For now,

consult the TRIPclassic user guide for details of how to carry out these tasks.

Copying TRIPclassic Search Forms

To copy a search form, click on ‘Search Forms’ in the chosen TRIP server

sub-tree, select the form to copy and select ‘Copy’ from the action menu.

Next, click anywhere in the right-hand pane of the mmc window to deselect

the currently selected search form and select ‘Paste’ from the action menu.

Figure 7–3 Copy a Search Form

A dialogue will appear as below, in which you may enter the name for the

new copy of the Search Form and click on the ‘OK’ button to confirm the

action.

Figure 7–4 Name Search Form Copy

the new Search Form creation confirmation will then appear.

Figure 7–5 Search Form copy confirmation

PART 2: FORMS

CHAPTER 7: SEARCH FORMS

Page 204 of 416

Clicking on the ‘OK’ button will clear the confirmation. The copy of the form

has now been created.

Deleting TRIPclassic Search Forms

To delete a data entry form, click on ‘Search Forms’ in the chosen database

sub-tree, select the form to copy and select ‘Delete’ from the action menu.

Figure 7–6 Delete a Search form

A ‘Yes/No’ confirmation dialogue will appear. Click the ‘Yes’ button to confirm

the action, or the ‘No’ button to cancel it.

Figure 7–7 Delete Search Form confirmation

Clicking on ‘Yes’ will cause a deletion confirmation to appear.

Figure 7–8 Search form Deleted

Clicking on the ‘OK’ button will clear the confirmation. The selected form has

now been deleted.

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 205 of 416

Part 3:

Batch Update

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 206 of 416

Chapter 8:
Global Updating

Note:

The command “UPDate SCope” cannot be found in this section because,

despite having a similar name, it is not connected with global updating. For

more information on this particular command, see “Appendix B – Scope

Search Facility”, on page 358 of this manual and also the relevant section

of the CCL Command Reference.

Global updating is a means of making identical changes to a group of

records, using a single updating order from the CCL command line. Using a

set of records that have been identified either by a CCL search or a record

number list, it is possible to:

• insert, delete or replace a field, subfield, sentence or paragraph

• delete or replace a string referred to by a search result in all the

records of that search result, or insert a word or several words before

it

• delete entire records, both those referred to by a search result and

those identified by a list of record numbers.

As with manual data entry, update orders affect only the BAF of the

database—the index files BIF and VIF remain unchanged until the database

is indexed. Since searches are made using the index files and Show orders

use the BAF records, if the BAF has been modified and remains unindexed,

the user of the database will get conflicting results when searching in and

showing the changed records.

Among other things, FOcus and HIghlight may behave incorrectly when BAF

records have been modified.

Command Overview

An order for global updating has four main elements:

“Do this” the type of update

to

“This constituent” the target of the update

with

“This value” the information to be

changed

and

“These records” the records to be

changed

as outlined below.

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 207 of 416

Command

Element

Update Type Update Target Update Value Update Domain

Explanation What should

be done?

What portion or

constituent of

each record

will be

changed?

What data or

value is

needed?

Which records

will be altered?

Examples INSert,

UPDate or

DELete

Field, Subfield,

Word, Sentence

etc.

XYZ, 123, etc. WHere R=521,

687, 688, 1023,

2190, 2349 or

WHere S=3

Table 8–1 Anatomy of a global update command

In TRIPclassic the maximum expanded order length is 400 characters. A

longer order will lead to an error message. In applications created using the

newer TRIPjxp and TRIPnxp APIs, there is no such limit.

Notes:

• It is also possible to avoid the 400 character limit when using the latest

versions of TRIPjtk and TRIPclient; however any new TRIP session

must be started using the newer TRIPcom Session object Open

method, or the TRIPjtk Session interface startSession method.

• Details on how to use the relevant methods can be found in the

documentation accompanying each API.

Only one database at a time can be open for updating, and referring to

search results obtained from more than one database in the same update

order is not permitted. You will need to index a globally-updated database

before making local modifications or proceeding with another global update.

Updating Using Record Numbers

Command Structure

The four main elements of a global update by record number are summarized

in the table below. Each is discussed separately in the sections that follow.

Update

Type
Update Target Update

Value

Update

Domain

INSert

UPDate

DELete

Record

Fieldname.Subfield

Fieldname.Paragraph

Fieldname.Paragraph.Senten

ce

Part.Fieldname.Subfield

Part.Fieldname.Paragraph

Part.Fieldname.Paragraph.Se

ntence

aaabbbcc

112233

R=record

number

Table 8–2 Structure of a global update using record

numbers

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 208 of 416

Update Type

The three commands used are:

INSert (short form: INS) to add a unit to the records

DELete (short form: DEL) to remove a unit from the records

UPDate (short form: UPD) to replace a unit, or, if the unit referred to is

empty, add a unit.

INSert Orders

INSert expands both structure and content of records. When a subfield,

paragraph or sentence is inserted, the numbering sequence of any subfields,

paragraphs or the sentences which follow is advanced by one position. For

example, if a new ‘Subfield 1’ is inserted in a field, the existing ‘Subfield 1’

becomes ‘Subfield 2’, ‘Subfield 2’ becomes ‘Subfield 3’, and so on.

UPDate Orders

UPDate takes the same arguments as INSert, replacing the unit referred to.

Be very careful to provide complete specifications when using UPDate, to

avoid errors such as replacing the contents of an entire field with a single

phrase.

UPDate operates as an INSert order when there is nothing to replace.

DELete Orders

DELete is somewhat different from INSert and UPDate orders, in that it is

possible to delete the contents of entire records, part records and fields.

When a subfield, paragraph or sentence is deleted, the numbering sequence

of any subfields, paragraphs or the sentences which follow recedes one

position. For example, if you delete ‘Subfield 1’, ‘Subfield 2’ will become

‘Subfield 1’, and so on.

Note:

To avoid the accidental deletion of the complete contents of a database, the

global record delete has a default maximum value of 100 records that can

be deleted in one go. This maximum value can be redefined: For more

details, see the ‘Define – Delete’ section of the CCL Command Reference.

Update Target

When the records you want to make changes in are identified by a list of

record numbers, your order must state by name and number what component

of the record you want to change.

The shortest forms of the generic update targets are listed below.

Target Shortest Form

Record R

PART PART

Table 8–3 Generic update targets

Update Value

There are several basic restrictions regarding values that may be written to a

field during global updating. The source and target field types must match,

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 209 of 416

i.e. it is not possible to insert text into a NUmber field. If the reserved word

‘where’ appears in the string to be introduced, the entire string must be

enclosed in double quotation marks—we recommend the use of quoted

strings as a matter of course for all TExt and PHrase target fields.

Update Domain

The update domain consists of TRIP’s reserved word WHere (short form:

WH) followed by a series of record numbers (short form for Record: R) or a

search result pointing to a subset of the records in the database (short form

for Search Result: S). The domain in the first case consists of a sequence of

record numbers, which follows the same rules as do other lists of numbers in

TRIP. Numbers and number intervals must be separated by commas, must

be listed in ascending order and cannot overlap.

There are three ways to state an interval:

• TO a number

• a number TO a number

• FRom a number

The first option, ‘TO a number’ must appear first in a mixed-interval CCL

statement, and the third, ‘FRom a number’ must appear last to prevent record

number overlap.

The order part stating which records to edit has the same form for INSert,

DELete and UPDate and refers to the record numbers in the database itself.

These take the format ‘R=’ followed by a list of record numbers or record

number intervals, as seen in the examples below.

Example 1:

WHere R=to 10, 15, 20

which locates the first ten records in the database, as well as records fifteen

and twenty.

Example 2:

WHere R=3, 5, 7 to 9

which locates record numbers three, five and seven through nine.

Example 3:

WHere R=FRom 1

which locates all the records of the database.

INSert Examples Using Record Numbers

As before, most examples use the demonstration database Corr, and only

one database is open at a time.

Example 1:

INSert rcomp="Paralog U.K." WHere R=70 to 74

appends a new subfield containing the phrase ‘Paralog U.K.’ to Corr’s field

rcomp in records seventy to seventy-four.

Example 2:

INS rcomp.1="Paralog U.K." WH R=75

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 210 of 416

inserts a new first subfield containing ‘Paralog U.K.’ to the field rcomp in

record seventy-five. Existing data in the field will be moved one subfield

forward.

Example 3:

INS content.3.1="I told you so." WH R=FR 95

inserts a new first sentence to the third paragraph of the TExt field content of

records ninety-five upwards in the database. Existing sentences in the

paragraph will be moved one step forward.

UPDate Examples Using Record Numbers

Example 1:

UPDate scomp="Paralog U.K." WHere R=70 to 74

replaces the contents of the field scomp, (even if it contains several subfields)

in records seventy through seventy-four with a single subfield containing the

phrase ‘Paralog U.K.’.

Example 2:

UPD scomp.1="Paralog U.K." WH R=75

replaces the contents of the first subfield of scomp with ‘Paralog U.K.’ in

record seventy-five.

Example 3:

UPD content 3.1="I told you so." WH R=fr 95

replaces the first sentence of the third paragraph of TExt field content with ‘I

told you so.’ in records numbered ninety-five and above.

DELete Examples Using Record Numbers

Example 1:

DELete R WHere R=to 3, 6, FRom 98

deletes records one through three, six and ninety-eight and above.

Example 2:

DEL saddr WH R=7 to 10

deletes the field saddr from records seven through ten.

Example 3:

DEL scomp.1 WH R=75

deletes the first subfield of scomp in record seventy-five.

Example 4:

DEL content.3.1 WH R=FR 95

deletes the first sentence of the third paragraph of content from record ninety-

five onwards.

Updating Using a Search Result

Command Structure

The four main elements of a global update by search result are summarized

as before.

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 211 of 416

Update

Type
Update Target Update

Value

Update

Domain

INSert

UPDate

DELete

Record

Part (for use with DELete only)

Field

Subfield

Paragraph

Sentence

Word

Fieldname.Subfield

Fieldname.Paragraph

Fieldname.Paragraph.Sentence

Part.Fieldname.Subfield

Part.Fieldname.Paragraph

Part.Fieldname.Paragraph.Sentenc

e

aaabbbccc

111222333

S=search

number

Table 8–4 Structure of a global update using a search result

Update Type

As with updates using record numbers, the commands are INSert, DELete

and UPDate.

Update Target

When the records to be changed are referred to by a search result, the

search result itself refers to a specific portion of the record. It is therefore not

necessary to identify them by name and number, but only by their level of

organisation (field, subfield, paragraph, sentence or word) within the record.

Target Shortest Form

FIEld FIE

SUBField SUBF

PARagraph PAR

SENtence SEN

WORD WORD

Table 8–5 Record update targets

Update Value

The same restrictions apply here as for global updates with record numbers.

Update Domain

The order part stating which records to edit has the same form for INSert,

DELete and UPDate, and takes the form ‘S=’, followed by the number of a

single search result:

WHere S=2

INSert Examples Using Search Results

Example 1:

INSert content.3.1="I told you so." WHere S=4

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 212 of 416

inserts a new first sentence to the third paragraph of the TExt field content of

records located in search number four. Existing sentences in the paragraph

will be moved one step forward.

When inserting in the records of a search, you can refer to the position of the

hits of the search, instead of referring to a field by name, as shown by the

following examples.

If you are in any doubt about what positions a search refers to, you should

look at its record first, using highlight. The highlighted units are the ones that

your editing orders will use as reference points.

Example 2:

INS SENtence="I told you so." WH S=5

The phrase ‘I told you so.’ is inserted before each sentence that the search

number five has found.

Example 3:

INS WORD="John" WH S=2

The word ‘John’ in either TExt or PHrase fields is inserted before each word

that the search result two has detected.

Example 4:

INSert SUBField="John Smith" WH S=3

The phrase ‘John Smith’ is inserted as a new subfield before each subfield

that search number three has found.

UPDate Examples Using Search Results

Example 1:

UPDate content.3.1="I told you so." WHere S=4

replaces the first sentence of the third paragraph of the TExt field content with

‘I told you so.’ in the records of search number four.

Example 2:

UPDate SENtence="I told you so." WH S=5

replaces each sentence that search number five has located with ‘I told you

so.’

Example 3:

UPDate WORD="John" WH S=2

Replaces each word that search result two has found (in TExt or PHrase

fields) with ‘John’.

Example 4:

UPDate WORD="John Henry" WH S=2

replaces each word that search two has hit (in TExt or PHrase fields) with

‘John Henry’.

Example 5:

UPDate SUBField="John Smith" WH S=3

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 213 of 416

replaces the contents of each subfield of a PHrase field pinpointed by search

result three with the phrase ‘John Smith’.

Example 6:

UPDate SUBF=1993-03-01 WH S=7

replaces the contents of each subfield located by search seven with the date

1993-03-01 (the hits are intended for a DAte field, but the contents would be

accepted for a PHrase field as well).

Example 7:

UPDate PARagraph="Yours truly" WH S=5

replaces each paragraph that search number five has found with the words

‘Yours truly’.

Example 8:

UPDate price.1=30 WH S=8

In a database containing a NUmber field named ‘Price’, the value in its first

subfield will be changed to 30 for all records located by search eight.

DELete Examples Using Search Results

Example 1:

DELete content.3.1 WHere S=4

deletes the first sentence of the third paragraph of the TExt field content from

the records in search number four.

Example 2:

DELete content.4 WH S=4

deletes the fourth paragraph of the TExt field content from the records in

search number four.

Example 3:

DELete R WH S=5

deletes the records found in search number five.

Example 4:

DELete FIEld WH S=6

deletes the fields hit by the search number six from the records of that

search.

Example 5:

DELete SUBField WH S=7

deletes the subfields located by search number seven from the records of

that search.

Example 6:

DELete (name, addr, phone).SUBF WH S=2

deletes a tuple, in this case the contents of those subfields of fields name,

addr, and phone that have the same number as the tuple subfield found by

search number two.

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 214 of 416

Example 7:

DELete PARagraph WH S=2

deletes the paragraphs located by search two (in TExt fields) from the

records of that search.

Example 8:

DELete SENtence WH S=8

deletes the sentences pointed to by search result eight (TExt fields) from the

records of that search.

Example 9:

DELete WORD WH S=3

deletes the words hit by search three (in TExt or PHrase fields) from the

records of that search.

Global Updating of Part Records

Global updating may also be used to delete, insert or update part records or

portions of part records.

If a search result contains hits in part fields, use

DELete PART WHere S=2

to delete the record parts found in search result number two. If the search

has detected only records containing head fields, nothing will be deleted.

Note:

You must provide the word ‘Part’ in its entirety; otherwise TRIP may

interpret it as an action on a PARagraph.

You may use DELete, UPDate and INSert orders to edit the contents of part

fields or their subfields or sentences pinpointed by search results as well.

To edit the contents of a field in a single record part, refer to the record part

by its number in the record. For example,

UPDate 2.name.1="John Smith" WH R=10 to 20

will substitute ‘John Smith’ for the contents of the first subfield of name in the

second record part of records numbered ten to twenty.

Copying With Global Update

Records modified in global updating may be inserted in a database other

than their database of origin, or be appended to the end of the source

database. This is done by inserting the modifier Copy directly after the

command word of an INSert, DELete or UPDate order.

Copying is done in the same manner as for EDit Copy orders, i.e. fields with

the same names must be of the same field type in both target and source

databases. Fields that exist in the source database but not in the target

database will be discarded during copying.

Examples:

Example 1:

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 215 of 416

BAS corr

DEfine COPY=corr1

The first order opens the copy source database Corr, while the second opens

Corr1 as the copy destination.

Example 2:

INSert COPY WHere R=10,15 to 18, FRom 95

This order, following the two previous orders, copies the Corr records ten,

fifteen through eighteen and ninety-five and above to Corr1.

Example 3:

Find taiwan (creates search result S=2)

UPDate WORD="china" WH S=2

UPDate COPY WORD="china" WH S=2

Both UPDate orders modify records that contain the word ‘Taiwan’, but the

first of them stores the modified records in the source database Corr, and the

second inserts them in the copy destination database Corr1.

Example 4:

INS COPY content="Copy extracted from CORR."

 WH S=2

This order inserts a new paragraph containing ‘Copy extracted from Corr.’ in

the field content of every record of search number two and writes the updated

records into database Corr1.

Example 5:

DELete COPY=corr2 rname WH s=2

This order deletes the field rname from the records of search result two and

adds them to copy destination Corr2. Corr itself remains unchanged.

Example 6:

DEfine COPY=corr

DELete COPY rname WH R=30 to 33

DELete sname WH R=30 to 33

Here the DEfine order makes the current database Corr the copy destination

as well. The first DELete order deletes the field rname and appends records

thirty through thirty-three to the end of the database as new records. The

second order deletes the field sname from records thirty through thirty-three.

Case Sensitivity

In some situations, global updating will convert lower-case letters to upper-

case. If the character string in the updating order contains only lower-case

letters and spaces, the following will occur:

• If the word hit consists of upper-case letters only, the string will be

converted to upper-case before the exchange.

PART 3: BATCH UPDATE

CHAPTER 8: GLOBAL UPDATING

Page 216 of 416

• If the first letter of the word hit is an upper-case letter, and the

following letter is in lower-case, the first letter of the replacement

string will be converted to upper-case.

The Log File

An updating order puts a batch process in the queue, after some preliminary

error checking. The resulting log file name is and

GUdatabasename_uniqueID.log.

It should be noted that while an updating job is placed in the queue

immediately, a Print order (without a NOW, NO HOLD, or WAIT modifier)

submits the job to the queue when the user leaves TRIP. This is important if

you request a printout of records that you are going to delete in the same

session.

Error Checking

A great part of the checking of an order’s correctness is done by the batch

process, not by TRIP itself. This is meant to save the user time, because a

single order may involve a lot of checking.

TRIP checks that the user has write access to the database, that the order is

syntactically correct, and that it involves no immediate type clash (that is, that

the changes intended for the first of the records referred to in the order are

possible). An impossible change could be, for example, inserting a text string

in a NUmber field.

Further error checking is done by the batch process, and the results are

recorded in the log file mentioned above. If, for example, you make a mixed

search order that found hits in both TExt and NUmber fields, and you attempt

to delete a word from the fields found during that search, an error message

will be written to the log file and no changes will be posted to the BAF.

The only mixed search result accepted in editing orders is one consisting of

both TExt and PHrase references used in an editing order where words are

inserted, updated or deleted.

This restriction is intended for error prevention; all checking is done before

writing to the BAF.

PART 3: BATCH UPDATE

CHAPTER 9: LOADING, INDEXING AND REINDEXING

Page 217 of 416

Chapter 9:
Loading, Indexing and Reindexing

TRIP provides three utilities for automated data entry (loading) and database

indexing (making the data searchable), ‘Index’, ‘Load/Index’ and ‘Load'. All

three utilities submit jobs to be executed in background mode in both UNIX

and Windows.

Index

Indexing renders data searchable by updating the index files BIF and VIF so

that they conform to any changes (additions, alterations or deletions) that

have been made to the BAF since the latest updating. This may be done by

anyone who has write access to the database. To ensure that the index files

are updated regularly, you may wish to organize the indexing if several

persons are to be updating the database.

Choose ‘Index’ if you are using manual data entry to write information to the

BAF.

To perform an index, highlight the database to be indexed, then select ‘All

Tasks’ then ‘Index’ from the Action menu.

Figure 9–1 Indexing the Database TestThes

The CCL command INDex may be used instead of the method above: E.g.,

the order:

INDex thesali

given in the CCL command window, or as part of a TRIP procedure, begins a

process which indexes the database Thesali.

PART 3: BATCH UPDATE

CHAPTER 9: LOADING, INDEXING AND REINDEXING

Page 218 of 416

Load and Load/Index

Loading uses records from a file in TRIP’s entry format TForm to update the

BAF.

With ‘Load/Index’, automated data loading to the BAF is immediately followed

by the updating (indexing) of the BIF and VIF.

To perform an TForm load, highlight the database into which the TForm is to

be loaded, then select ‘All Tasks’ then ‘Load TForm…’ from the Action menu:

Figure 9–2 Load a TForm file into database TestThes

which will result in the appearance of the ‘Specify File Name’ form:

Figure 9–3 Load TForm Specify File Name form

To perform a simple ‘Load’, just enter the file path and file name into the

‘Name’ entry box and click on the ‘OK’ button.

If you wish to perform a Load/Index, check the ‘Update index after loading

file’ checkbox.

Checking the ‘Reindex the database’ checkbox as well, will cause a reindex

to be performed, rather than just a normal index.

Note:

For more details on reindexing, see the section ‘Reindexing a Database’

later in this chapter.

PART 3: BATCH UPDATE

CHAPTER 9: LOADING, INDEXING AND REINDEXING

Page 219 of 416

Checking the Results

When a batch job is submitted, a log file is created containing the results of

each step in the procedure. The log files are named as follows:

Operating

System

Log File Name

UNIX/Windows IXdatabasenameunique ID.log

 LIdatabasenameunique ID.log

 LDdatabasenameunique ID.log

Table 9–1 Operating systems and log file names

The log files will be placed in the directory from which the job was initiated.

However, these can be rerouted to a different directory by defining the logical

name TDBS_LOG.

Remember to delete the log files, or set up a batch procedure to remove

redundant log files.

Error Logging

Error logging is the process of segregating all records which do not match the

database design (contain illegal dates, patterns etc.) in a designated log file

called ERRLOG_databasename.TFO. If a record in a TForm file is not written

to the BAF during loading, it contains an error and is written to the error log

file in TForm instead.

The ERRLOG_databasename.TFO file is normally placed in the area pointed

to by the logical name TDBS_LOG. If TDBS_LOG is undefined, then

ERRLOG_databasename.TFO will be stored in the current directory, and if

the area pointed to is not accessible, nothing will be added to the database.

Note:

Some small deviation from the original format may appear in records written

to the error log file. This is caused by intermediate storing in an internal

format, and does not generally interfere with normal functioning.

Reindexing a Database

Under certain extreme conditions, it may become necessary to force the

complete reindexing of a database in its entirety, rather than indexing only the

most recent changes made. These include:

• modifying the indexing options for one or more fields in the database

design; for example, from ‘Index’ to ‘No Index’

• an index job has failed, the database has become corrupted and

indexing is no longer possible; for example, not enough disk space

has been allotted for temporary index file storage

If it becomes necessary to reindex all the records in the database, the BAF

‘Indexed’ markings may be removed by:

• Running the index command line program with the option “--reindex”

that performs a bafini style initialization of the database prior to

performing the actual indexing operation.

PART 3: BATCH UPDATE

CHAPTER 9: LOADING, INDEXING AND REINDEXING

Page 220 of 416

Note:

Type “index --help” for to get more information.

Operating System Command

UNIX $TDBS_EXE/index --reindex

Windows Index --reindex

• running a utility called BAFINI in the following manner:

Note:

Type “bafini --help” to get more information.

Operating System Command

UNIX $TDBS_EXE/bafini

Windows bafini

Table 9–2 Running the BAFINI utility

This places another marker in the BAF to notify TRIP that the database

should be completely reindexed.

When Batch Jobs Fail

On UNIX and Windows systems

Success and failure log files are written to the location pointed to by

TDBS_LOG (See page 292 of this guide for more details). If TDBS_LOG is

undefined, any log files will be saved to the application’s current working

directory, not the directory from which the application was started.

On UNIX systems only

TRIP will generate e-mail messages when a batch job fails to complete. The

message is sent to the initiator of the batch job, unless the logical name

TDBS_ ERRMAILST has been defined (refer to Chapter Twelve of this

manual, ‘Environment Setup’, for more information). The content of the

message will describe the location of the log of the failed job.

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 221 of 416

Part 4:

Database Security

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 222 of 416

Chapter 10:
User Privileges

TRIP’s internal Access Privileges

When not using external logon verification, TRIP employs four levels of user

privilege; the system manager, the database administrator (file manager) and

user manager, the user group and the individual user.

The TRIP System Manager

Each TRIP installation has only one system manager, user identity SYSTEM.

This person has complete system access privileges and rights, file and user

manager as well as individual user.

The system manager creates the first user identities. You must be either the

system manager or a user manager to give users or groups of users access

to the TRIP system, and only SYSTEM can assign database or user

managerial rights; that is, create a database administrator or user manager.

SYSTEM is also the owner of all database administrators and user

managers, regardless of their original creators.

The TRIP ‘Superman’ Logical Name

This logical name gives the TRIP system manager, SYSTEM, complete

access to all TRIP objects. For more details see; Chapter 12, Environment

Setup.

TRIP File and User Managers

File Manager

The database administrator (or file manager, abbreviated FM) creates

databases and assigns users and user groups access to them.

When a user is given manager rights, the ownership of this user is

automatically transferred to SYSTEM.

There can be an unlimited number of database administrators per TRIP

installation.

User Manager

The user manager (abbreviated UM) creates new users and user groups.

A user identity can be deleted only by the user manager (or system manager)

who created that identity.

There is no limit to the number of user managers an installation may have.

The TRIP User Group

The user group concept enables the database administrator to give access

rights to databases collectively. User groups are intended to simplify the

administration of database access rights, and represent collections of users

which have been granted a common and identical set of access rights to one

or more databases.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 223 of 416

For example, if one hundred users are registered in a TRIP installation, and

ninety-three users must be able to read and write to five database fields while

the remaining seven need the same access to all fifty fields of the same

database, rather than create one hundred sets of individual access rights, an

administrator can create two user groups.

A database administrator may grant access rights to his or her databases for

individual users as well as groups. The creator of a group (the UM) may grant

membership in the group to any individual user, regardless of whether this

UM created the user in question or not. The combined access rights of each

user are defined by the union of his or her individually-granted rights and the

rights of the groups to which the user belongs.

Creating a group adds a new record to CONTROL, as does creating a new

user. This record contains the group’s access rights and the user names of its

members.

Only a group’s owner/creator may add a member to or delete a member from

that group; however, the new member may have been created by another

user manager.

Group membership is recorded in the user record of the individual user as

well as that of the group. A group, like a user, can only be deleted by the UM

who created it.

The Individual or End User in TRIP

The number of possible users depends on the system site license purchased.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 224 of 416

Creating a New TRIP User

To create a new user, open the ‘Users and Groups’ sub-tree, then select ‘My

users’. Next, select ‘New User…’ from the action menu.

Figure 10–1 Creating a New User

this will cause the New User details form to appear:

Figure 10–2 The create New User form

The minimum information required, is the username and password.

Note:

Both user name and password may have a maximum of thirty-two

characters.

The password is not echoed (displayed to the screen), and the verification

must match whatever has been entered as the password.

The other details that can be entered at user creation time are:

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 225 of 416

• Full Name

• Ignore Password if TRIP and O/S users are the same
(See 'Appendix B: Local System Validation' for more
details)

• Date Format

• Privileges

• Session Parameters

• Login Procedure

• Company Information
These items are covered in greater detail in the User Properties section of

this chapter and in Appendix B: Local System Validation.

Once all desired details have been entered, you then create the user by

clicking on the ‘Create’ button, causing the user created confirmation dialog

to appear:

Figure 10–3 The User created confirmation dialog

This results in a new user record in CONTROL, where the access rights to

databases, group membership, and manager privileges of the new user are

stored. Whenever a user attempts some action within TRIP, his or her rights

are checked against this user record, which determines what he or she will be

allowed to do within the system.

Deleting a TRIP User

To create a new user, open the ‘Users and Groups’ sub-tree, then select ‘My

users’. Next, select the user to delete and choose ‘Delete’ from the action

menu.

Figure 10–4 Deleting the user ‘Fred’

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 226 of 416

A Yes/No confirmation dialogue will then appear:

Figure 10–5 The Delete User Confirmation

Clicking on ‘Yes’ will delete the user, resulting in the confirmation shown

below, whilst clicking on ‘No’ will abort the operation.

Figure 10–6 The Deleted User Access Loss Confirmation

Notes:

• The user SYSTEM cannot be deleted.

• Only the creator of a user can delete that particular user

• When a user is deleted, all database access rights and privileges for

that user are also removed. Therefore, if the user to be deleted is a

Database Administrator or a User Manager, you must transfer all of that

particular user’s holdings before they can be deleted.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 227 of 416

User Properties

To obtain the ‘User Properties’ window, open the ‘Users and Groups’ sub-

tree, then select ‘My users’. A list of users will be displayed.

Next, select the desired user and choose ‘Properties’ from the action menu.

Figure 10–7 Opening Properties for the User, FREDERICO

The specific user’s properties form will be displayed:

Figure 10–8 The user FREDERICO’s user Properties form

The user manager who has created a user identity may enter data such as

name and address, as well as some other TRIP defaults in the user’s

properties. These properties are covered in more detail overleaf.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 228 of 416

User Properties (1) – General

Full Name

This is a descriptive entry to enable the user to be clearly identified. It will

only be displayed in the administrator’s console and may be a maximum of

255 characters in length.

Figure 10–9 Date Format selection box

Ignore Password

A user may be permitted to enter TRIP without supplying a password,

provided that their operating system and TRIP user names match. This,

allows for the use of system logon validation in place of TRIP’s own

validation.

Figure 10–10 Ignore TRIP password checkbox

To grant this privilege, check the checkbox shown above in Figure 10–8.

Date Form

Both the format and the separating characters of a user’s current date form

may be changed here. The date form in use is shown to the right of the

phrase ‘Date form:’.

To change the date form, use the drop-down selection box on the ‘General’

tab of the user’s properties form:

Figure 10–11 Date Format selection box

and select your desired date format:

Figure 10–12 Date Format Selections

To change the digit separator characters for a date, use the ‘Field separators’

entry box, to the right of the date format selection list:

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 229 of 416

Figure 10–13 Changing the date digit separator

and enter the desired separator character, which should be one of the

following: a hyphen [-], slash [/], full stop [.] or full colon [:].

The current date form is recognised in search orders (in addition to the

system default), and output by the system in STatus lists and in the output of

records. A report may, however, specify some other date format.

Management Privileges

This is where you can decide to grant or deny File and/or User Manager

privileges to the user.

Figure 10–14 Management privilege settings

Selecting the top checkbox, ‘User can create and manager users and

groups’, in the ‘Privileges’ section on the ‘General’ tab of the ‘User Privileges’

form, will grant ‘User Manager’ privileges to the user. Selecting the bottom

checkbox will grant ‘File Manager’ privileges.

Session Parameters

These are the parameters automatically used by the user’s TRIP session

when it starts at user logon time.

Figure 10–15 Session parameter settings

There are two parameters:

Start Module

This is only useful for users of the TRIPclassic product. Choose the

appropriate value from the drop-down or leave it at its default value.

Selecting the Start module as ‘CCL Search’ deposits the user directly in the

search order window after login, while ‘Search Form’ opens the default

search form defined for a database.

Login Procedure

This value defines the name of a procedure (optionally qualified by the name

of a group) that will be automatically executed whenever a TRIP application is

run. Typically such procedures are used to establish defaults and aliases for

common commands and modifiers.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 230 of 416

Company Information

These fields are strictly informational and have no bearing on the well-running

of a TRIP system. Use them for whatever seems appropriate.

Figure 10–16 Company information entry area

These (and other fields) are available for use by client applications via the

TRIPclient and TRIPjtk 'User' object and also in the TRIPnxp and TRIPjxp

'TdbUser' class.

User Properties (2) – Procedures

This property page is accessed by clicking on the ‘Procedures’ tab of the

User properties form and is purely information as TRIP does not allow one

user to modify the procedures of another user.

Figure 10–17 Procedures for user FREDERICO

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 231 of 416

User Properties (3) – Groups

Clicking on the ‘Groups’ tab of the User Properties form will display the

groups to which the particular user belongs.

Figure 10–18 Group membership for user FREDERICO

The user, ‘Frederico’, being inspected above is already a member of

‘Tea_Drinkers’ and ‘Usermanagers’.

To remove a user from a group of which they are already a member, simply

select the group name in the list and click on the ‘Remove’ button, which will

no longer be greyed out.

To add the user to a new group simply click on the ‘Add...’ button, then select

the desired group from the drop-down list on the ‘Add To Group’ form that

appears:

Figure 10–19 The Add To Group form

Clicking on the ‘OK’ button confirms your selection.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 232 of 416

User Properties (3) – Access Rights

Use this dialog to inspect and modify the individual (as opposed to group-

inherited) access rights that one of your users maintains.

Figure 10–20 Access Rights for user FREDERICO

In order to add access to a new database, click the "Add..." button. To

remove access to an existing database, select the database in the list and

click the "Remove" button.

For more detail on access rights, see Chapter 11 of this guide.

Creating a User Group

To create a new Group, select the ‘Users and Groups’ icon, then select

‘New’, ‘New Group…’ from the action menu.

Figure 10–21 Creating a New Group

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 233 of 416

The ‘New Group’ name dialogue will be displayed:

Figure 10–22 New Group dialogue

Enter the name of the new group to be created, then click on the ‘OK’ button.

Creation of the new group will be confirmed with success message:

Figure 10–23 New Group Created Confirmation

Deleting a User Group

To delete a Group, select the ‘Users and Groups’ icon, then select the group

to be deleted. Next, select ‘Delete’ from the action menu.

Figure 10–24 Deleting a group

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 234 of 416

A ‘Yes/No’ confirmation box will then appear:

Figure 10–25 Confirming deletion of a group

Clicking on ‘No’, will leave the group untouched, while clicking on ‘Yes’ will

confirm deletion of the selected group, after which a confirmation dialog will

appear. The confirmation dialog can be cleared by clicking on its ‘OK’ button.

Adding a Group Member

First, click on the ‘My Users’ sub-tree of the ‘Users and Groups’ icon to

display the users managed by you

Figure 10–26 The ‘My users’ sub-tree

Next, drag and drop the selected user, from the right hand window to the

desired group in the left hand window. A confirmation dialog box will appear

to verify the action:

Figure 10–27 The Add Group Member confirmation

When a user is added to a group, he or she inherits any access rights

assigned to the group as a whole.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 235 of 416

Deleting a Group Member

Select the desired group from which to delete the user; then select the user

and chose ‘Delete’ from the action menu.

A ‘Yes/No’ confirmation box will then appear:

Figure 10–28 The Delete Member confirmation

Selecting ‘Yes’ will confirm the removal of the user from the group and a

confirmation dialog will appear. The dialog can be cleared by clicking on its

‘OK’ button.

Note:

The user will not be removed from the system. For details on how to

remove a user, see the section entitled, ‘Deleting a User’.

Transferring User Responsibility

A user manager may transfer the management of his or her users and/or user

groups to another user manager in the system. This is done by selecting the

user or group in question and choosing ‘Change Manager…’ from the action

menu.

Figure 10–29 The Change Manager option

the ‘Change Manager’ selection box will appear:

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 236 of 416

Figure 10–30 Change Manager Selection box

Select the desired new manager from the drop-down selection and clock on

the ‘OK’ button to confirm your choice.

The choice will be confirmed in the usual way, with a confirmation dialogue:

Figure 10–31 Change Manager Confirmation

The system manager may transfer any user or group to another user

manager, regardless of their owners/creators, except for the group PUBLIC

and the ‘Change Manager…’ option will not appear on the action menu if the

action is not possible.

PART 4: DATABASE SECURITY

CHAPTER 10: USER PRIVILEGES

Page 237 of 416

Related CCL Commands

Show

A user manager may use the order:

Show USer

to view a list of all of the users created by him or her with their database

access rights, group membership and possible manager privileges

To obtain the corresponding information about groups, use the command:

Show GRoup

To list information regarding a particular user or user group, add the name of

that user or group to the Show statement as follows:

Show USer R=George 
Show GRoup R=Sales 

These Show statements request information about the user ‘George’ and the

group ‘Sales’.

A non-managerial user may obtain information in this way only for

themselves, not for another user identity. The system manager can request

an overview of all the users and groups in existence with the addition of

R=ALL.

Print

Use the corresponding Print orders to send the output to a file or printer:

Print user r=username 
Print group r=groupname 

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 238 of 416

Chapter 11:
Access Rights

Read and write capabilities or access rights to a particular database may be

granted only by the owner of that database; that is, its Database

Administrator. Read access encompasses viewing rights only, while write

access implies read access and includes append, alter and delete

capabilities.

Access rights may be assigned not only to entire databases but to selected

fields and/or selected records as well.

To assign access rights to a database, select the required database in the

Databases tree, then select *Grant Access…’ from the action menu:

Figure 11–1 Granting Access to Database CARROLL

The Access Level form will appear, allowing you to set the access for the

database,

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 239 of 416

Figure 11–2 The Access Level Form

Notes:

• The system checks that you are the owner of the database; if you are

not, then the ‘Grant Access...’ option will not appear on the action menu.

• You need not be a user manager or the owner of the user group in

question to grant them access to a database. You must, however, be

the author or creator of that database.

Database Access Rights Definition

Database

At the top of the Access Rights form, is the Database name selection box:

Figure 11–3 Database Name Selection

The database name will be automatically filled in on the access form and

hence is not selectable.

User / Group

Use this selection box to set which user or group you that wish to define

access for.

Figure 11–4 Database Name Selection

General Field Access

Field access is defined using a combination of the ‘Field restrictions’ and

‘Record restrictions’ sections on the lower half of the Access Restrictions

form:

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 240 of 416

Figure 11–5 Field and Record Restrictions

Clicking on one of the tree available radio buttons in the ‘Field restrictions’

section will allow you to set, or clear the current user, or group’s, access

settings.

If it is desired to further restrict access at the record level, enter the required

access scope into the ‘Scope’ box in the ‘Record restrictions’ section of the

form.

A user may be assigned almost any combination of the following access

rights. These combinations are detailed in the tables overleaf.

The following Field Access combinations are possible:

Type of Access Effect in Database

Access Type: READ

Field restrictions: Unrestricted access

Allow read access

to all fields

Access Type: READ

Field restrictions: No Access

Disallow all read

access

Access Type: READ

Field restrictions: Only selected fields

Allow read access

to chosen fields

If Read Scope is set Allows read access

to chosen records

Access Type: WRITE

Field restrictions: Unrestricted access

Allow read and

write access to all

fields

Access Type: WRITE

Field restrictions: No Access

Disallow write

access

Access Type: WRITE

Field restrictions: Only selected fields

Allow read and

write access to

chosen fields

If Write Scope is set Allows write access

to chosen records

Table 11–1 General field access rights

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 241 of 416

The following combinations are not possible:

Read Access Write Access

No Access Unrestricted access

No Access Only selected fields

Only selected fields Unrestricted access

Table 11–2 Unsupported combinations of access rights

The access form always shows the current state of the user’s rights to a

database.

Note:

If an option is unavailable, it will be rendered unselectable.

Only Selected Fields Access

If ‘Only selected fields’ radio button is set, the fields list in the right hand pane

will be available for the selection of specific fields. Those fields that are

SELECTED will have their access set to the same access type that has been

selected in the ‘Access Type’ box.

Holding down the <Ctrl> key on the keyboard whilst selecting, will allow

multiple fields to be selected with the right mouse button.

Any or all fields and their contents can thus be hidden from view or protected

from alteration by any or all users.

Record-Level Access

You may restrict read and write privileges to selected records of the database

by entering the arguments of a search order in the entry field ‘Read Scope’

(for read access) or ‘Write Scope’ (for write access) at the bottom of the

‘Database Access Rights Definition Form’. The read scope (for searching and

showing) and/or write scope (for data entry and modification) on the record

level can be restricted using record numbers or field content.

For example, with READ access type selected, entering the CCL command
fragment ‘walrus OR carpenter’ into the ‘Read restrictions’ ‘Scope’ box,
allows the user to read only those records containing the terms ‘walrus’
and/or ‘carpenter’ (a positive read scope):

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 242 of 416

Figure 11–6 Record-level READ rights for ‘FREDERICO’

and, with WRITE access type selected, entering the CCL command fragment
walrus or (carpenter AND alice) into the ‘Record restrictions’

‘Scope’ box allows modification of only those records containing ‘walrus’ or

‘carpenter’ and ‘Alice’:

Figure 11–7 Record-level WRITE rights for ‘FREDERICO’

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 243 of 416

Using the examples above, to restrict access to only those records which do

not contain either ‘walrus’ or ‘carpenter’ (a negative read/write scope), prefix

the command fragment with ALL NOT; i.e.

ALL NOT walrus OR carpenter

And

ALL NOT walrus or (carpenter AND alice)

You may restrict write access to selected records independently of record-

level read access.

When you have completed the forms for this user, click on the ‘Save’ button

to save the access settings. The user’s access rights to the database will be

stored in that user’s properties.

When the user opens a database that he or she has restricted access to and

the result of the BASe order is written in the search history window, the

number of records is given as the records of the hidden read scope. Every

search order is limited to those records in the same manner as in the DEfine

SCope order.

The Hierarchy of Access Rights

If a user is granted access to a database not only as an individual, but as a

member of one or more user groups, then his or her user rights will be the

union (rather than the intersection) of what is granted.

For example, one particular user has been assigned SELECTED access to

the demonstration database Corr, with the ability to read five fields and write

to none. This user has also been made a member of User Group 1, which as

a group has read/write access to twelve fields, User Group 2 with access to

three fields, and User Group Public, with full read/write access. This user will

in actuality possess complete read and write privileges to Corr regardless of

the access rights assigned on the individual level, as the most liberal and

inclusive combination of access rights possible always prevails.

A second user has been given SELECTED read access to fields one and two

and group read access to fields three and four. His or her total (cumulative)

access will be to fields one through four.

Database Cluster Access

Access to a database cluster is granted in the same manner as with

individual databases, with one important exception; at this level, a database

administrator can only allow a user to know of the existence of the database

cluster by granting ‘READ - All’ access. All other read and write access

privileges must be assigned at the level of the individual database.

About Read-Protected Fields

A ‘hidden’ or read-protected field is one to which a user has no read access.

Hidden Fields and Searching

Scope checking during searching is bi-level, encompassing both pre- and

post-search lookups.

To activate pre-search checking, the user must call a hidden field by name in

his or her search order. If a read-protected field name is not so specified, the

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 244 of 416

search is performed, read privileges are checked and the now-filtered list of

fields and their contents is presented to the user.

When the user searches in a database where some of the fields are hidden

from him or her, a STatus order will show only the fields he or she may read.

The names of any hidden fields will not be recognized by the system if he or

she uses them in a Find, Show, or DEfine order.

Not only is the user restricted from performing a search in the hidden fields by

using their field names, but by default the results will contain no hits in the

hidden fields when searching in the default VIew, i.e. TExt and PHrase fields.

Although a user who is restricted from viewing certain fields will not know of

their existence, he or she may be aware of lengthened response times for

some searches. This time delay will be obvious, however, only if the search

contains no target field in which to search, for example:

Find white rabbit 

Hidden Fields and Output Formats

A user can never read the contents of hidden fields by giving a CCL Show, a

Print or a Print Local order. The predefined reports are at his or her disposal,

but they will output only the fields that he or she is allowed to see. This

applies also to run-time definition of personal reports.

A database administrator should keep in mind that users may have limited

read access to a database when designing reports.

Text inserts will always be output wherever they are positioned in the format,

even if they pertain to a box containing hidden fields. The headers of hidden

fields may thus appear, confusingly enough, in a format applied by a user

with no read access to those fields. This can be avoided if such information is

defined as headers of fields rather than text inserts.

Hidden Fields and Data Entry

A user will be unable to delete records unless he or she has write privileges

to the entire database. Fields for which the user has no write access will be

blocked from data entry.

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 245 of 416

Transferring Database Ownership

To transfer manager responsibilities from your own databases to another

database administrator, select the database that you wish to transfer and

select ‘All Tasks…’, then ‘Change Manager’ in the action menu:

Figure 11–8 The Change Manager action menu option

A selection box will appear, allowing you to chose the new manager from a

drop-down list:

Figure 11–9 Change Manager Selection

Select the name of the new database administrator then click on the ‘OK’

button to confirm your choice. A pop-up confirmation will then appear.

The user SYSTEM may transfer the ownership of any user’s database to

anyone else using this form.

Related CCL Commands

Show

To display an overview of the access rights to your own databases, use the

order:

Show ACcess 

or

Show BASe ACcess 

Databases are given alphabetically, while users and groups are listed

chronologically within that database according to their user creation date.

‘ALL’, ‘NONE’ or ‘SELECT’ access information for read and write is provided

for each user and user group.

PART 4: DATABASE SECURITY

CHAPTER 11: ACCESS RIGHTS

Page 246 of 416

To list the access privileges for an individual database, use

Show ACcess R=databasename 

which produces an output like this:

Figure 11–10 Carroll’s Show ACcess screen

Print

To send the listing to a printer or write it to a file, use the corresponding Print

orders

Print ACcess 
Print BASe ACcess 
Print BASe ACcess File=filename 

and
Print ACcess R=databasename 
Print ACcess R=databasename File=filename

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 247 of 416

Part 5:

The Environment

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 248 of 416

Chapter 12:
Environment Setup

The Configuration File tdbs.conf

Location of tdbs.conf

The system wide configuration file, t dbs.conf, is located in the conf directory
of the TRIPsystem installation. On UNIX, a link to the conf directory of the

current TRIPsystem installation is created as:

/usr/local/trip/sys/conf

The tdbs.conf file was named TRIPrcs in earlier versions of TRIP and located

in the root directory of the file system (in the root of the C:\ drive on

Windows). The older configuration file name and its location are no longer

used by TRIP.

Configuration File Lookup on Windows

TRIPsystem will under Windows load its configuration from the file
tdbs.conf located in the conf directory under the TRIPsystem installation.

Add-on products (e.g. TRIPview, TRIPxml and TRIPsql) will locate the

TRIPsystem configuration by looking up its installation directory from the

registry. The registry key

HEKY_LOCAL_MACHINE\SOFTWARE\Tieto\TRIPsystem

contains a value named TDBS_HOME that is automatically set to the current

TRIPsystem installation directory. This value is present in two copies; one in

the 64-bit location of the registry and one in the 32-bit location. This means

that an application or TRIP module on Windows will be able to locate the

TRIPsystem installation directory by looking up this registry value whether or

not the application or module is 32-bit or 64-bit.

Configuration File Lookup on UNIX

TRIPsystem will under UNIX use the
/usr/local/trip/sys/conf/tdbs.conf file to load its configuration

from.

Effects on System Administration

The change from TRIPrcs may have consequences for existing system

administrations and installation procedures. Custom scripts and tools that

currently read from, or write to, the TRIPrcs file need altering so that the

tdbs.conf file is accessed instead.

Effects on Installation Procedures

If a custom installation procedure has been or will be implemented, the

changed location of the configuration file must also be taken into account.

Notes:

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 249 of 416

• When performing a custom installation of TRIPsystem, writing a

TRIPrcs file instead of the required tdbs.conf file will result in undefined

behaviour when attempting to run it. A failure to correctly install add-on

products such as TRIPview, TRIPxml and TRIPsql will also occur.

• On UNIX, the directory /usr/local/trip/sys/conf is actually a

symbolic link to the installation directory. If you are writing a custom

installer, you must create this link yourself.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 250 of 416

Batch Setup

Printer Queues and Printer Control Files

Notes:

• In Windows, only one printer definition is permitted in the tdbs.conf file,

therefore in a TRIP installation on a Windows system, there are no

printer queue, definition or control files.

• If you do wish to install a printer on a TRIP for Windows server, consult

the TRIPsystem Installation guide, section entitled, "Configuring a

Printer for Windows"

For UNIX, the printer definition files are used as detailed in this chapter.

Print output in UNIX is, by default, sent to the printer queue indicated by the

UNIX logical name TDBS_PRINT. However, output may be redirected to

other printer queues using CCL orders such as:

DEfine PRINTEr=PTR1

Print PRINTEr=PTR2

The first order sends the output of later Print commands (without a

destination modifier e.g. FIle or TForm) to the printer queue specified in the

file ‘PTR1.PRN’, and the second command sends its output to the queue

specified in the file ‘PTR2.PRN’, regardless of the prior DEfine instruction.

To use a printer in such a manner, first create a printer control file called

‘printername.PRN’ in the directory specified by the logical name TDBS_PRC.

Unless these printer control files have been defined, all print will be sent to

the queue designated by TDBS_PRINT by default.

TRIP uses a printer control file called TDBS_PRC/PTR1.PRN to execute the

first order, and another printer control file, TDBS_PRC/PTR2.PRN for the

second. Each line of text within these control files consists of a keyword, a

colon [:] and a value, as shown below:

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 251 of 416

Keyword Legal Values Function

CHAR SET* ENGlish, GERman,
LAtin 1, LAtin 2,
MULtinational,
NORwegian, ROMan,
SWEdish

Any CHAR SET choice will override
whatever character set was previously
specified in TRIP.

HIGHLIGHT OFF any printable character
or set of characters

Whatever is specified here will be printed
after each hit term, for example, using an
escape sequence to deactivate a print
attribute such as bolding. Literal text
strings or characters must be enclosed
within single quotes.

HIGHLIGHT ON any printable character
or set of characters

Whatever is specified here will be printed
before each hit term, for example, using an
escape sequence to activate a print
attribute such as bolding.
Highlighting will work for an order such as
Print HIghlight, where the printer control
file in use provides highlighting. Literal text
strings or characters must be enclosed
within single quotes.

INIT any printable character
or set of characters

A printer initialization sequence is always
printed or executed first, for example,
literal text, or escape sequences such as
changing from portrait to landscape
printing. Literal text strings or characters
must be enclosed within single quotes.

PAGE SIZE rows, columns This keyword overrides any previous
format specification up to the maximum
printer page size.

QUEUE UNIX print queue name Specifies the batch queue to be used for
print preparation.

TRANS TAB the filename portion of a
file called filename.PRC.
Filename.PRC is located
in TDBS_PRC.

Contains a translation table specifying how
characters being output will be presented
to the printer.

Table 12–1 Keywords for printer control files

* The default value for CHAR SET is LAtin 1.

For example:

QUEUE: LP1

CHAR SET: ROM

PAGE SIZE: 60, 80

Specifying Non-Printable Characters

To specify an escape sequence (ASCII character 27) in a control file, type

‘esc’, followed by the escape sequence surrounded by quotes. To include a

control character, enter the caret [^] followed by the single-letter acronym of

the desired control sequence, for example, ^P. See the printer control files

given previously for an illustration.

More About Translation Tables

A translation table consists of 16 lines with 16 hexadecimal codes. Each code

position (two characters) read from left to right, downwards, represents the

number of a character before its translation, and the code in that position is

the number of the character it will be translated to.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 252 of 416

The following example table is supposed to be stored in the file

TDBS_PRC:DECSWE.PRC and maps multinational characters onto the

Swedish 7-bit ASCII code:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

1 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

2 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

3 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

4 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F

5 50 51 52 53 54 55 56 57 58 59 5A 5B 5C 5D 5E 5F

6 60 61 62 63 64 65 66 67 68 69 6A 6B 6C 6D 6E 6F

7 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D 7E 7F

8 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F

9 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F

A A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF

B B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF

C 41 41 41 41 5B 5D 5B 43 45 40 45 45 49 49 49 49

D 20 4E 4F 4F 4F 4F 5C 5C 5C 55 55 55 5E 59 20 53

E 61 61 61 61 7B 7D 7B 63 65 60 65 65 69 69 69 69

F 20 6E 6F 6F 6F 6F 7C 7C 7C 75 75 75 7E 79 20 20

Table 12–2 Sample translation table

When a translation table is used, a table character is substituted for a

multinational character, and the numeric value of the multinational character

acts as an index to its translation in the table. For example, in the table above

the code ‘C4’ is being translated into ‘5B’.

Translation tables may also be referred to by TRIP orders such as:

DEFINE PCODE=decswe

DEFINE LPCODE=decswe

Both the orders specify that printed output is to be processed with the

translation table in TDBS_PRC/DECSWE.PRC. The first order affects normal

Print output (without the destination modifiers FIle or TForm), and the latter

affects Print Local output.

Note:

This function has been largely replaced by the CHAR SET keyword. It is

currently maintained in support of printers not compatible with TRIP’s

character sets.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 253 of 416

Logical Names

The logical names supported by TRIP provide mechanisms for database

administrators to customize their users’ environments. Those names or

variables prefixed by ‘TDBS’ are used by the TRIP engine, whereas those

prefixed by ‘TRIP’ are used by the TRIPclassic user interface.

Many of TRIP’s functions can be influenced by setting variables in the user’s

environment, such as the location of the CONTROL file, the amount of

accounting which is performed, the language with which the system will

communicate with the user, the character set that the system is expecting

data to be presented with, etc.

These variables are set differently for the different operating environments in

which TRIP is present.

UNIX

TRIP searches for logical names in the system wide TRIP configuration file,

tdbs.conf, then in the [NonPrivileged] section of a user’s local copy of

tdbs.conf and finally for environment variables in the user’s own environment.

In most cases, a setting in the user’s environment will override any setting in

the configuration file; however, TRIP will search for certain logical names in

the tdbs.conf file first to prevent users disabling secure system functions,

such as accounting.

Windows

As in UNIX, logical names are searched for in the system wide configuration

file, tdbs.conf and then in the [NonPrivileged] section of a user’s local copy of

tdbs.conf; however user and system environment variables have no effect.

The priority of logical names set in the user’s local tdbs.conf [NonPrivileged]

section, over those of logical names set in the system wide tdbs.conf file

[NonPrivileged] section, follows that of UNIX.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 254 of 416

TRIPsystem Logical Names Reference (TDBS_)

Most of these logical names are defined with defaults when TRIP is installed.

Special notice is given where defaults are not defined.

ACCDIR

Function

Specifies a directory to hold accounting files.

Usage

TDBS_ACCDIR

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

Fully specified directory (path) name

Examples

TDBS_ACCDIR=/usr/users/mydir

Depending on the setting of the variable ACCFLG, TRIP will attempt to create

accounting files in the directory specified by ACCDIR. If this directory does

not exist, users will be unable to login to TRIP. Normal users cannot override

the setting of ACCDIR, thus stopping the redirection of user accounting logs.

Log files are named according to the setting of ACCFLG.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 255 of 416

ACCFLG

Function

Specify various options concerned with the system accounting

function.

Usage

TDBS_ACCFLG

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

A positive integer between 1 and 255

Examples

TDBS_ACCFLG=127

This variable defines both how much accounting is to be performed by the

system, and where the results of that accounting should be reported. By

default, the system logging file is located in the directory pointed to by the

SYS variable, and is called DEBIT.LOG.

The value specified by the ACCFLG variable is a bitmask, where each of the

bits 0 through 7 have a defined meaning. The different bits can be defined by

simply adding the bit values together. For example, to set bits 0, 3, and 5, the

value of ACCFLG would be 41 (1 + 8 + 32).

A full definition of the various meanings of this variable is given in Chapter

Four of this manual, ‘System Logging Functions’.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 256 of 416

Table 12-60 ‘Bit flags for Accounting’, gives a brief overview.

Bit Value Meaning

0 1 Set the name of the log file to the TRIP username with extension

‘.LOG’. If neither this bit, nor bit 1 is set, the log file used is the

system default DEBIT.LOG.

1 2 Set the name of the log file to the filename portion of the SIF

variable with the extension ‘.LOG’. If neither this bit, nor bit 0 is

set, the log file used is the system default DEBIT.LOG.

2 4 Use the filename portion of the SIF variable as the user identifier

within the log file, rather than the TRIP username.

3 8 Log find, frequency, measure orders and opening clusters, in

addition to the defaults.

4 16 Do not accumulate database statistics until logout, but write

statistics every time the open database changes name.

5 32 Write output statistics every time a new show order begins, rather

than waiting until the database changes, or until logout.

6 64 Log show focus orders as well as normal show orders.

7 128 Prevents output of records from searches performed against

databases which are no longer open.

Table 12–3 Bits flags for accounting

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 257 of 416

ASELIBS

Function

Specifies a list of shareable libraries to be searched when calling

ASE functions from within TRIPsystem.

Usage

TDBS_ASELIBS

Looked for in

Non-privileged section

Defined By Default?

No

Default value

None

Valid values

A comma separated list of library file names.

Examples

TDBS_ASELIBS=mylib1,mylib2,mylib3

Where mylib1, mylib2, etc. may be other logical names mapping

to each individual ASE i.e.:

mylib1=c:\mylibs\mylib1.dll,

mylib1=c:\mylibs\mylib2.dll,

etc.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 258 of 416

AUTH_PROVIDER

Function

To establish LDAP as the authentication provider, set this variable to

LDAP. The default behaviour of the system in the absence of such a

setting is to fallback to using CONTROL for all authentication

requests.

Usage

TDBS_AUTH_PROVIDER

Looked for in

Privileged section

Defined by default?

Yes

Default value:

Use CONTROL for all authentication requests

Valid values

LDAP

Examples:

TDBS_AUTH_PROVIDER=LDAP

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 259 of 416

AUTO_SAVE

Function

Specify that the current record should be stored in the BAF file

whenever a part record is modified or inserted.

Usage

TRIP_AUTO_SAVE

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Y (yes) or N (no)

Examples

TRIP_AUTO_SAVE=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 260 of 416

BAFFIT_SECURITY

Function

Prevents the loading of records from outside TRIP.

If BAFFIT_SECURITY is set to Y the loading of TFORM files into

TRIP databases must be done from inside TRIP. (The name of the

logical name reflects the fact that all such loading of TFORM files

always involves the running of the TRIP utility BAFFIT.)

This is to say that the standard method of executing cannot be used

directly for the loading of TRIP records. If BAFFIT_SECURITY is not

set at all or set to something other than Y then BAFFIT may, just as

was always possible in earlier TRIP versions, be run directly or

executed from a script file.

If a custom-built script file is presently used for loading of TFORM

files, then it may be adapted to do so even if BAFFIT_SECURITY is

set to Y. The part of it which presently causes the loading must be

replaced by a sequence running TRIP (this requires the script file to

have access to a TRIP user / password combination, of course) - in

which sequence the CCL command LOad is given.

Usage

TDBS_BAFFIT_SECURITY

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

Y (yes) or N (no)

Examples

TDBS_BAFFIT_SECURITY=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 261 of 416

BAFFRE_TIMEOUT

Function

Specifies the time the TRIP system utility BAFFRE will wait to get an

exclusive lock on the BAF file when releasing old records after an

index job.

Usage

TDBS_BAFFRE_TIMEOUT

Looked for in

Privileged section

Defined by default?

Yes

Default value

300 seconds (5 minutes)

Valid values

Any positive integer value

Examples

TDBS_BAFFRE_TIMEOUT=600

Sets the timeout period for BAFFRE to 10 minutes.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 262 of 416

BOLD_COLOR (Windows only)

Function

When using TRIPclassic from a Windows command prompt, the

window retains the background and text colours that you setup for it.

You can also specify a colour for the Bold text attribute by setting

the logical name TRIP_BOLD_COLOR in the TRIP configuration file

(tdbs.conf).

Usage

TRIP_BOLD_COLOR=x

Supported values for x are:

B = Blue

C = Cyan

G = Green

M= Magenta

R = Red

Y = Yellow

Looked for in

Privileged section

Defined by default?

No

Examples

TRIP_BOLD_COLOR=Y

Sets the Bold colour in a TRIPclassic for Windows session to yellow.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 263 of 416

BUT_LOCATION

Function

Specifies the location (name and path) of the temporary BUT file

used by the indexing programme. (Used only when indexing is done

via the index script)

Usage

TDBS_BUT_LOCATION

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Full path and name of file.

Examples

UNIX: TDBS_BUT_LOCATION=/trip/tmp/db2.but

Windows: TDBS_BUT_LOCATION=C:\trip\tmp\db2.but

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 264 of 416

CHARS

Function

Specifies the default character set to be used by TRIP.

Usage

TDBS_CHARS

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

LA1

Valid values

Value Meaning Bit Width

LA1 ISO LAtin 1 8 bit

LA2 ISO LAtin 2 8 bit

LA3 ISO LAtin 3 8 bit

UTF8 Unicode encoding 8 bit

CHI GB-2312-80 CHInese 16 bit

GBK Superset of GB 2312-1980

Chinese

16 bit

EUC Extended Unix Code 16 bit

SJIS Shift-JIS 16 bit

Table 12–4 CHARS valid values

Examples:

TDBS_CHARS=LA1

The value of the CHARS variable is used for initialising the translation tables,

which TRIP uses to map characters between different character sets. The

value specified here is the default, but can be overridden by explicitly

declaring the character set, for example in a TForm file.

Notes:

• Unicode enabling of databases can only be done with TRIPmgr

• TRIP can handle a mixture of Unicode and non-Unicode databases

provided there is only one type of encoding for the non-Unicode

databases.

• TRIP will continue to be backward compatible with the current methods of

text handling, i.e. anyone wishing to stay with a LATIN-1 database can

continue to do so without the need to convert to Unicode.

• TRIPclassic will remain Latin-n and GBK enabled only

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 265 of 416

CHIVOC

Function

Specifies file containing data for Chinese word segmentation.

Usage

TDBS_CHIVOC

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Fully specified file name (including path)

Examples

UNIX: TDBS_CHIVOC=/disk3/trip/chinese/chivoc.dat

Windows: TDBS_CHIVOC=C:\trip\chinese\chivoc.dat

The specified file should contain data for use with algorithm for Chinese word

segmentation.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 266 of 416

CLS

Function

Specifies a path to a directory where classification scheme files will

be located.

Usage

TDBS_CLS

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Path name

Examples

UNIX: TDBS_CLS=/disk3/trip

Windows: TDBS_CLS=C:\trip\

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 267 of 416

CODEPAGE (Windows TRIPclassic only)

Function

Specifies what code page to use in the TRIPclassic user interface.

Usage

TRIP_CODEPAGE

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

A code page number valid on the current operating system. For

example, 437, 850, 858, 865 or 1252.

Examples

Windows: TRIP_CODEPAGE=858

The code page that TRIPclassic will use for its display of text and window

borders is the system's default codepage. A typical codepage on western

Windows systems is 850.

The TRIPsystem installer will set the TRIP_CODEPAGE variable to 858.

Other code pages suitable for this are 437, 850, 865 and 1252, all of which

except 1252 supports semi graphics.

For more details on this setting, please refer to the TRIP for Windows

Installation Guide.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 268 of 416

COM

Function

Specifies a directory containing user written command scripts.

Usage

TDBS_COM

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

A fully specified directory (path) name

Examples

UNIX: TDBS_COM=/usr/users/myscripts

Windows: TDBS_COM=C:\Tieto\scripts

Whenever a user invokes an external command script using the CCL

command ‘@’, the system will look for the named script in the directory

pointed to by the TDBS_COM logical name.

If TDBS_COM is not defined AND the name of the script does not include a

path definition, the system will attempt to locate the named script in the user’s

current working directory, first by name alone and then with the extensions

".com" and ".cmd" (in that order).

If, however, the CCL command contains a path definition, the system will

simply attempt to execute the script using that path.

For example:

CCL: @myscript

will look in COM and, if such is not defined, in the user’s current working

directory, while

CCL: @mydisk:[myscripts]myscript.com

will only look in ‘mydisk:[myscripts]’ for ‘myscript.com’.

Related commands:

TDBS_SPAWN, TBS_AT_CCL

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 269 of 416

CONFLATOR_LANG

Function

Specifies the language TRIP will use when stemming for

classification and non-Boolean search.

Usage

TDBS_CONFLATOR_LANG

Looked for in

Non-Privileged section

Defined by default?

Yes

Default value

ENG

Valid values

Any three-letter code taken from the table below :

Code Meaning

ENG ENGlish

FIN FINnish

GER GERman

NOR NORwegian

SWE SWEdish

Table 12–5 CONFLATOR_LANG valid values

Examples

TDBS_CONFLATOR_LANG=GER

TRIP uses the value of the CONFLATOR_LANG logical name when indexing

and searching fields that are marked as included in non-Boolean calculations

as well as when training the classifier and when classifying records.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 270 of 416

CONFLATORS

Function

Specifies a file containing functions called when stemming for

classification and non-Boolean search.

Usage

TDBS_CONFLATORS

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

TRIP-installation-directory/TRIPversion/bin/tripstem.so(or .sl or .dll)

Valid values

Fully specified name (including path) of file containing callable

functions

Examples

UNIX:
 TDBS_CONFLATORS=/disk3/trip/v511/bin/tripstem

.so

Windows:
 TDBS_CONFLATORS=C:\trip\v511\bin\tripstem.dll

The file installed with TRIP currently contains Porter stemming routines for

the languages accepted by the TDBS_CONFLATOR_LANG logical name.

If you want to replace any of the default functions with your own, add the path

to the file with your functions before the default file, separated by a “,” , e.g.:

UNIX: TDBS_CONFLATORS=

/home/mystem.so,/disk3/trip/v511/bin/tripstem

.so

Windows: TDBS_CONFLATORS=

 X:\home\mystem.dll,C:\trip\v511\bin\tripstem.dll

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 271 of 416

CTL

Function

Specifies the location of the system schema dictionary, CONTROL.

Usage

TDBS_CTL

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

The SYS directory in the TRIP tree

Valid values

A fully specified directory (path) name

Examples

UNIX: TDBS_CTL=/usr/local/trip/v700/sys

Windows: TDBS_CTL=C:\Tieto\trip\v700\sys

TRIP locates the schema dictionary, CONTROL, using the variable CTL. This

allows application developers to maintain parallel environments simply by

redefining the CTL variable for their process. This has many advantages,

primarily integrity and security.

Take care, however, when making copies of the CONTROL database, as this

database must be upgraded by the TRIP installation procedure when the

TRIP version changes. Before creating such an environment, consult your

local TRIP representative about the MODCON procedure.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 272 of 416

DEFATTR (UNIX only)

Function

Specifies a BOLD alternative for VT-terminal clones that doesn’t

include a definition for a BOLD variant.

Usage

TRIP_DEFATTR

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

B (bold), U (underline) or R (reverse)

Examples

TRIP_DEFATTR=R

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 273 of 416

DEMO

Function

Specifies the location of the demonstration databases.

Usage

TRIP_DEMO

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

The ‘demo’ directory in the TRIP tree

Valid values

A fully specified directory (path) name

Examples

UNIX:
 TRIP_DEMO=/usr/local/trip/v700/demo

Windows: TRIP_DEMO=C:\Tieto\trip\v700\demo

Included with every TRIP system are a number of demonstration databases:

Database Contents

ALICE Contents of Alice in Wonderland and

Through the Looking Glass

CARROLL Same content as ALICE, but arranged using

head and part records

CORR Correspondence to and from Paralog staff

members

THESALI Thesaurus for use with ALICE and

CARROLL

Table 12–6 TRIP’s demonstration databases

All of these databases are located using the DEMO variable.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 274 of 416

DISALLOW_GUEST

Function

By default, if a user using an external authentication provider, such

as LDAP, provides a valid set of credentials for that authentication

provider, but the user is unknown to TRIP, the user will be logged

into TRIP as a guest user (under the BUILTIN_GUEST account). To

disable this functionality set this variable to True.

Usage

TDBS_DISALLOW_GUEST

Looked for in

Privileged section

Defined by default?

Yes

Default value:

BUILTIN_GUEST account allowed

Valid values

True

Examples:

TDBS_DISALLOW_GUEST=True

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 275 of 416

DISPLAY_ORIG

Function

Specifies that displayed data should be fetched from the BAF file

instead of the BIF file.

Usage

TDBS_DISPLAY_ORIG

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

N

Valid values

Y (yes) or N (No)

Examples

TDBS_DISPLAY_ORIG=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 276 of 416

EDIT (TRIPclassic only)

Function

Specifies which editor is to be used during creation/modification of

formats.

Usage

TDBS_EDIT

Looked for in

Non-privileged section

Defined by default?

No

Default value

UNIX: Value of UNIX EDITOR environment variable;

normally vi

Windows: Windows Notepad

Valid values

Any valid and installed editor command name.

Examples

UNIX: TDBS_EDIT=emacs

Windows: TDBS_EDIT=write

In TRIPclassic only, whenever a user attempts to create or modify a report or

a procedure/macro, or use an external editor for data entry with <Gold><E>,

the TRIP kernel will invoke one of the system editors for the user.

The EDIT variable allows the user to specify which editor is to be used.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 277 of 416

ERRMAILST (UNIX only)

Function

Specify to whom mail should be sent in case of error.

Usage

TDBS_ERRMAILST

Looked for in

Non-privileged section

Defined by default?

No

Default value

Current working user

Valid values

Any username, or list of comma-separated usernames

Examples

TDBS_ERRMAILST="USER1,USER2,USER3"

Whenever an error occurs during a batch job (such as INDEX), the TRIP

system generates a mail message to send to either the user who submitted

the job or to all of the people listed in the ERRMAILST variable.

Here is an example of a mail message:

**** Error when indexing database ALICE [during

SCIFFIT]

**** Please consult the log file :-

**** /TRIP/LOGS/INDEX_ALICE.LOG

**** for more detail

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 278 of 416

EXE

Function

Specifies the location of the TRIP executables and scripts.

Usage

TDBS_EXE

Looked for in

Privileged and non-privileged section

Defined by default?

Yes

Default value

The ‘bin’ directory in the TRIP tree structure

Valid values

A fully specified directory (path) name

Examples

UNIX/: TDBS_EXE=/usr/local/trip/v700/bin

Windows:
 TDBS_EXE=C:\Tieto\TRIPsystem700\bin

When a command script is running, such as INDEX or LOAD, the

executables (programs) that it attempts to invoke are found using the EXE

variable. It can be very useful to maintain two separate environments,

particularly when developing ASE routines, by reassigning the EXE variable

for your programmers.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 279 of 416

FIND_TIMEOUT

Function

Specifies the time, in seconds, before retrying a search when a

record is found to be unsearchable due to indexing.

Usage

TDBS_FIND_TIMEOUT

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

One second

Valid values

Any integer.

Examples

TDBS_FIND_TIMEOUT=5

Searching a database at the same time as the database is being indexed can

result in a message stating that the database is not available for searching at

that moment.

This can happen when a search is made for a term that is currently being

modified in the indices and the data blocks involved have not yet been

completely flushed to the index files.

Before issuing the error message TRIP makes another try to re-execute the

search after one second, but sometimes this time delay is not sufficient

This time-out option allows the TRIP administrator to set to a value that is

acceptable to the users.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 280 of 416

GLBUPD_OPEN_DB_ONLY

Function

GLBUPD will normally act upon all databases that have been

opened during the current TRIP session. Setting this variable to

‘True’ will make GLBUPD act only upon those databases opened by

the last BASE command.

Usage

TDBS_GLBUPD_OPEN_DB_ONLY

Looked for in

Non-privileged section

Defined by default?

Yes

Default value:

All databases opened in the current session will be acted upon by

GLBUPD

Valid values

True

Examples:

TDBS_GLBUPD_OPEN_DB_ONLY=True

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 281 of 416

HOME

Function

This property is automatically defined by TRIP itself to the fully

qualified path to the TRIPsystem installation directory. This value is

defined prior to reading the configuration files, so it can be used as

part of the values of other logical names to avoid specifying hard

coded paths.

Note:

This property must not be set explicitly in the environment or in any

of the configuration files.

Usage

TDBS_HOME

Looked for in

Automatically defined

Defined by default?

Yes

Default value:

The fully qualified path to the installation directory.

Valid values

N/A

Examples:

UNIX: TDBS_HOME=/opt/trip/system/v700

Windows: TDBS_HOME=C:\Tieto\TRIPsystem700

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 282 of 416

LANG

Function

Specifies the language with which TRIP will communicate with the

user.

Usage

TDBS_LANG

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

Specified during installation

Valid values

Any three-letter code taken from the table below :

Code Meaning

CHI CHInese

ENG ENGlish

FIN FINnish

GER GERman

NOR NORwegian

SWE SWEdish

Table 12–7 LANG valid values

Examples

TDBS_LANG=CHI

TRIP uses the value of the LANG variable to determine which language to

use when reporting errors, defining a CCL dialect or while giving help. If the

LANG variable is defined to a language not specified in the above list, an

English error will result which will stop entry to the TRIP system. If the LANG

variable defines a legal language code, but the message to be output does

not exist for that language, the English message will be output by default.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 283 of 416

LDAP_ANONYMOUS

Function

In order to find users, TRIP needs to be able to browse the LDAP

repository. If the repository supports anonymous access for

browsing, set this variable to True, otherwise set it to False.

Usage

TDBS_LDAP_ANONYMOUS

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

True or False

Examples:

TDBS_LDAP_ANONYMOUS=False

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 284 of 416

LDAP_BASE

Function

When attempting to authenticate a user, the user's identity will

typically be provided as an RDN (Relative Distinguished Name)

rather than a fully specified DN (Distinguished Name). In order to

turn that RDN into a DN for authentication, you must provide this

variable as a base for the authentication by an RDN.

Usage

TDBS_LDAP_BASE

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

Base part of a DN in a LDAP repository

Examples:

TDBS_LDAP_ LDAP_BASE=ou=tox,o=pharma,c=us

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 285 of 416

LDAP_MATCH

Function

Once the user has been found (i.e. their RDN has been

dereferenced to a DN) its record must be turned into a TRIP

username for use within the CONTROL database. The following

variable is used to specify the field from the user record that will

provide this mapping.

Usage

TDBS_LDAP_MATCH

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

A field name from the user record in the LDAP repository

Examples:

TDBS_LDAP_MATCH=uid

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 286 of 416

LDAP_MECHANISM

Function

Communication with the LDAP server(s) can take place in two

different ways, either insecure (the SIMPLE mechanism) or via an

encrypted transmission (the SSL mechanism). Set this variable

accordingly.

Usage

TDBS_LDAP_MECHANISM

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

SIMPLE or SSL

Examples:

TDBS_LDAP_MECHANISM=SIMPLE

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 287 of 416

LDAP_PASSWORD

Function

If anonymous browse access is not supported, you must provide the

DN (username) and credentials (password) for the user that will be

used to perform browse operations when searching for users to

authenticate. This variable provides the password for this user.

Usage

TDBS_LDAP_PASSWORD

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

Any string valid as a password in this context

Examples:

TDBS_LDAP_PASSWORD=Abcd1234

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 288 of 416

LDAP_SEARCH

Function

To find a user by RDN, specify an LDAP search pattern using the

%u% substitution string to stand for the user's provided RDN. Any

occurrence of the "%u%" pattern within the string will be replaced

with whatever "username" is provided to TRIP during the login

process.

Usage

TDBS_LDAP_SEARCH

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

An LDAP search pattern (e.g. as specified in the example)

Examples:

TDBS_LDAP_SEARCH= (&(objectclass=person)(uid=%u%))

The name of the objectclass is dependent on the organization of your LDAP

repository, and the field searched by %u% is any field in the user records in

this repository.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 289 of 416

LDAP_SERVER

Function

The LDAP provider needs to know which servers are capable of

authenticating. This variable definition can be a single server, or can

be a list of servers, each of which can optionally state a port

number. In the absence of port numbers, the default port for LDAP

(or LDAP over SSL) will be provided by the system.

Usage

TDBS_LDAP_SERVER

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

A list of server names optionally including port numbers

Examples:

TDBS_LDAP_SERVER=pluto

TDBS_LDAP_SERVER=server1, server2:3030

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 290 of 416

LDAP_TIMEOUT

Function

This variable provides a maximum number of milliseconds that TRIP

should wait for a response from the LDAP server(s).

Usage

TDBS_LDAP_TIMEOUT

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

A time in milliseconds

Examples:

TDBS_LDAP_TIMEOUT=3000

This example sets up a maximum response time of 3 seconds.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 291 of 416

LDAP_USERNAME

Function

If anonymous browse access is not supported, you must provide the

DN (username) and credentials (password) for the user that will be

used to perform browse operations when searching for users to

authenticate. This variable provides the username for this user.

Usage

TDBS_LDAP_USERNAME

Looked for in

Privileged section

Defined by default?

No

Default value:

None

Valid values

A DN specifying a user in the LDAP repository

Examples:

TDBS_LDAP_USERNAME=cn=Mg,dc=johnd,dc=com

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 292 of 416

LOG

Note:

Do not confuse TDBS_LOG with TBS_LOG

Function

Specifies an optional location for all log files produced by TRIP.

Usage

TDBS_LOG

Looked for in

Non-privileged section

Defined by default?

No

Default value

User’s default directory

Valid values

A fully specified directory (path) name

Examples

UNIX: TDBS_LOG=/usr/local/trip/log_files

Windows: TDBS_LOG=C:\Tieto\trip\v700\logs

Whenever a user submits a batch job (such as a print or index request), TRIP

will create a batch log file either in the directory pointed to by LOG if defined,

or in the user’s default directory.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 293 of 416

LONG_PHRASE

Function

Specifies that TRIP should accept entire phrases of any length at

input to the BAF file when value is Y(es). When value is N(o) (which

is the default) entire phrases longer than 256 characters will not be

accepted.

Note:

when the phrase is longer than 256 characters, only the first 256

normalized Wcharacters of the entire phrase are indexed. All

words in the entire phrase are always indexed.

Usage

TDBS_LONG_PHRASE

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

N

Valid values

Y (yes) or N (no)

Examples

TDBS_LONG_PHRASE=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 294 of 416

MAX_ALLO_MEM

Function

Sets max. allocated memory in Megabytes (Mb) during scan phase

of indexing program.

Usage

TDBS_MAX_ALLO_MEM

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

256 Mb

Valid values

Integer giving memory size in Mb

Examples

TDBS_LONG_PHRASE=1024

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 295 of 416

MAX_THREADS

Function

Determines the number of threads that TRIP can use to parallelize

search and display operations against database custers. If not

specified, TRIP will by default use 16 threads for such operations.

Parallel execution can be disabled by assigning 0 (zero) to this

logical name.

Usage

TDBS_MAX_THREADS

Looked for in

Non-privileged section

Defined by default?

No

Default value

16

Valid values

An integer value 4 or larger, or 0 (zero) to disable use of threads.

Examples

TDBS_MAX_THREADS=32

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 296 of 416

NO_GLBUPD_INDEX

Function

When doing Global Update via the glbupd script, an automatic

indexing is performed by default after the global update is done. To

avoid this, set this logical name to Y.

Usage

TDBS_NO_GLBUPD_INDEX

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

N (no)

Valid values

Y (yes) or N (no)

Examples

TDBS_NO_GLBUPD_INDEX=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 297 of 416

OVFBUFSZ

Function

Index tuning logical name for specifying the size of the overflow file

buffer (*.STO and *.TPO).

Usage

TDBS_OVFBUFSZ

Looked for in

Non-privileged section

Defined by default?

Yes

Default value:

4 kilobytes

Valid values

From 2 to 32 kilobytes

Examples:

TDBS_OVFBUFSZ=10

See also:

TDBS_TERMLM and TDBS_TRMBUFSZ

The indexing process is tuneable so that it may be biased towards systems

with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained

environments, administrators of large systems will see significant

performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch

updates, etc., it can be extremely advantageous to tune these parameters

generously. For best performance, set all parameters to their maximum

values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP

indexing task, is required in order for the maximum settings to be used

successfully. Setting the parameters to their maximum values on a heavily

loaded, or memory constrained system will be counter productive as the

index task will then execute far more slowly than if the parameters were left at

their default values.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 298 of 416

PRC (UNIX only)

Function

Specifies the location of TRIP printer control files.

Usage

TDBS_PRC

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

The PRC directory in the TRIP tree structure

Valid values

A fully specified directory (path) name

Examples

TDBS_PRC=/usr/local/trip/v32/prc

Printer control files are used by TRIP to direct printed output to a correct

printer, and to ensure that such things as the character set, the highlighting

characters, the initialization sequence, etc. are correct for that printer. There

are two types of printer control files :

File

Extension

File Type

*.PRC Printer character set control

files

*.PRN Printer name control files

Table 12–8 TRIP printer control files

The master is the ‘PRN’ file, which may name a ‘PRC’ file to be used for

character translation during the printing process. For details, see the printer

control section in this chapter.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 299 of 416

PRINT

Function

Specifies the printer queue to which hard copy output is to be

spooled.

Usage

TDBS_PRINT

Looked for in

Non-privileged section

Defined by default?

UNIX: Yes

Windows: No

Default value

UNIX: lp

Windows: None.

Valid values

UNIX: Any valid printer name.

Windows: Any valid printer mountable by the TRIP

Daemon service’s owner.

Examples

UNIX: TDBS_PRINT=lp0

Windows:
 TDBS_PRINT=\\ServerName\Printer_name

Once print preparation has completed, the hard copy output from the print job

is directed by TRIP to the queue, or device, named by the PRINT variable.

For validity, you should be able to use the name that you specify for the

PRINT variable in the following commands :

UNIX: lpr -P<xyz>

Windows: Print /D:\\ServerName\Printer_name

<xyz>

where ‘xyz’ is the path and filename given to

the PRINT variable.

Note:

For specific details on setting up TRIP printing in a Windows environment,

refer to the section entitled, CConfiguring a printer for TRIP“, in the file

“TRIPsystem_Installation_Guide_Win.pdf”, which is included the “doc”

directory of the TRIPsystem installation.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 300 of 416

PRINTUSER (Windows only)

Note:

For specific details on setting up TRIP printing in a Windows environment,

refer to the section entitled, CConfiguring a printer for TRIP“, in the file

“TRIPsystem_Installation_Guide_Win.pdf”, which is included the “doc”

directory of the TRIPsystem installation.

Function

Specifies the user to be granted printer access to the printer defined

by TDBS_PRINT.

Usage

TDBS_PRINTUSER

Looked for in

Non-privileged section

Defined by default?

No.

Default value

None.

Valid values

Any valid printer name

Examples

TDBS_PRINTUSER=DomainName\Username

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 301 of 416

PUTBAF_TIMEOUT

Function

Specifies the timeout when writing records to a BAF file.

Usage

TDBS_ PUTBAF_TIMEOUT

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Whole number of seconds expressed as an integer

Examples

TDBS_PUTBAF_TIMEOUT=20

The timeout when writing records to a BAF file can now be set by the logical

name TDBS_PUTBAF_TIMEOUT. The default is now 30 seconds but can be

altered into the required number of seconds.

Note:

The overall timeout in a TRIPjtk application is 60 seconds so, in order not to

cause this to happen during a record write operation, make sure the

TDBS_PUTBAF_TIMEOUT value is less than 60 seconds.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 302 of 416

RESTART

Function

Specifies whether TRIP should attempt to restart from saved SIF.

Usage

TDBS_RESTART

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Yes/No

Examples

TDBS_RESTART=NO

When TRIP starts, it checks to see if there are any old sessions stored in SIF

files. If so, by default it will open the SIF and restore the searches performed

during that saved session. If, however, you do not wish old SIFs to be used,

you can define the RESTART variable to be ‘NO’ and the old SIFs will be

ignored by TRIP.

For SIF locations, see the definition of the SIF variable.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 303 of 416

SCRATCH

Function

Specifies a scratch directory for certain TRIP operations.

Usage

TDBS_SCRATCH

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

A fully specified directory (path) name

Examples

UNIX: TDBS_SCRATCH=/usr/local/trip/scratch

Windows TDBS_SCRATCH=D:\scratch

During the index procedure for a database, TRIP needs to be able to write

certain temporary files that it uses for virtual memory management. These

files are written to the directory specified by the SCRATCH variable. If it is not

defined, the index procedure will temporarily define it to be the user’s current

working directory.

The SCRATCH variable must also be defined whenever you attempt to

invoke the MODCON executable for upgrading the CONTROL database

between different TRIP versions.

Note:

All temporary files will be stored in the scratch area if this variable has been

defined.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 304 of 416

SIF

Function

Specifies the optional location of all SIFs.

Usage

TDBS_SIF

Looked for in

Non-privileged section

Defined by default?

No

Default value

Current working directory

Valid values

A fully specified directory (path) name plus an optional filename

Examples

UNIX: TDBS_SIF=/usr/local/trip/sif

Windows:
 TDBS_SIF=C:\Tieto\TRIPsystem700\sif

During the startup of TRIP, the system creates a session index file or SIF for

each user. This SIF is used to record both the searches which are performed

and the results gained, so that a previous session can be restarted without

having to rerun all of the searches involved.

Depending on the searches the user performs, these files can become very

large, and so it can be useful to move them to a location where there is

sufficient room for growth.

When the SIF variable is defined, TRIP will create the SIF using its definition

as either the complete name of the file, or the directory into which to write the

SIF with the name username.SIF, where username is the name of the TRIP

user.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 305 of 416

SORT

Function

Specifies the sorting collation sequence to be used.

Usage

TDBS_SORT

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

Defined during installation (same as LANG)

Valid values

Any three-letter code from the following table:

Code Meaning

ENG ENGlish

FIN FINnish

GER GERman

NOR NORwegian

SWE SWEdish

Table 12–9 SORT valid values

Examples

TDBS_SORT=GER

The SORT variable defines the collation sequence which TRIP will use when

sorting data, that is, the order in which diacritically-altered characters (ñ, î, å,

ö, etc.) will appear. Certain languages expect diacritically-modified characters

to sort differently than their Latin equivalent.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 306 of 416

SPAWN

Function

Specifies whether it is possible to exit to the calling shell from a

TRIP application.

Usage

TDBS_SPAWN

Looked for in

Privileged section

Defined by default?

Yes

Default value

Y (yes)

Valid values

Y (yes) or N (no)

Examples

TDBS_SPAWN=N

Related commands:

TDBS_COM, TBS_AT_CCL

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 307 of 416

STO_LOCATION

Function

Specifies the location (name and path) of the temporary STO file

used by the indexing programme. (Used only when indexing is done

via the index script)

Usage

TDBS_STO_LOCATION

Looked for in

Non-privileged section

Defined by default?

No

Default value

None

Valid values

Full path and name of file.

Examples

UNIX: TDBS_STO_LOCATION=/trip/tmp/db2.sto

Windows: TDBS_STO_LOCATION=C:\trip\tmp\db2.sto

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 308 of 416

STOP_WORDS

Function

Specifies limits for adaptive stop words used when searching with

the Fuzz CCL command.

Usage

TDBS_STOP_WORDS

Looked for in

Non-privileged section

Defined by default?

No

Default value

No stop words

Valid values

x,y x and y are percentage values, so both must

be

 >= 0 and <= 100

Examples

TDBS_STOP_WORDS=75,10

Here x represents the percentage of records in which a word must occur and

y represents the average number if occurrences, per record, of the same

word, before it becomes a stop word. If the thresholds set by x and y are

exceeded, the word in question will be automatically defined as a stop word.

Note:

This means that setting both x and y to 100 effectively gives no stop words.

The same result is also achieved by unsetting/undefining the

TDBS_STOP_WORDS logical name.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 309 of 416

SUPERMAN

Function

Gives complete access to all TRIP objects to the user SYSTEM

Usage

TDBS_SUPERMAN

Looked for in

Privileged section

Defined by default?

No

Default value

None

Valid values

Y (yes) or N (no)

Examples

TDBS_SUPERMAN=Y

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 310 of 416

SYS

Function

Specifies the location of the TRIP system files.

Usage

TDBS_SYS

Looked for in

Privileged and non-privileged section

Defined by default?

Yes

Default value

The SYS directory in the TRIP tree structure

Valid values

A fully specified directory (path) name

Examples

UNIX: TDBS_SYS=/usr/local/trip/v700/sys

Windows:
 TDBS_SYS=C:\Tieto\TRIPsystem700\sys

Many of the functions of TRIP make use of system definition files, such as

language-specific message codes, menu labels, etc. All of these files are

located using the SYS variable. Be careful if you are considering reassigning

this variable. Without certain of the files in the SYS directory, the TRIP

system cannot start at all.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 311 of 416

TERMINAL (UNIX only)

Function

Specifies the terminal type.

Usage

TRIP_TERMINAL

Looked for in

Non-privileged section

Defined by default?

No

Default value

Value of UNIX TERM environment variable.

Valid values

Any valid terminal identifier.

Examples

TRIP_TERMINAL=VT200

In TRIP for UNIX only, the TERMINAL variable points TRIP at a terminal

driver file, located in the TRM directory in the TRIP tree structure called

terminal.TRL. Terminal is the value defined for the TERMINAL variable.

There are several terminal definition files delivered with the TRIPclassic

system, but the one most commonly used is vt200.

The trm files, also in the TRM directory in the TRIP tree structure, contain the
definitions for the escape sequences, for every possible terminal “action”, for a
given terminal type.

To define a new terminal type, e.g. abc123, make a copy of one of the
already existing terminal definition files and modify the new copy to the
requirements of your terminal type; then move it to the <tdbs_trm> directory and
run the utility program <tdbs_exe>/trmmake with “abc123” as its only parameter.
This will “compile” the terminal definition file to a binary format which TRIPclassic
will use to handle your terminal type (see separate instructions on the structure

of the terminal definition file).

Note:

• <tdbs_exe> is the value of TDBS_EXE in the tdbs.conf file

• <tdbs_trm> is the value of TDBS_TRM in the tdbs.conf file

If the TERMINAL variable defines a terminal type that TRIP does not

recognise, the user will be prompted to provide a terminal identifier until an

acceptable response is gained.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 312 of 416

TERMLM

Function

Index tuning logical name for specifying the number of terms held by

the internal indexing structure before it is written to the STO file.

Usage

TDBS_TERMLM

Looked for in

Non-privileged section

Defined by default?

Yes

Default value:

256 kterms

Valid values

From 64 to 16384 kterms

Examples:

TDBS_TERMLM=1024

See also:

TDBS_OVFBUFSZ and TDBS_TRMBUFSZ

The indexing process is tuneable so that it may be biased towards systems

with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained

environments, administrators of large systems will see significant

performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch

updates, etc., it can be extremely advantageous to tune these parameters

generously. For best performance, set all parameters to their maximum

values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP

indexing task, is required in order for the maximum settings to be used

successfully. Setting the parameters to their maximum values on a heavily

loaded, or memory constrained system will be counter productive as the

index task will then execute far more slowly than if the parameters were left at

their default values.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 313 of 416

TRM (UNIX only)

Function

Specifies the location of the terminal driver files.

Usage

TDBS_TRM

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

The TRM directory in the TRIP tree structure

Valid values

A fully-specified directory (path) name

Examples

$ DEFINE TDBS_TRM $MYDISK/TRIP.V700.TRM

When TRIP is attempting to locate a terminal driver file, it does so using the

value of the TRM variable to specify the directory containing the drivers.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 314 of 416

TRMBUFSZ

Function

Index tuning logical name for specifying the .BUT file buffer size in

kilobytes.

Usage

TDBS_TRMBUFSZ

Looked for in

Non-privileged section

Defined by default?

Yes

Default value:

2 kilobytes

Valid values

From 2 to 512 kilobytes

Examples:

TDBS_TRMBUFSZ=500

See also:

TDBS_OVFBUFSZ and TDBS_TERMLM

The indexing process is tuneable so that it may be biased towards systems

with large amounts of memory.

Whilst the indexing process will continue to work well in memory-constrained

environments, administrators of large systems will see significant

performance improvements when tuning appropriately.

When indexing large data collections, e.g. new databases, large batch

updates, etc., it can be extremely advantageous to tune these parameters

generously. For best performance, set all parameters to their maximum

values, although this requires significant memory resource in order not to fail.

A system equipped with more than 1GB of RAM, dedicated to the TRIP

indexing task, is required in order for the maximum settings to be used

successfully. Setting the parameters to their maximum values on a heavily

loaded, or memory constrained system will be counter productive as the

index task will then execute far more slowly than if the parameters were left at

their default values.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 315 of 416

TRIPserver Logical Names (TBS_)

ASE

Function

Flag for automatic ASE calls at start/stop of tbserver.

Usage

TBS_ASE

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

0

Valid values

Bit 0 = 1: call server ASE (AseStartTRIPserver) after start of

tbserver

Bit 1 = 1: call server ASE (AseStopTRIPserver) before stop of

tbserver

Examples

TBS_ASE=2

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 316 of 416

AT_CCL

Function

Permission to execute the CCL command @… (i.e. to execute OS

scripts)

Usage

TBS_AT_CCL

Looked for in

Privileged section

Defined by default?

Yes

Default value

0 (no)

Valid values

1 (yes) or 0 (no)

Examples

TBS_AT_CCL 1

Related Commands:

TDBS_COM, TDBS_SPAWN

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 317 of 416

COMFORTER

Function

TRIPserver comforter interval.

Usage

TBS_COMFORTER

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

5

Valid values

Time period (integer value in seconds) between calls to comforter; if

set to 0 there will be no comforter calls at all.

Examples

TBS_COMFORTER=0

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 318 of 416

CONV

Function

Code conversion

Usage

TBS_CONV

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

No conversion

Valid values

KANJI

Examples

TBS_CONV=KANJI

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 319 of 416

DIR (UNIX only)

Function

Transfer directory.

Usage

TBS_DIR

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

Current directory

Valid values

Fully specified directory path

Examples

TBS_DIR=/bigdisk/tbs

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 320 of 416

HOSTINI

Function

Path of host-ini-file

Usage

TBS_HOSTINI

Looked for in

Non-privileged section

Defined by default?

No

Default value

None, but refer to PLEASE NOTE! below

Valid values

Fully specified path of host-ini-file (MUST NOT include file name)

Examples

UNIX: TBS_HOSTINI=/trip/server

Windows: TBS_HOSTINI=C:\trip\server

PLEASE NOTE!

When using TBS_HOSTINI, only the file name should be specified

in the call to the start session routine.

You can specify the full path and file name when calling the start

session routine, and in this case you MUST NOT specify

TBS_HOSTINI at all.

In the host-ini-file you can define values for environment variables. These

values will be added to or replacing those already in the TRIP config (former

TRIPrcs) file. You cannot set or override values in the Privileged section of

the config file in this way.

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 321 of 416

LOG

Function

Specifies the generation of an optional logfile for all TBserver

transactions.

Usage

TBS_LOG

Looked for in

UNIX/Windows: Non-privileged section

Defined by default?

No

Default value

None

Valid values

0 to 3 in increasing levels of verbosity:

0 - no logging

1 - log call of TDB routines only

2 - log parameters too

3 - log communication too

Examples

TBS_LOG=3

Notes:

• Due to the constant disk access required for updating the logs,

TBserver logging causes a considerable reduction in TRIP’s

performance and is intended for troubleshooting purposes only;

for this reason TBS_LOG is to be set only when it is necessary

to produce a log of the transactions taking place between the

client and server parts of a TRIP client/server application,

usually at the request of TRIP support.

• As soon as the required log files have been produced, either

delete the TBS_LOG logical name, or reset it back to a value of

zero.

• Log files will be produced by all TBserver sessions that

commence once the TBS_LOG logical name has been defined.

Once the TBS_LOG logical name has been deleted, or set to

zero, new TBserver sessions will run without creating logs.

• Any log files produced will be created in the directory specified

by the logical name TDBS_LOG and will have a name format

similar to ‘TBserver_nnnn.log’; where nnnn is a unique numerical

date/time stamp to avoid file name clashes.

• Care should be taken not to confuse TBS_LOG with TDBS_LOG

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 322 of 416

MAP (UNIX only)

Function

Specifies logging of start/stop of tbserver in tbserver.map.

Logging level:

0: no logging

1: log only start

2: log stop too

Usage

TBS_MAP

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

2

Valid values

0, 1 or 2

Examples

TBS_MAP=1

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 323 of 416

MAP_DIR (UNIX only)

Function

Specifies path to tbserver.map.

Usage

TBS_MAP_DIR

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

TDBS_LOG or TDBS_SCRATCH if defined; otherwise /tmp in UNIX

and %TEMP% in Windows

Valid values

Path to directory

Examples

TBS_MAP_DIR=/disk1/log

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 324 of 416

SCRATCH (UNIX only)

Function

Specifies working directory of tbserver.

Usage

TBS_SCRATCH

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

Uses /tmp

Valid values

Fully specified path to working directory

Examples

TBS_SCRATCH=/trip/tbserver/tmp

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 325 of 416

TIMEOUT

Function

Sets TBserver timeout (in seconds)

Usage

TBS_TIMEOUT

Looked for in

Non-privileged section

Defined by default?

Yes

Default value

No timeout

Valid values

Timeout integer value in seconds

Examples

TBS_TIMEOUT=10

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 326 of 416

TripDaemonHost (Windows only)

Function

Identifies the machine on which the TRIP Daemon to use is

installed.

Usage

TripDaemonHost

Looked for in

Privileged section

Defined by default?

Yes

Default value

localhost

Valid values

Any machine name or IP-address that refer to the local machine.

Examples

TripDaemonHost=localhost

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 327 of 416

TripDaemonPort (Windows only)

Function

Identifies the UDP port number at which the TRIP Daemon can be

reached.

Usage

TripDaemonPort

Looked for in

Privileged section

Defined by default?

Yes

Default value

4711

Valid values

Any valid port UDP number not in use by other software on the local

system.

Examples

TripDaemonPort=4712

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 328 of 416

TripNetPort

Function

Identifies the TCP port number to which the TRIPnet Daemon

listens for connections at.

This variable (if defined) takes precedence over the definition of the

pctdbs service in the services file.

Usage

TripNetPort

Looked for in

Privileged section

Defined by default?

No

Default value

23457

Valid values

Any valid TCP port number not in use by other software on the local

system.

Examples

TripNetPort=23457

PART 5: THE ENVIRONMENT

CHAPTER 12: ENVIRONMENT SETUP

Page 329 of 416

UNIXLOGIN (UNIX only)

Function

Change tbserver user to specified user (, password)

Usage

TBS_UNIXLOGIN

Looked for in

Privileged section

Defined by default?

Yes

Default value

Run as “root”

Valid values

UNIX user[,password]

Examples

TBS_UNIXLOGIN=user[,password]

TRIP ADMINISTRATON WITH TRIPMANAGER

Page 330 of 416

Part 6:

Appendix and Index

PART 6: APPENDIX AND INDEX

APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

Page 331 of 416

Appendix A

General Settings, Limits and Defaults

Support for the Euro Currency Symbol

If TRIPclassic is run using a terminal emulator, you will need to make sure

that the emulator supports the Euro symbol and that it can define the host

character set to be Windows Latin-1 (CP1252) or Windows EE (CP1250,

Estonian).

Note:

• If your host character set is incorrectly defined to be DEC

supplemental or Latin-1 (ISO 8859-1), then some emulators will

translate the Euro symbol from hex’80’ to hex’A8’ or hex’A4’. This

value will then be transferred to TRIP, which will store it without any

translation.

• The result is that the stored character will no longer be regarded as

a Euro symbol when presented in a TRIPclient application, or when

running the emulator with the correct Euro symbol settings. So it is

important to ensure any terminal emulator is correctly set-up before

entering the Euro symbol into TRIP via TRIPclassic.

Searching for the Euro symbol

If the Euro symbol is to be a searchable character in TRIP then it must be

defined as such in the database design. If it is not, then the Euro symbol will

be ignored during indexing.

Support for the Chinese character set GBK.

TRIP supports the GBK character code. GBK includes more characters than

GB-2312 (the standard Chinese character code in TRIP, defined as CHI) but

the structure is similar. GBK is activated by setting the logical name

TDBS_CHARS to GBK.

Existing databases already indexed with CHI need re-indexing to upgrade to

GBK.

Limit to TRIPclassic CCL Command Length

The maximum length of a CCL command in TRIPclassic is 400 characters. In

applications created using the newer TRIPnxp and TRIPjxp APIs including

TRIPmanger, there is no such limit.

Notes:

• It is also possible to avoid the limit when using the latest versions of

TRIPjtk and TRIPclient; however any new TRIP session must be started

using the newer TRIPcom Session object Open method, or the TRIPjtk

Session interface startSession method.

• Details on how to use the relevant methods can be found in the

documentation accompanying each API.

PART 6: APPENDIX AND INDEX

APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

Page 332 of 416

No Limits to Database and Index File Sizes

TRIP is perfectly capable of reading/writing database and index files of larger

than 2GB, depending on the file system in use.

Note:

If you are unsure as to the maximum single file size supported by your

particular operating system, we recommend that you check in the file

system documentation to ensure that files of larger than 2GB are, in fact,

supported.

Limit to the Number of Search Sets

The theoretical maximum number of search sets in a single session is

65,536. However, certain system limts (e.g. available memory) may be

exceeded before this limit is reached.

Limit to the Number of Open Databases

The limit to the number of simultaneously open databases in TRIPsystem is

250.

Notes:

1 In TRIPclassic, the maximum length of any CCL order is 400

characters, hence any command may not exceed this length when

opening many databases in TRIPclassic.

A workaround for the TRIPclassic 400 character limit in (1) above, is

to use the DEfine command to define clusters of up to 30 databases,

then to open these defined clusters in ‘clusters of (again, up to 30)

clusters’.

2 Whether created using TRIPclassic, TRIPmanager, or via an API, the

total number of databases in a 'cluster of clusters' must never exceed

the 250 limit, otherwise any such oversized 'cluster of clusters' will be

unusable.

3 Certain operating systems' limits may need to be adjusted: E.g.

Maximum number of simultaneously open files limit.

For example, keeping within prescribed limits:

DEfine CLU1=DB1,DB2,DB3…

DEfine CLU2=DBa,DBb,DBc…

…

DEfine CLUx=DBi,DBii,DBiii

BAS ALLCLU=CLU1,CLU2, … CLUx

Defaults for the DEfine command

The default definitions for TRIP can be listed by starting the CCL command

line in a newly started TRIP session issuing the CCL command:

DEfine ?

For ease of reference, the output from the command is shown below.

DEFINE

 Highlight = All

PART 6: APPENDIX AND INDEX

APPENDIX A: SETTINGS, LIMITS AND DEFAULTS

Page 333 of 416

 No focus

 No merge

 No reverse

 Hold

 Save base

 Tstamp update

 No stop word

 Display no orig

 Display freq = merge

 Find = no Fuzz

 Page

 FIND max = No limit

 + max = No limit

 DISPLAY max = 1000

 SORT max = 1000

 MAP max = 1000

 DELETE max = No limit

 AND = AND.E

 MASK = '#:!&'

 TIMEFORM = 1

 CENTURY MIN = 1953

 FUZZ = 75, 5, 2, 1

 ABOUT = 50, No Highlight

 VIEW = TExt, PHrase

Note:

While the default settings for Display, Sort and Map are 1000, the can be

set at any value up to "No Limit".

TRIPserver Crash Handling (Windows only)

TRIP is known for and has proven to be an extremely reliable, efficient and

stable platform; nonetheless, as can happen in any large and complex

software product, crashes can, albeit rarely, occur. For this reason, in the

unlikely event of a crash, the following behaviour has been designed in to

TRIPserver for Windows:

• Back-traces are dumped to file if it is the server (or any server based

utility/application) that is crashing

• Stack traces are saved in the TDBS_LOG directory in files named

backtrace_nnn.log, where nnn is the process id that has crashed

• Any session is gently terminated, returning a message warning of a

crash

PART 6: APPENDIX AND INDEX

APPENDIX B: VERSION AND LICENSE INFORMATION

Page 334 of 416

Appendix B

Obtaining Version and License Information

TRIPmanager mmc Version Information

In order to find the version information for the TRIPmanager mmc snap-in (for

example when calling customer support), simply select the "TRIP Servers"

node in the MMC tree, and choose the "Version" option from the "Action"

menu:

Figure B-1 Showing the mmc version

This will produce a dialog similar to Figure B-2 below:

Figure B-2 TRIPmanager mmc version information

Clicking on the 'Close' button will dismiss the above dialog.

PART 6: APPENDIX AND INDEX

APPENDIX B: VERSION AND LICENSE INFORMATION

Page 335 of 416

TRIPsystem Version Information

The TRIP system Version number can be ascertained by first selecting the

TRIPserver node in question in the left-hand pane of the TRIPmanager mmc

window, then selecting the 'Properties' option from the 'Action' menu. When

the TRIPserver Properties dialog is displayed, select the 'Server' tab; the

TRIPsystem version is listed in the 'TRIP version ID' box:

Figure B-3 TRIPsystem server information

TRIP Product License Information

A list of those TRIP products currently licensed for this particular TRIP

installation is below the TRIPsystem version information (See Figure B-3,

above).

Updating a TRIP Product License Key

Selecting the TRIPserver node in question in the left-hand pane of the

TRIPmanager mmc window and then selecting the 'Set license…' option from

the 'Action' menu:

Figure B-4 Setting TRIPsystem license information

will produce a dialog where it is possible to enter new TRIP license details

(see overleaf):

PART 6: APPENDIX AND INDEX

APPENDIX B: VERSION AND LICENSE INFORMATION

Page 336 of 416

Figure B-5 TRIPsystem license entry dialog

Enter the license key details from your 'packing slip' into the

respective boxes and add the license code to the 'License Codes'

list using the 'Add Code' button; when everything appears correct

press 'OK'.

If incorrect details have been entered, an error message will

appear:

Figure B-6 Invalid TRIP license error

If the entered details are OK, a confirmation message will appear.

Figure B-7 License installed confirmation

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: USER ACCOUNT VALIDATION

Page 337 of 416

TRIP User Account Validation Methods

Overview

Part of the security of any computer system, or application, lies in controlling

access to it from the 'outside world'; in this respect, TRIP is no different to any

other application.

In order to control access, TRIP has three methods of user account

validation, LDAP, Local System Validation and Standalone TRIP Usernames.

Each is detailed in the following sections.

LDAP

LDAP (Lightweight Directory Access Protocol) is an application protocol for

querying and modifying directory services over TCP/IP.

Configuring TRIP login validation to use an LDAP repository, removes the

need for users' passwords to be maintained in TRIP's CONTROL data

dictionary.

However, in order to allow full control over access levels, a TRIP username

must exist identical to the LDAP username, (See TDBS_DISALLOW_GUEST

below, for more details).

Notes:

• LDAP for TRIP is currently supported on the Windows, Linux and

Solaris platforms

• The username SYSTEM is always validated against the local

CONTROL database and is never subject to the directory service

provider model (See 'TRIP Standalone Usernames', below).

Configuring LDAP

The following section explains how to configure TRIP to use an LDAP

repository for authentication; this requires editing the [Privileged] section of

tdbs.conf

Note:

LDAP variables are only ever valid in the [Privileged] section of tdbs.conf

By default, when using an external authentication provider such as LDAP, if a

user provides a valid set of credentials for that authentication provider and

the user is unknown to TRIP, the user will be logged into TRIP as a guest

user (under the BUILTIN_GUEST account). To disable this functionality set

the following variable:

TDBS_DISALLOW_GUEST=True

To establish LDAP as the authentication provider, set the following variable:

TDBS_AUTH_PROVIDER=LDAP

The default behaviour of the system in the absence of such a setting is to

fallback to using CONTROL for all authentication requests.

TDBS_AUTH_PROVIDER=LDAP

The LDAP provider needs to know which servers are capable of

authenticating. The following variable definition can be a single server, or can

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: USER ACCOUNT VALIDATION

Page 338 of 416

be a list of servers, each of which can optionally state a port number. For

example:

TDBS_LDAP_SERVER=server1, server2:3030, server3

In the absence of port numbers, the default port for LDAP (or LDAP over

SSL) will be provided by the system. TDBS_LDAP_SERVER=pluto

Communication with the LDAP server(s) can take place in two different ways,

either insecure (the SIMPLE mechanism) or via an encrypted transmission

(the SSL mechanism). Set the following variable accordingly:

TDBS_LDAP_MECHANISM={SIMPLE | SSL}

For example:

TDBS_LDAP_MECHANISM=SIMPLE

Provide here a maximum number of milliseconds that TRIP should wait for a

response from the LDAP server(s).

TDBS_LDAP_TIMEOUT=1500

In order to find users, TRIP needs to be able to browse the LDAP repository.

If the repository supports anonymous access for browsing, set the following

variable to True, otherwise set it False.

TDBS_LDAP_ANONYMOUS={True | False}

For example:

TDBS_LDAP_ANONYMOUS=False

If anonymous browse access is not supported, you must provide the DN and

credentials (password) for the user that will be used to perform browse

operations when searching for users to authenticate. This is done using the

following variables:

TDBS_LDAP_USERNAME is the fully qualified DN of the browse user

TDBS_LDAP_PASSWORD is the plain text of the browse user's
password

The user specified must have read access to the entire tree descending from

the root node provided by TDBS_LDAP_BASE (described below).

For example:

TDBS_LDAP_USERNAME=cn=Manager,dc=bjensen,dc=com

TDBS_LDAP_PASSWORD=thx1139

When attempting to authenticate a user, that user's identity will typically be

provided as an RDN rather than a fully specified DN. In order to turn that

RDN into a DN for authentication, you must provide the following set of

variables:

TDBS_LDAP_BASE defines the base of the tree in which users can
be found

TDBS_LDAP_SEARCH defines an LDAP search string to use to find
users

For example, if the TRIP user community is collected in a subtree of the

LDAP repository with a logical base of ou=tox/o=pharma/c=us, then the base

of the search tree should be established as follows:

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: USER ACCOUNT VALIDATION

Page 339 of 416

TDBS_LDAP_BASE=ou=tox,o=pharma,c=us

To find a user by RDN (for example by the UID or CN that the user presents

as their typical login public key), specify an LDAP search string using the

%u% substitution string to stand for the user's provided RDN. For example,

when using the person structural schema (or some derivation, for

exampleorganizationalPerson, or inetOrgPerson) with the uidObject add-on

schema the search string would be:

TDBS_LDAP_SEARCH=(&(objectclass=person)(uid=%u%))

Any occurrence of the "%u%" pattern within the string will be replaced with

whatever "username" is provided to TRIP during the login process.

Once the user has been found (i.e. their RDN has been dereferenced to a

DN) their record must be turned into a TRIP username for use within the

CONTROL database. The following variable is used to specify the field from

the user record that will provide this mapping, for example in most user-

related schemas, this would be the "uid" field:

TDBS_LDAP_MATCH=uid

Notes:

• (TRIPclassic or server based application)

• LDAP for TRIP is currently supported on the Windows, Linux and

Solaris platforms

• The username SYSTEM is always validated against the local

CONTROL database and is never subject to the directory service

provider model (See 'TRIP Standalone Usernames', below).

LDAPS

If using SSL for communication, the location of the local certificate database

must be provided by setting the following variable. As TRIP uses the Mozilla

LDAP SDK on Linux and Solaris, the database in question is that used by the

Mozilla and Firefox browser applications (amongst others), is entitled

"cert8.db"and can normally be found within a user profile, for example:

TDBS_LDAP_SSL_CERT_DB=/home/bjensen/.mozilla/cert8

.db

On Windows TRIP uses the native LDAP SDK. For Windows installations of

TRIP, the certificate database is the Windows certificate store of the local

machine. In order for the SSL connection to work, the issuer of the SSL

certificate in use by the LDAP server must be found in the Trusted Root

Certification Authorities store.

Local System Validation

Local system validation (LSV) is a facility in TRIP for allowing automatic user

validation for users already existing on the server hosting a particular TRIP

installation.

Configuring TRIP login validation to use an LSV, removes the need for users'

passwords to be maintained in TRIP's CONTROL data dictionary, thereby

permitting a user to log into TRIP without entering a TRIP password.

For how to enable local system validation, see the 'Ignore Password'

subsection of 'User Properties (1) – General', in Chapter 10 'User Privileges'

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: USER ACCOUNT VALIDATION

Page 340 of 416

Notes:

• The checkbox to ignore TRIP passwords also exists in the new user

creation dialog (For more details see, "Creating a New TRIP User", also

in Chapter 10).

• For this form of validation to work, the TRIP installation must be on the

same server that is carrying out the validation; it is, therefore, only really

of use in TRIPclassic sessions, or server based applications.

TRIP Standalone Usernames

The 'traditional' way of handling TRIP users, TRIP Standalone users are

unique to each TRIP installation and are maintained in that installation's

CONTROL data dictionary.

This method of user management does not represent any significant

difficulties, other than the TRIP usernames and passwords may be different

to those needed to access the operating system TRIP is installed on.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 341 of 416

Connecting to TRIP Servers

Server Connection Overview

The fundamental requirement of any management activity is to be connected

to a TRIP instance. This can be either local or remote, with the following

rules:

• A given console can contain only one local connection. Once a local

connection has been established, the option to establish a local

connection is no longer available in the connection wizard.

Note:

It is possible to construct two or more local connections by using two

or more consoles within the same MMC process (i.e. by creating two

or more .MSC files). However this behaviour is not supported and

may lead to unpredictable results.

• A given console can contain as many remote connections as desired,

each of which may be targeting a different TRIP server, or the same

TRIP server with a different set of login credentials or host

initialization script.

• A connection, either local or remote, is identified by its "alias." This

alias is a string of arbitrary length that should be meaningful to you as

a means of identifying the connection, without having to examine the

server's properties.

Note:

The connection alias does not have to be unique, although it will no

doubt be confusing if it is not.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 342 of 416

Creating a Server Connection

In order to connect to a TRIP instance, simply select the "TRIP Servers" node

in the MMC tree and choose the "New Connection..." option from the 'Action'

menu:

Figure B-8 Selecting the New Connection Wizard

You will be presented with the "New Connection" wizard, as shown overleaf:

Figure B-9 The New Connection Wizard welcome dialog

Clicking the "Next" button will progress to specifying the connection type and

parameters; see overleaf:

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 343 of 416

Local Connection

As shown below in Figure 2.37, when connecting to the local TRIP instance,

no further information is required:

Figure B-10 Specifying a local Connection

The default alias is "My Computer" but you can change this as desired.

Note:

It is only possible to create one local connection in TRIP manager. If you

need to create more connections to the local machine, use Remote

Connections and specify ‘localhost’ as the machine address.

Remote Connections

In order to construct a remote connection using TRIPnet, you need to know

the following information:

• The name or IP address of the machine on which TRIP is installed

• The protocol by which the connection will be made:

• TRIPnet

• Encrypted TRIPnet

• XML over HTTP (via a Web proxy)

• The alias by which this connection will be identified within the

TRIPmanager mmc console (this default's to the machine's name or

IP address)

• The port number or service name that uniquely identifies the TRIP

server on the target machine (the default is use port number 23457)

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 344 of 416

• The name of an (optional) host initialization script that the server

should run to configure its operating environment.

For example:

Figure B-11 Specifying a remote connection

Clicking on the "Next" button will proceed to specifying the login credentials to

associate with this connection

Specifying Credentials

This dialog allows you to specify the user name and password with which you

wish to login to TRIP. The default behaviour is to not store the password

within the console (the .MSC file) because that storage is not encrypted.

However, if you click the "Save password with the server definition" check

box, you will be able to type in the password (and confirmation string). This

password will then be stored along with the server definition in the console

file and will be used every time the console attempts to login to that particular

TRIP instance.

Figure B-12 Specifying user credentials

If you opt not to store the password with the server definition, every time the

console needs to login to this TRIP instance, you will be prompted to provide

the password.

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Specifying_Credentials.htm

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 345 of 416

If you change your mind later and wish to either store the password or to

remove / change a stored password, you can use the Server's properties

dialog to do so.

When you click the "Next" button, you will see a confirmation dialog that

allows you a final opportunity to cancel this action:

Figure B-13 New Connection completion dialog

Clicking "Finish" at this point will result in the new server's connection

information being added to the console.

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm
mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CONNECTING TO TRIP SERVERS

Page 346 of 416

Logging into the New Server Connection

In order to actually login to the TRIP instance, click either on the new server

node in the MMC tree, or on the plus sign (+) that appears to the immediate

left of the server's alias. When you do so, you will see one of three things:

• An error dialog if, for example, the TRIP license is invalid for this

instance, the password is incorrect, or the specified remote server

could not be contacted:

Figure B-14 Communications Error

• A login dialog, if you either didn't store the TRIP password or specified

an incorrect password (to correct an invalid password, use the

Server's properties dialog).

Figure B-15 Login Dialog

• A set of descendant nodes that specify the types of information that

can be administered with this snap-in, signifying a successful login:

Figure B-16 Successful login

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Servers/Properties.htm

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 347 of 416

TRIP Grids

Notes:

• The TRIPgrid software is included as part of TRIPwpi

• The TRIP license installed on the TRIP server used for metadata and

authentication must include TRIPgrid and TRIPjxp. The latter is

because TRIPgrid uses TRIPjxp to communicate with the metadata

database.

Introduction to TRIP grid computing

As data and user volumes increase it can quickly become difficult to manage

either one or both of these metrics within the confines of a single server.

Rather than continue to throw more and more expensive hardware at this

problem, TRIP grid computing allows for the construction of cheap commodity

matrices of hardware that, in combination, can provide much greater

throughput for both data and user volumes than would ever be possible

within a single machine.

The core concept behind a TRIP grid is, by splitting a query into multiple parts

(grids are really intended for use in read-often / write-rarely configurations),

each of which can be serviced by a different server, the aggregate throughput

of the whole grid will be considerably higher than would be possible

otherwise.

To achieve this, TRIP grids support two key notions, one being clusters, the

other being replica sets:

• A replica set is a set of databases on one or more physical servers,

each of which is considered a duplicate (or replica) of the others.

There is nothing explicit within the grid logic that enforces this; it is

entirely up to the grid administrator to create the replica relationship

using TRIP's normal log file-based roll-forward replication

mechanisms.

• A cluster is a collection of either physical databases or replica sets on

one or more servers that are to be searched together, much like a

cluster definition on a single server. The cluster is the primary

searchable entity within a TRIP grid.

Queries placed against a grid are, in fact, placed against a cluster hosted by

that grid.

Note:

All current programming interfaces support queries against grids as well as

against physical servers, i.e. TRIPnxp, TRIPjxp, TRIPaxp)

The grid router (a web service hosted on one or more of the servers taking

part in the grid) is responsible for breaking the grid query into as many parts

are as necessary, in order to dispatch the query to all physical grid machines

taking part in that cluster.

Note:

Databases within a replica set are used in a 'round robin' fashion to attempt

to load balance user volumes against the available data.

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Grids/Creating_a_Grid_Cluster.htm
mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Grids/Creating_a_Grid_Replica_Set.htm

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 348 of 416

As an example, consider a grid consisting of three machines:

• grid_1 hosts the grid router

• grid_2 hosts db1 and db2

• grid_3 hosts db2 and db3

Now assume that we construct the following logical entities within the grid:

• rep_1 is a replica set consisting of grid_2.db2 and grid_3.db2

• cluster_1 is a cluster consisting of grid_2.db1, grid_3.db3 and rep_1

Queries placed against this grid, using cluster_1 as the search domain, will

therefore always be dispatched to at least two query servers by the grid

router. For example, a simple search ("Find 'x'") against cluster_1 will result in

two queries being dispatched:

• grid_2 is told to query db1 and possibly also db2, depending on the

replica set load balancing

• grid_3 is told to query db3 and possibly also db2, depending on the

replica set load balancing (obviously, only one of grid_2 or grid_3

would be directed to query against db2)

The grid router is then responsible for collecting the results from grid_2 and

grid_3 and collating them prior to dispatch to the query originator. This

collation could be caused by sorting on one or more key fields, sorting by

ranking, or a combination of both.

In absence of specific collation criteria, the final result set will be a round

robin collation produced by taking the first record in the search results (RIS 1)

from server 1, then RIS 1 from server 2, ..., then RIS 2 from server 1, etc.

Constructing a TRIP grid is therefore an exercise in deciding which type of

scalability you most wish to emphasise:

• For more data, partition the data across multiple machines using a

grid cluster: e.g. by splitting an existing database cluster

• For more users, replicate high throughput databases across multiple

machines using a replica set

Grids are represented within TRIPmanager as servers, but with a different set

of descendant nodes than a normal physical server connection, for example:

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 349 of 416

Figure B-17 A TRIP Grid in TRIPmanager

As the names imply, the clusters and replicas nodes allow for management of

clusters and replica sets, respectively. The hosts node simply allows for

navigation and inspection of which databases are being served by which

physical machines.

Note:

In order for a machine to take part in a TRIP grid, it must be a TRIPnet

server as this is primary means of communication between the grid router

and the grid members.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 350 of 416

Creating a Grid

Creating a TRIP Grid requires installation and configuration of software that is

beyond the scope of this document. For more information, see the document

entitled, "TRIPGRID USER’S GUIDE", which is included in the TRIPwpi

distribution.

Creating a Grid Cluster

To create a new cluster, simply right click on the "Clusters" node and choose

"New Cluster..." This will produce a wizard that leads the user through

providing the required information, which is basically just the name and

description of the cluster. The name must be unique across the grid, but has

no other requirements.

Figure B-18 Defining a cluster

Once the cluster is created, add databases and replica sets to it using the

publication mechanisms described in the following sections overleaf.

Creating a Grid Replica Set

To create a new replica set, simply right click on the "Replicas" node and

choose "New Replica Set..." This will produce a wizard that leads the user

through providing the required information, which is basically just the name

and description of the replica set.

Note:

The name must be unique across the grid, but has no other requirements.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 351 of 416

Figure B-19 Defining a replica set

Once the replica set is created, add databases to it using the publication

mechanisms described in the following sections overleaf.

Publishing to a Replica Set

In order to publish one or more databases to a replica set, simply find those

databases in TRIPmanager and drag / drop them to the replica set. That is,

the server that is hosting the physical database to be added must already be

configured for access via TRIPmanager, and must be present within the

console definition file in use.

The connection configured must be via TRIPnet as no other communication

mechanisms are supported for use between the grid router and grid member

servers.

If the server hosting the database being added to the replica set is not

currently a member of the grid in question, you will be prompted to confirm

that you wish to add this server to the grid.

Publishing to a Grid Cluster

In order to publish one or more databases to a cluster, simply find those

databases in TRIPmanager and drag / drop them to the cluster. That is, the

server that is hosting the physical databases to be added must already be

configured for access via TRIPmanager, and must be present within the

console definition file in use. The connection configured must be via TRIPnet

as no other communication mechanisms are supported for use between the

grid router and grid member servers.

If the server hosting the database that is to be added to the cluster is not

currently a member of the grid in question, you will be prompted to confirm

that you wish to add this server to the grid.

You can also add replica sets to a cluster; in order to do so simply drag the

appropriate replica set to the cluster definition.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 352 of 416

 Grid Authentication

In contrast to normal TRIP connections, grid connections are not persistent.

This means that each query operation creates its own connections to as

many TRIP servers as are required to service the query and once the query

is complete, those sessions are terminated. This keeps the grid clean in

terms of processes in use, but it does place a burden in terms of how

sessions are authenticated, and how many sessions are continually being

created and terminated.

In order to use the grid in authenticated form, i.e. using discrete credentials

for each user of the grid, each server that is taking part in the grid must have

a coherent copy of some central CONTROL database containing user

credentials and access rights for each potential user. This allows for each

query to be accompanied by authentication information (i.e. user name and

password) and for that to be forwarded to each server taking part in the

query. In turn each server will use that authentication information when

creating the TRIP session for the query operation.

Whilst this provides a high degree of control, it does also place a high burden

of replication upon the grid administrator.

To provide an easier to administer mode of operation, and to reproduce a

much more "real life" interaction model, TRIP grids also support anonymous

and pooled access.

What this means is, if a query is not accompanied by authentication

information, that query is performed within the context of a predefined

anonymous user. As a secondary benefit, anonymous user connections can

be pooled per server, so as to use the minimum server resources possible.

In order to establish anonymous credentials for a grid and to enable

connection pooling for those anonymous sessions, simply provide credentials

on the Authentication tab of the grid's property sheet (see overleaf):

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: TRIP GRIDS

Page 353 of 416

Figure B-20 Grid Authentication tab

Note:

The server defined as hosting the authentication CONTROL database must

already be a member of the cluster, i.e. it must be publishing at least one

database to a cluster somewhere.

Advanced Grid Properties

This property page displays several advanced properties that are really

meant for debugging grids that aren't working correctly:

Figure B-21 Advanced Grid Properties tab

The first option, to log all traffic to a console, requires a Java console to be

attached to the grid router; for example Eclipse using the Sysdeo Tomcat

addon.

The second option, to emit debug-style error messages, is probably much

more use in a customer situation. In essence this directs the grid router to

emit error messages complete with a trace of where the error occurred, so

that this can be forwarded to TRIP support for triage and follow-up.

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CLASSIFICATION SCHEMES

Page 354 of 416

Classification Schemes

Note:

The logical name TDBS_CLS must be configured in the [Non-privileged]

section your tdbs.conf file for classification schemes to function correctly:

For more information, see page 266 of this document.

Introduction to Classification Schemes

A classification scheme is a collection of information (in reality, a special-

purpose TRIP database) that instructs TRIP on how to recognize documents

as representing one or more classes of information. The classes of

information, called categories, that you are interested in are defined by you

and, in order for TRIP to recognize that a new document belongs to a

particular category, you must train TRIP using documents that you know are

representative of that category.

The classification process is therefore divided into two steps:

• Management, or training and definition

• Categorization, or assigning categories to documents being indexed

You can accomplish everything related to classification scheme management

under the "Classification Schemes" node in the MMC tree. The list of objects

that you see as sub-nodes in the MMC tree are those schemes to which you

have at least some level of read access.

Figure B-22 Classification Schemes sub-node

For example, in your business you may determine that it's important to be

able to correctly separate documents of a financial nature from those of a

legal or product nature. Creating a simple classification scheme that

recognizes these three categories of documents is accomplished by:

• Creating a new scheme

• Creating the categories of document that you wish TRIP to be able to

recognize

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CLASSIFICATION SCHEMES

Page 355 of 416

• Training each category with documents that represent the category

• Attaching the classification scheme to one or more databases

To create a new classification scheme, simply right click on the "Classification

Schemes" node and choose "New Classification Scheme..." from the 'Action'

menu.

Figure B-23 New Classification Scheme menu item

This will produce a wizard that leads you through the process of creating a

new scheme:

Figure B-24 Create New Classification Wizard

Configuring the new scheme is simply a matter of:

▪ entering a name for the new scheme

▪ selecting a classification algorithm for training categories and

assigning tags

▪ choosing a character set to be used for the classification scheme's

storage database

mk:@MSITStore:C:/Tieto/TRIPmgr/TRIPmmc.CHM::/Container/New_Container_General.htm

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CLASSIFICATION SCHEMES

Page 356 of 416

▪ setting the maximum number of categories/items to be accepted as

training data

▪ entering a description

as shown on the next page:

Figure B-25 New Classification Scheme properties

Note:

Currently, the only classification algorithm available is 'Naïve Bayes'.

Successful creation of the new classification scheme will be indicated by a

TRIP message:

Figure B-26 Classification Scheme storage database created

Attaching a Classification Scheme to a database

To attach a classification scheme to a database, in order that the records in

that database are categorized whenever new or updated records are

processed for indexing, use the Database General Properties dialog, as

described beginning on page 33 of this guide.

Note:

If the TDBS_CLS logical name has not been correctly configured in the

[Non-privileged] section your tdbs.conf file, the following error will appear

when you try to submit your new scheme:

PART 6: APPENDICES, LISTS AND INDEX

APPENDIX B: CLASSIFICATION SCHEMES

Page 357 of 416

Figure B-27 TDBS_CLS configuration error

For more information on configuring TDBS_CLS, see page 266 of this

document.

PART 6: APPENDIX AND INDEX

APPENDIX B: SCOPE SEARCH FACILITY

Page 358 of 416

Scope Search Facility

Note:

As has been stated elsewhere in this manual, the “UPDate SCope”

command is not connected with global updating. Aside from this Appendix,

further information can be found in the “Find SCope” and “UPDate SCope”

sections of the CCL Command Reference.

The new Scope Search facility

UPDate and Find SCope functions are used, respectively, to update and

search using predefined saved search sets, in order to be used across large

database clusters of mostly static data. For example, such a cluster might

contain historical data split across several databases, one for each year; the

most recent database (i.e. the one for the current year) being the only one

that has data that changes and is still being updated.

In such a large database cluster, it may be useful to have several TRIP

procedures – e.g. one each for particular different areas of interest – that are

used to create pre-made search sets saved in a special SIF file. This file can

then be used only for searching by TRIP, in order to simplify, standardize and

speed up such searches.

Scope Search Example

This example is set in 2011 and uses a database cluster of eleven TRIP

databases.

The first part of the cluster comprises one database for each of the years

from 2001 to 2010, named db01 to db10 respectively, and they contain the

historical data. As the data these databases is essentially static, they are

never updated and only ever used in searches.

There is also one extra database, db11, for the ‘current’ year (2011) which is

updated throughout the year as new data is added.

There are also three TRIP procedures, each one for different areas of interest

and resulting in a different search set. These procedures, named proc1,

proc2 and proc3 are for creating pre-made search sets that can be used in

order to simplify, standardize and speed up the searching.

Note:

In the following example, the number of search hits, usually displayed in the
search history as an integer, is represented by <N1>, <N2>, etc.

Setting Up the Scope Search

To set up the Scope Search facility, do the following:

• Start TRIP

• Open the databases that together define the cluster:

base DBCL=db01,db02,db03,db04,db05,db06,

 db07,db08,db09,db10,db11

resulting in S=1 <N1> base DBCL=db01,db02, … ,db11

• run all TRIP procedures that create pre-made search sets as follows:

PART 6: APPENDIX AND INDEX

APPENDIX B: SCOPE SEARCH FACILITY

Page 359 of 416

 scope(proc1) resulting in S=2 <N2> scope(proc1)

 scope(proc2) resulting in S=3 <N3> scope(proc2)

 scope(proc3) resulting in S=4 <N4> scope(proc3)

 del s=1 to remove the cluster creation command

PART 6: APPENDIX AND INDEX

APPENDIX B: SCOPE SEARCH FACILITY

Page 360 of 416

• save the above search sets in a special SIF file that will be used by

TRIP for searching:

stop save no highlight file=special.SIF

Note:

Any name can be used for special.SIF and specifying “no

highlight” will keep the size of the SIF file down and thus help

speed up the searches; however there will of course be any

highlighting of the pre-searched terms.

To get highlighting use the following command:

stop save file=special.SIF

• a logical name pointing to the special SIF file should be defined in the

environment for each user:

 TDBS_PRE_SCOPE=/path-to-SIF-file/special.SIF

Using the Scope Search

To use the new Scope Search facility, do the following:

• start TRIP (with TDBS_PRE_SCOPE set as described above)

• open the same cluster as when the special SIF-file was created, with

the databases in the same order:

base DBCL=db01,db02,db03,db04,db05,db06,

 db07,db08,db09,db10,db11

resulting, as before, in S=1 <N1> base DBCL=db01,db02,

… ,db11

• perform a search thus:

 find scope(proc2) and (any other search criteria)

resulting in S=2 <N2>

• this search should use the pre-made search saved in the file pointed to

by TDBS_PRE_SCOPE and this should be faster than performing the

search without the pre-made search sets.

Updating the Scope Search

When the database for the current year is updated, or if a change is made to

one of the static yearly databases, the special SIF file must be updated.

To update one database in the special SIF file:

• make a backup copy of the special SIF file.

• copy the special SIF file to 'username'.SIF, e.g. as user SYSTEM:

in UNIX:

cp /path-to-special-SIF-file/special.SIF SYSTEM.SIF

in windows you can simply copy/paste then rename the file

• start TRIP (with TRIP's home directory set to where SYSTEM.SIF is

located)

• the search sets created above will now appear, in this case:

PART 6: APPENDIX AND INDEX

APPENDIX B: SCOPE SEARCH FACILITY

Page 361 of 416

S=1 <N1> scope(proc1)

S=2 <N2> scope(proc2)

S=3 <N3> scope(proc3)

PART 6: APPENDIX AND INDEX

APPENDIX B: SCOPE SEARCH FACILITY

Page 362 of 416

• update (for example) the db05 database in these search sets, thus:

upd scope(db05)

• this should update the search sets with the result of new searches for

db05; no new search sets are created:

S=1 <N4> scope(proc1)

S=2 <N5> scope(proc2)

S=3 <N6> scope(proc3)

• save the search sets in the same way as before, using the same file

name:

 stop save no highlight file=special.SIF

or

 stop save file=special.SIF

• an updated version of the special SIF file will now exist, and users who

are using it at this moment, will immediately get access to the updated

file.

Note:

When adding a database for a new year, the special SIF file will have to be

created. This is done exactly as creating a SIF file is described above, but

adding the new database to the list of databases that make up the cluster.

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 363 of 416

Appendix C:

TRIP Programming

This part of the appendix contains information valuable to programmers who

will be responsible for writing:

• applications to convert online data to TForm

• add-on modules to give TRIP more functionality using ASEs

Note:

For more detailed descriptions and examples on use of the TRIP

Application Programming Interface (API), refer to the TRIPsystem API

Reference Guide provided with the TRIPsystem release documentation.

TForm

The TRIP system offers two main methods for entering data into a database:

• manual data entry, and

• automated loading of machine-readable data by conversion to TRIP’s

input format TForm, and entry into the BAF using the LOAD

procedure.

TForm is a delimiter-controlled record format for the transfer of text into

records intended for a TRIP database. Using TForm, sequential text files

(variable length record format) using the DEC multinational character set or in

7-bit ASCII may be entered into a TRIP BAF file.

A BAF file consists of a sequence of records, each record containing one or

more fields, and a field consists of one or more subfields or paragraphs. The

paragraphs are further subdivided into sentences.

A TForm file is a text file with control strings, which determine how the text

strings will be organized in the BAF. These control strings adapt the file

contents to the structure of the database by marking the beginning of the

individual record (and record part), the beginning of the individual field, and

its subdivision.

Control Strings

The control string delimiter generally used is the caret [^], followed by an

alphanumeric marker. The following characters identify the five basic types of

markers:

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 364 of 416

Marker Type Symbol

Record R

Record Part G

Field F

Paragraph/Subfi

eld

P

Sentence S

A control string may also contain control skip characters, which allow the

insertion of spaces and linefeeds for ease of proofreading and editing of

TForm files. These control skips are ignored when the file is transferred to a

BAF file.

All characters with a decimal ASCII representation of up to and including 32

(<SP>), or any combination of these, will be accepted as control skip

characters. A string of appropriate characters may immediately follow a

delimiter or record marker, but not a field, subfield or sentence marker.

Note:

When the content of a field is strictly regulated, as in the case of NUmber,

INteger, DAte, TIme or PHrase fields with a pattern, you should place the

defined delimiter immediately after the subfield content to avoid including

extra characters (space or <Return>) in the field contents.

When a TForm file is transferred to a TRIP file, the following situations hold

true:

• ^R<CR><LF>^F is a record control string [^R] followed by a field

control string [^F], and is equivalent to ^R^F,

• however, ^F<CR><LF>^P is a field control string [^F], followed by the

text string <CR><LF> and a subfield or paragraph control string [^P],

and is not equivalent to ^F^P.

A control master is available to support the available character sets. For

example,

 ^CROM

inserted at the beginning of a TForm file tells TRIP that this file is written in

character set ‘Roman 8’.

This delimiter can be defined differently for each TForm file. The first

character in a TForm file tells TRIP what the delimiter is going to be.

Text Strings

A text string is a sequence of characters bounded to the left by a field or

subfield control string, and to the right by a single delimiter (or the end of the

TForm file).

Normally, TRIP determines automatically what constitutes a sentence or

paragraph in a TExt field. Should you wish to define sentences manually, you

must use a sentence or paragraph marker before every sentence and

paragraph in the text portions of the records.

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 365 of 416

When the TForm file is loaded into TRIP, the contents of TExt fields are kept

in their original form, unless the database manager has decided otherwise

during design. ‘Layout retained’ ensures that linefeeds and blanks are kept

exactly as they are in the original. The one exception to this is the blank line

marking the start of a new paragraph.

Record, Record Part, Field and Subfield Markers

The six basic markers used to create a record are record, record name,

record part, field, paragraph/subfield and sentence markers.

The Record Marker: nR

The marker R signals that record n is to follow (n is an integer), or, if n is

omitted, that a new record is to be added at the end of the BAF. The record

number is used only to identify an already existing record when updating it.

The record marker must be immediately followed by a new control string, or

by a string of control skip characters followed by a control string. One

exception occurs when using a record name while updating.

The Record Name Marker: N

N (followed by a record name) signals that a record with the given name is to

be added, or, if a record by that name exists already, that it is to be updated.

The Record Part Marker: nG

Marker G indicates that record part n is to follow (n is an integer), or, if n is

omitted, that a new record part is to be added at the end of the record. The

record part number is used only to identify a previously existing record part

when updating it.

A record with record parts in a TForm file should start with the head fields,

followed by the part fields of each record part.

The Field Marker: nF

This marker directs that a field n of the current record is to follow (where n is

an integer).

The Paragraph/Subfield Marker: nP

P signals that paragraph/subfield n is to follow (n is an integer), or, if n is

omitted, that a new subfield or paragraph is to follow at the end of the current

field.

In a TExt field, TRIP recognizes a new paragraph as the end of a sentence,

followed by two <CR><LF>s and the start of a new sentence. This is the

system default both at data entry and in a TForm file. P as a paragraph

marker is redundant if paragraphs are separated in this manner.

Note:

If paragraph and sentence markers are used, data entry forms must not be

used for these records.

Any given text string will be assigned to the subfield given by the control

string preceding it. If this is a field control string, then the text string is

assigned to a new subfield at the end of the indicated field. This makes

^2Ftext string^ and ^2F^Ptext string^ equivalent, and if field two in the current

record is a new field, then both are equivalent to ^2F^1Ptext string^. In that

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 366 of 416

case, all three will put the string ‘text string’ in the first subfield of the second

field of the current record.

The Sentence Marker: S

The sentence marker may be useful if the text strings contain data that

should not be interpreted as sentences. The default sentence definition is an

end-of-sentence marker followed by at least one space and a capital or

upper-case letter. TRIP would read such a sequence as the end of one

sentence and the beginning of another if the string was controlled by a

paragraph marker only.

Adding Records With TForm

We will use the TRIP demonstration databases Corr and Carroll to describe

how a TForm file is made. We will examine Corr first, which is structured as

follows:

Field name Type No

.

Contains

rname PHras

e

1 recipient: name

rcomp " 2 " company

raddr " 3 " address

rcountry " 4 " country

sname " 5 sender: name

scomp " 6 " company

saddr " 7 " address

scountry " 8 " country

day DAte 9 the date of the message

cat PHras

e

10 type of communication

content TExt 11 the text of the message

Each field in Corr is of one of the seven existing data types. Paragraphs and

sentences are used in fields of the type TExt, while subfields are used in

fields of the other six types (PHrase, NUmber, INteger, DAte, TIme and

STring).

Assume that a file of correspondence (letters and telexes) is to be entered

into the Corr database. The same TForm layout is used for both initial record

loading and for appending records to already existing data.

When you create a database, the system numbers the fields as you identify

them. A STatus or Show database order will display the database field

numbers, presenting the fields in field number order. TForm files present the

only occasion where you will use field numbers instead of field names.

When designing a database, the database manager decides whether a TExt

or PHrase field is to keep its original layout (‘Layout retained’). Here, all

<Tab>s, <LF>s, and spaces are maintained as they occur in the entered text,

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 367 of 416

whether the data has been imported from a TForm file or has been entered

manually during data entry.

As these records were loaded into TRIP in their original form, there is one

empty line before the first paragraph in field eleven. A sentence separator [. !

?] followed by two <CR><LF>s and the start of a new sentence marks a new

paragraph by default, so no paragraph or sentence markers are needed.

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 368 of 416

A TForm file for two documents may then look like this:

R^

1F^

PMr. Ron Smith^

2F^

PThe Sparkler Institute^

3F^

P16 Sparkling Road^

PSparkletown^

4F^

PUSA^

5F^

PMats G. Lindquist^

6F^

PParalog AB^

7F^

PBox 2284^

P103 17 STOCKHOLM^

P^

8F^

PSverige^

9F^

P1984-06-15^

11F

Dear Mr. Smith,

Thank you for your telex. The status of TDBS is as follows: The central modules of the

system are completed and work on the user interface is underway. We will exhibit the

system in Stockholm in November, and at that time we will have some new material about

the system, which I will send you.

The first version is, as you know, implemented on a VAX in Pascal. We will make the

system portable to other machines, e.g. IBM, in the near future.

Hoping that you can hold out a little bit longer, I remain

Yours sincerely

Mats G. Lindquist

Marketing Manager^

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 369 of 416

R^

1F^

PMats G. Lindquist^

PMats G. Löfström^

2F^

PParalog AB^

3F^

PBox 2284^

P103 17 STOCKHOLM^

4F^

PSverige^

5F^

PMr. Ron Smith^

6F^

PThe Sparkler Institute^

7F^

P16 Sparkling Road^

PSparkletown^

8F^

PUSA^

9F^

P1984-06-13

10F^

PTelex^

11F

TELEX NO 312/7

ATTENTION MATS G. LINDQUIST, MATS LÖFSTRÖM

PLEASE SEND INFORMATION ABOUT THE STATUS OF TDBS. IT IS NOW AVAILABLE ON VAX11/780? WHAT

IS THE PURCHASE PRICE? DOES THE SYSTEM EXIST ON OTHER MACHINES?

RON SMITH, SPARKLER INSTITUTE

The demonstration database Carroll, on the other hand, is a head-part

database containing main and part records, as this extract from its STatus

information shows:

Field

Name

No Type Part

chapter 2 PHrase N

chaptnr 1 INteger N

person 3 PHrase N

speaker 4 PHrase Y

txt 5 TExt Y

verse 6 TExt Y

txt2 7 TExt Y

book 8 PHrase N

This example shows one main record (containing all of the head fields),

followed by its first two record parts:

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 370 of 416

R^

1F^

P6^

2F^

PPig and Pepper^

3F^

PFish Footman^

PFrog Footman^

PDuchess^

PQueen^

PPig^

PCook^

PCheshire Cat^

PMad Hatter^

PMarch Hare^

8F^

PAlice's Adventures in Wonderland^

G^

5F^

For a minute or two she stood looking at the house, and wondering what to do next, when

suddenly a footman in livery came running out of the wood - (she considered him to be a

footman because he was in livery: otherwise, judging by his face only, she would have

called him a fish) - and rapped loudly at the door with his knuckles. It was opened by a

footman in livery, with a round face and large eyes like a frog; and both footmen, Alice

noticed, had powdered hair that curled all over their heads. She felt very curious, and

crept a little way out of the wood to listen.

G^

4F^

PFish Footman^

PFrog Footman^

5F

The Fish-Footman began by producing from under his arm a great letter, nearly as large as

himself, and this he handed over to the other, saying, in a solemn tone, "For the

Duchess. An invitation from the Queen to play croquet."

Then they both bowed low, and their curls got, entangled together

Alice laughed so much that she had to run back into the wood for fear of their hearing

her; and, when she next peeped out, the Fish-Footman was gone, and the other was sitting

on the ground near the door, staring stupidly up into the sky.^

Updating Records With TForm

If a record in a TForm file is headed by the number of an existing BAF record,

and contains nothing but fields that do not exist in the old BAF record, the

new fields will be added to the BAF record.

You can also add new subfields to an already existing field. If

field number two is a PHrase field, the construct:

2FJack^Fand^2FJill^

will cause three new subfields containing ‘Jack’, ‘and’ and ‘Jill’ to be

appended to it. If the field is a TExt field, you may add new paragraphs after

the last paragraph in the same way.

Should you wish to replace an old BAF record with a new TForm file record,

this must be marked in the beginning of the TForm file record. For example, if

you want to replace record number fifteen of your BAF file with a record

beginning with the string ‘Here we are.’ in field number one, your record in the

TForm file should look like this:

^15R^OR

^1FHere we are.

The zero record marker will empty the old record, which will then be filled with

the new contents.

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 371 of 416

To empty a field in an old record, use a zero field marker in the same way.

The string:

^15F^OF

will empty field number fifteen.

To delete a record completely, without creating an empty record as the zero

marker does, use a deletion marker. The string:

^15D

will delete record number fifteen. The deletion marker could either be

followed by control skip characters or a record marker.

You may also use record names to identify records that are to be changed,

e.g.:

^RJames Grieve^

positioned at the start of the record will cause the record with the name

‘James Grieve’ to be located and updated. If no such record exists, this order

will be ignored.

Use the record name marker N to add a new record or update an old one.

The instruction:

^NJames Grieve^

placed at the start of the record will cause a record by that name to be added,

if it does not already exist.

If you are making small changes in several records at once, global updating

will likely be the simplest way to change the BAF records.

Data Type STring and the Length Marker

In a field of type STring, any characters in combination with <Ctrl> or <Esc>

can be entered, and each subfield must be given with length markers

specifying the length of the subfield. Each subfield part must be preceded by

^nL, with the integer n specifying the length of the part. A string subfield in

several parts will be concatenated into a single subfield by the load process.

A string subfield with two subfield parts containing fifteen and ten STring

characters respectively could look like this:

^P^15Lcharscharschars^

10Lcharschars^

resulting in a STring subfield containing twenty-five characters. The contents

of the subfield follow immediately after the control string. The length marker is

mandatory for fields of type STring, and can be used for other data types as

well.

Copying Records Using Print TForm

Records from one database can be copied to another database, using a

predefined system report that creates a file in the format TForm. That file can

then be loaded into other databases after any necessary editing has been

done. The order is:

Print TForm=file.ext

PART 6: APPENDIX AND INDEX

APPENDIX C: TRIP PROGRAMMING: TFORM

Page 372 of 416

and just as with any other Print order, Print TForm can contain a reference to

a search result or to record numbers in the source database. If no extension

to the file name is given, TRIP adds the extension .TFO.

If a database has received name/number/field, it is possible to specify

whether the record name or number should be used in the Print TForm order.

By giving the CCL order:

Print R TForm=file.tfo

the file created will then count on the string ‘Nrecordname^0R’ and/or

‘^Rrecordnumber^0R’.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 373 of 416

Application Software Exits (ASEs)

Application Software Exits, or ASEs, make it possible for programmers to

design parts of a TRIP application in an external programming language,

such as C or Fortran. ASEs are useful when:

• TRIP does not provide a function you need for your application,

• TRIP’s default functionality is not powerful enough for your purposes;

for example, you might need complex cross-field or cross-database

validation during data entry,

• or you need to process data before it is committed to the database or

to the index. This could include providing unit normalization (metric to

imperial, centigrade to Fahrenheit), or lexical functions such as stem

indexing, to make the searching of complex languages such as

Finnish or German more intuitive.

To make this possible, TRIP defines a number of exit points which designers

can use to call their own routines. Within these routines, the programmer can

place calls back into the TRIP executable to gain information about the

current context of the call; for instance, the database record TRIP is currently

processing.

The exit points defined by TRIP follow.

Summary

CCL

CALl asename[arguments] provides a simple exit point to a user-written

routine from the CCL command line. Normally, CALl summons external

products with arguments such as filename, since little contextual information

is available to the routine when called in this way.

Output Format

<Call(asename, item, delay)> passes a field item (such as a subfield or a

literal string) to a routine for reformatting prior to output within a text insert

function. It also allows the routine to completely reformat the content of the

record in memory. This is typically used to read the content of external files or

fields from other databases into the current record prior to output.

TForm Load

This is specified during database design. On a field basis, it is used to read

and possibly modify the content of an individual field or subfield. On a record

basis (both before and after the record is committed), it is used to gain

access to the entire record in memory, for instance, for cross-field validation.

Using TRIPmanager, the forms used for specifying the routine names are on

the Advanced tab of the General Database Properties form (for record-based

access), and the Advanced tab of the Field Properties form (for field-based

access).

Using the TRIPapi, the routine names are specified using the base

specification record fields baffit_ase1 and baffit_ase2 (for record-based

access) and the field specification record field baffit_ase (for field based

access).

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 374 of 416

In both cases, the values specified either on the forms or in the fields of the

specification records are the names of the ASE routines.

Index

This is specified during database design, and is used to modify the indexed

values for a specific subfield or term. For instance, you may wish to index

‘US’ for every occurrence of the phrase ‘United States’, thus allowing your

users to search for either variant and still find the record.

For complex languages, such as Finnish or German, morphological analysis

routines can be written to index stems of terms in addition to the terms

themselves, thus making searching much easier and faster. For example, in

German the stem ‘geschl’ occurs in many terms, making the CCL search:

Find geschl$

very slow in a large database. If the stem itself were indexed, the user could

simply perform the search:

Find geschl

Removing the ‘$’ wildcard improves search performance drastically.

Using TRIPmanager, the Advanced tab of the Field Properties form (for field-

based access) cab be used for specifying the routine to be called for each

field.

Using the TRIPapi, specify the routine name using the field scanit_ase in the

field specification record.

In both cases, the value specified either on the forms or in the field of the

specification record is the name of the ASE routine.

Data Entry (TRIPclassic only)

This is specified during form design (TRIPclassic only), and is used on two

levels to control the entry of data to a database. There are four ASEs

concerned with each record, and two concerned with each field:

Record level: this is defined by pressing <kp 1> anywhere

on the actual form:

 • before the record is presented to the user

 • after the user presses <Leave>

 • after the user presses <Enter>, and

before the record is committed to the

database

 • after the record has been committed to

the database, and before the next record

is presented to the user

Field level: this is defined by pressing <kp 1> while the

Field Properties overlay is shown for a

particular field, i.e. <Gold><kp 9> has been

pressed while the cursor is in the field area:

 • before entry to the field or subfield

 • before exit from the field or subfield

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 375 of 416

These ASEs tend to be used for functions such as:

Record level: • complex, multi-field validation

 • immediate index submission

Field level: • simple cross-field validation

 • protected field manipulation

 • help messaging

 • simple data manipulation, such as

conversion to and from uppercase

 • simple calculations, such as standard

deviation, mean, etc.

Note:

ASE invocation-sequencing conflicts may occur in the event that ASE-1 is

called when entering an entry form, then ASE-2 is called when entering a

field and the field associated with ASE-2 is also the first field accessed in

the entry form. To overcome this, it is necessary to implement a procedure

to check if ASE-1 has been executed before calling ASE-2.

Search Form (TRIPclassic only)

This is defined during form design, and is used for manipulation of terms in a

search box prior to searching for them, for instance, converting metric units to

imperial.

These ASEs are defined on page three of the search form design form by

specifying a routine name in the ‘ASE’ column within the box specification

tuple.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 376 of 416

The Format of an ASE Routine

All ASE routines are integer-returning functions, which take two arguments:

Argstr

Type Character string

Access Modify

Mechanism By reference

Argstr is a character string, which is passed in a context-dependent manner

from TRIP to the ASE. In certain circumstances the ASE can pass a value

back to TRIP in the Argstr. The maximum length of the buffer which Argstr

references is 256 bytes. Attempts to write more than 256 bytes to Argstr will

produce unpredictable results—most likely an unrecoverable error.

Arglen

Type Signed longword

Access Modify

Mechanism By reference

Arglen is a longword, which specifies the length of the character string Argstr.

The return code from the ASE to TRIP is a longword bitmask. For all ASE

routines, the lowest bit (bit 0) specifies the success or failure status of the

ASE routine. This bit can be set by using the manifest constants

ASE_SUCCESS and ASE_FAIL from the TRIPase include file (see the

language-dependent sections for the actual filename). Any other bits in the

return code should be set by adding the generic success-or-fail codes to the

function-specific return values, such as ASE_FIXFIELD and ASE_REFRESH,

etc. The function-specific return values are listed in the function sections that

follow.

A Template ASE in C

For C/C++ programmers, the header file to include is called TRIPASE.H,

which is located in the INCLUDE directory of the TRIP tree structure.

#include "tripase.h"

int any_ase_name(argstr, arglen)

char *argstr;

int *arglen;

{

 …

 return(ASE_SUCCESS);

}

Linking ASE Routines to TRIP

You must build an ASE library and define a logical name to point to that

library for TRIP to be able to find your ASE routines.

UNIX

The logical name which needs setting is called TDBS_ASELIBS. This

variable’s value should contain a list of logical names mapped to the ASE

libraries made using the procedure shown below, for instance:

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 377 of 416

MYASE1=\usr\lib\myase1

MYASE2=\usr\lib\myase2 etc.,

TDBS_ASELIBS=MYASE1,MYASE2,MYASE3 etc.

This variable can be set either in the user’s own environment or in the

system-wide tdbs.conf configuration file.

To make the ASE library, use the following procedure:

• Create a directory to hold your source files.

• Copy all of the files from the ASE directory in the TRIP tree to your new

directory.

• Create your source files.

• Edit the makefile (which has been copied from the TRIP ASE directory),

so that the variable ASEOBJ is defined to be a list of space-separated

names of the ASE object files and routine names.

• Type ‘make’ at the command prompt.

For example, suppose you have a TRIP installation in /usr/local/TRIP:

/users/dev> mkdir ase

/users/dev> cd ase

/users/dev/ase> cp /usr/local/TRIP/v31/ase/* .

Now suppose that you have source files ‘Source1.c’ and ‘Source2.c’

containing ASE routines ‘ase1’ and ‘ase2’:

/users/dev/ase> vi Makefile

… ASEOBJ=source1.o source2.o

/users/dev/ase> make

This will compile your source, build a TRIP jump table if necessary, and then

build an executable called (by default) ‘asemain’. If you have correctly defined

TDBS_ASELIBS to point to the newly-created ‘asemain’, you will be able to

invoke ASE routines immediately.

Notes:

• Historically, the logical name TDBS_USRSHR was used to point to the

ASE being used but, as it is only possible to specify one library with

TDBS_USRSHR, it has been depreciated, and is only retained for

backward compatibility.

• When specifying ASE routine names, they must be lowercase only. If

there are any uppercase letters in the routine name, the invocation of

the routine will fail.

Windows

All ASE’s must be compiled and linked into a DLL. The DLL must be 32- bit if

you use a 32-bit TRIPsystem, and 64-bit if your TRIPsystem is 64-bit.

We recommend using a Visual Studio project file to specify the compiler and

linker options for building an ASE library. An example Visual Studio 2008
solution and Visual C++ project file is available in the ase directory of the

TRIPsystem installation.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 378 of 416

TRIP is directed to which DLL to use by the value of TDBS_ASELIBS in the

tdbs.conf file. This value is a list of logical names mapped to the ASE libraries

made using the procedure shown below, for instance:

MYASE1=c:\mylibs\myase1

MYASE2= c:\mylibs\myase2 etc,

TDBS_ASELIBS=MYASE1,MYASE2,MYASE3 etc.

TDBS_ASELIBS can be set either in the user’s own copy of tdbs.conf, or in

the system-wide tdbs.conf configuration file.

ASE function should be declared as below, replacing ’myase’ in the example,

with the name of your ASE:

 int ASECALL myase(char*,int*)

Note:

ASE names must follow the usual conventions for TRIP ASE names: max

16 characters, English alphabet letters and digits only.

It is extremely important to remember the ASECALL macro. The windows

precompiler expands it to the __stdcall calling convention, without which the

call may suffer a fatal error. You may safely keep ASECALL in your code

even if you build your ASE for other platforms as well (e.g. Linux), since its

definition on non-Windows platforms is empty.

If you implement your ASE in C++, then your function must be declared as

below:

extern ”C” int ASECALL myase(char*, int*)

Using DEF-files to export your ASE function from the DLL is strongly

recommended. The following two lines are sufficient to enable the above

example function:

EXPORTS

myase

Include the DEF file in the DLL project so that the linker will produce the DLL

with the desired exports.

Note:

Functions exported with decorated names (e.g. _myase@8), are unusable.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 379 of 416

Debugging ASE routines

ASE routines can be debugged through the use of multiple printf()

statements, or other debugging methods such as dbx (UNIX) and ???

(Windows).

Notes:

• When debugging, it is not possible to immediately set a breakpoint in an

unloaded object, however a breakpoint can be set in advance (e.g. at

beginning of function) and loaded later.

• The ASE must be in the libiray being debugged.

CCL ASEs

The CCL statement CALl invokes a named ASE routine with a user specified

argument string, for example:

CALl notepad This is a string to send to the ASE

routine notepad

Quotation marks enclosing the argument string are not necessary. If they

have been included, they will be passed unmodified to the ASE routine.

The string specified in the CCL command is passed to the ASE routine in the

Argstr argument, with the length of the string being given by the Arglen

argument.

Note:

The argument string is not zero terminated by TRIP.

Using the CALl command, the only way for the ASE routine to communicate

with the calling process is via the return code from the routine. This return

code can be examined using the TRIPclassic macro function %RTNA and the

TRIPapi function ASE RET CODE.

The CCL interface in TRIPclassic supports ASE_REFRESH, in addition to the

usual success and fail return codes. ASE_REFRESH can be added to either

ASE_SUCCESS or ASE_FAIL, and causes the screen to be repainted upon

return from your routine.

For example (the source code can be found in the SAMPLES directory in the

TRIP tree, called CCLASE.C):

#include <stdio.h>

#include "tripase.h"

int notepad(char *argstr, int *arglen)

{

 argstr[*arglen] = '\0';

 printf("\n\n%s\n\n", argstr);

 getchar();

 return(ASE_SUCCESS + ASE_REFRESH);

}

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 380 of 416

Output Format ASEs

There are two styles of ASE available within a report:

• an ASE used within a text insert function, to modify the content of an

individual box, and

• an ASE used at the very top of the format specification, to allow

modification of the entire record in memory. This style requires the

use of the TRIPapi.

Text Insert ASEs

Typically, text insert ASEs are used to reformat a particular value from the

database, or to perform such simple functions as column addition. The ASE

will be declared using a report function specification such as:

<box at b(*)+1,1

 <t=<call(reformat, speaker.1, 0)>>

>

where ‘reformat’ is the name of the ASE routine to call, ‘speaker.1’ is the item

from the current record to pass to the ASE routine (in this instance, the first

subfield from the PHrase field speaker), and ‘0’ is a ‘delay’ flag having these

possible values:

1 no delay, call immediately

2 call when the user triggers a ‘hot key’ (normally <Gold><G>

in TRIPclassic)

3 call after TRIP has formatted the content of a page

Instead of passing a field item to the ASE routine, a report can pass a literal

string, for example:

<box at b(*)+1,1

 <t=<call(reformat, "My String", 0)>>

>

To use the text insert ASE to produce effects such as column addition, you

can use constructs such as:

<for <x>

 <box at b(*)+1,1

 values.x

 <t=<call(add, values.x, 0)>>

 >

>

<box at b(*)+1,1 <t=<call(total, "", 0)>> >

which will call the ASE routine ‘Add’ for each subfield of field values, and then

call the ASE routine ‘Total’.

The value specified as the item to pass to the ASE routine can be read by

that routine in the Argstr argument, with the length of the item being given by

the Arglen argument.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 381 of 416

Any modifications that the ASE routine makes to the content of the Argstr

string will be used by TRIP when formatting the text insert. If you do not wish

anything to be output by TRIP, you must set the contents of the Arglen

argument to 0 before returning from your routine.

For example:

#include "tripase.h"

int reformat(char *argstr, int *arglen)

{

 char *chp;

 argstr[*arglen] = '\0';

 for(chp=argstr; *chp; chp++)

 if(*chp = ' ') *chp = '_';

 return(ASE_SUCCESS);

}

which simply replaces all occurrences of the space character with

underscores in any string passed to it.

As another example, the ASE routines ‘Add’ and ‘Total’ used in the previous

format example are shown here (these routines can also be found in the

SAMPLES directory in the TRIP tree, named TEXTASE.C):

#include <stdio.h>

#include "tripase.h"

static int current_total = 0;

int add(char *argstr, int *arglen)

{

 int iVal;

 argstr[*arglen] = '\0';

 sscanf(argstr, "%d", &iVal);

 current_total += iVal;

 *arglen = 0;

 return(ASE_SUCCESS);

}

int total(char *argstr, int *arglen)

{

 *arglen = sprintf(argstr, "%d",

 current_total);

 return(ASE_SUCCESS);

}

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 382 of 416

Format-Level ASEs

If you wish to modify more than the value of a single string during output, you

should use a format-level ASE. An ASE at format-level must be declared

immediately after the opening chevron of a format, for example:

<

 <call(format_ase, "", 0)>

 …

>

As shown above, the call must not be placed inside a layout box.

You can only pass literal strings to this type of ASE, not field items. You can,

however, gain access to the entire record in memory in the ASE routine using

the function CURRENT ITEM, as documented in the section entitled

‘TRIPsystem Callback Functions for ASE Routines’. This function will return,

among other things, the current record control handle pertaining to the record

in memory.

Since a record control handle may only be manipulated using TRIPapi

functions, you must have a TRIPapi license to modify the record in memory. If

you have a TRIPapi license, you can set a cursor to the handle and retrieve

or modify as you normally would.

Any modifications that you make to the record will be reflected when your

ASE routine returns, with two restrictions: you will be unable to change the

number of paragraphs in a TExt field and the number of part records in the

record.

You can work around the first restriction, however, by defining a TExt field to

have a maximum of one paragraph. You can then put whatever you like into

that one paragraph.

TForm Load ASEs

When you are loading data to a database using the TRIP system utility

program BAFFIT, you can interact with the data before it is committed to the

database. This can be very useful when performing validation beyond the

scope of that provided by TRIP, or when performing complex multistage

updates in many databases based on the new or updated contents of a

master.

TForm load ASEs are available at two levels; field-specific ASEs and record-

specific ASEs.

Field-Specific ASEs

When you define a field-specific ASE for a database, you are telling TRIP to

call your ASE routine every time that an instance of that field is encountered

in the load file.

For structured field types such as PHrase, NUmber, etc., your ASE routine

will be called for each distinct subfield encountered. For unstructured field

types such as TExt and STring, your ASE routine will be called just once,

after the field has been loaded into memory from the file.

In either case, the ASE routine names are defined in one of two ways:

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 383 of 416

In TRIPmanager, use the entry boxes on the Advanced tab of the Field

Properties form (with the required field’s design loaded). There you can

provide the name of an ASE routine to be called during TForm load, and an

ASE routine to be called during scanning. If you do not wish to call an ASE

routine during scanning, only enter a value in the TForm load field.

Alternatively, use the TRIPapi to specify the name of the ASE routine to be

called with the field baffit_ase in the TRIPsystem field specification data

structure (field_spec_rec/FieldSpecRecord).

Structured Field-Specific ASEs

When an item from a structured field is encountered in the load file, TRIP will

call your routine with the content of the item given in the Argstr and Arglen

arguments. Any changes that you wish to have committed to the database

should be made to these two arguments in your routine.

For example, the following ASE routine converts all lowercase letters to

uppercase in the item being loaded (this example can be found in the TRIP

SAMPLES directory, called TFOFIELD.C):

#include <ctype.h>

#include "tripase.h"

int loadase(char *argstr, int *arglen)

{

 char *chp;

 argstr[*arglen] = '\0';

 for(chp=argstr; *chp; chp++)

 *chp = islower(*chp) ? toupper(*chp) :

 *chp;

 return(ASE_SUCCESS);

}

If you wish to inhibit the loading of a particular item, you must set the length

of the argument string (Arglen) to zero before returning.

If you wish to give an error message, you should return a fail code from your

routine, whether or not you inhibit loading. For example:

#include "tripase.h"

int errorase(char *argstr, int *arglen)

{

 char msg[80];

 int len;

 if(… some condition …) {

 /* Inhibit loading of item */

 *arglen = 0;

 /* Create and register error message */

 strcpy(msg, "Error in item load.");

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 384 of 416

 len = strlen(msg);

 TdbMessage(MSG_SET_ERROR, msg, &len);

 /* Trigger output of error message */

 return(ASE_FAIL);

 }

}

To perform differing actions for the various modes (such as add, modify and

delete) in which BAFFIT can operate, use the routine BAFFIT MODE

documented in the section entitled ‘TRIPsystem Callback Functions for ASE

Routines’. For example:

#include "tripase.h"

int loadase2(char *argstr, int *arglen)

{

 int mode;

 mode = TdbBaffitMode(RECORD_LEVEL);

 switch(mode) {

 case ADD_MODE : …

 case MODIFY_MODE : …

 case DELETE_MODE : …

 }

 return(ASE_SUCCESS);

}

Unstructured Field-Specific ASEs

Unstructured fields, such as TExt and STring, do not easily divide into logical

256 byte sections, and so do not permit the type of calling which is performed

for structured field types.

Because of this restriction, your ASE routine is called only once for each field

instance found in the load file. Consequently, whenever the field number

referenced by the load file changes, your ASE routine will be called if the old

field number referenced the field to which your ASE routine was attached.

For example, suppose you have attached an ASE routine to field number five

of a given record design. In this instance, the following TForm layout for a

single record would trigger two calls to your ASE routine, at the points

marked with ‘***ASE***’:

R^

1F^

PThis is field 1^

2F^

PThis is field 2^

5F^

PThis is the first paragraph of field 5^

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 385 of 416

PThis is the second paragraph of field 5^

3F^ ***ASE***

PThis is field 3^

5F^

PThis is the third paragraph of field 5^

4^ ***ASE***

PThis is field 4^

Your ASE routine would be called on the change from field five to field three,

and likewise, on the change from field five to field four. Your ASE routine is

not simply called once at the end of the record, and you cannot therefore

assume that the entire field has been loaded once you are called (unless you

know the format of the load file’s content in advance).

To query the content of the field scanned or any other fields within the record,

place a call to the TRIPsystem function CURRENT ITEM to gain the current

record control handle (as documented in the section entitled ‘TRIPsystem

Callback Functions for ASE Routines’). This handle can then be interrogated

and updated using a TRIPsystem cursor. You must have purchased a

TRIPapi license to do this.

To inhibit the loading of the field in question, you must explicitly delete the

content of that field using the TRIPapi call DELETE ITEM.

If you wish to provide an error message, you should return a fail code from

your routine whether or not you inhibit loading. For example:

#include "tripase.h"

int errorase(char *argstr, int *arglen)

{

 char msg[80];

 int len;

 if(… some condition …) {

 /* Create and register error message */

 strcpy(msg, "Error in item load.");

 len = strlen(msg);

 TdbMessage(MSG_SET_ERROR, msg, &len);

 /* Trigger output of error message */

 return(ASE_FAIL);

 }

}

To perform differing actions for the various modes (add, modify and delete)

in which BAFFIT can operate, use the routine BAFFIT MODE documented in

the section entitled ‘TRIPsystem Callback Functions for ASE Routines’. For

example:

#include "tripase.h"

int loadase2(char *argstr, int *arglen)

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 386 of 416

{

 int mode;

 mode = TdbBaffitMode(RECORD_LEVEL);

 switch(mode) {

 case ADD_MODE : …

 case MODIFY_MODE : …

 case DELETE_MODE : …

 }

 return(ASE_SUCCESS);

}

Record-Specific ASEs

Record-specific TForm load ASEs normally perform complex cross-field

validation exercises beyond the scope of TRIP’s default operators.

Two record-level access ASEs have been defined: before and after the

record is committed to the database. In both cases, the only access

mechanism for the record is via the current record control handle, gained by

calling the TRIPsystem function CURRENT ITEM (as documented in the

section entitled ‘TRIPsystem Callback Functions for ASE Routines’). Again,

you must have purchased a TRIPapi license to do this.

To define the names of the ASE routines to be called:

1 In TRIPmanager, enter the ASE to be called, both before and after

commit, in the ‘Data Loading’ section on the ‘Advanced’ tab of the

General Database Properties form. You will be prompted for the

names of the routines to be called.

2 With the TRIPapi, use the fields baffit_ase1 and baffit_ase2 in the

TRIPsystem database specification data structure

(base_spec_rec/BaseSpecRecord) to specify the names of the

routines to call before and after the commit, respectively.

If you wish to inhibit the loading of a record, you should return a fail code from

your ASE routine.

To issue an error message, call the TRIPsystem callback function MESSAGE

prior to returning a fail code. You cannot use this mechanism for delivering an

error message if you return a success code. For example:

#include "tripase.h"

int recordase(char *argstr, int *arglen)

{

 char msg[80];

 int len;

 if(… some condition …) {

 strcpy(msg, "Cannot load record.");

 len = strlen(msg);

 TdbMessage(MSG_SET_ERROR, msg, &len);

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 387 of 416

 return(ASE_FAIL);

 }

 return(ASE_SUCCESS);

}

To perform differing actions for the various modes (add, modify and delete)

in which BAFFIT can operate, use the routine BAFFIT MODE. For example:

#include "tripase.h"

int loadase2(char *argstr, int *arglen)

{

 int mode;

 mode = TdbBaffitMode(RECORD_LEVEL);

 switch(mode) {

 case ADD_MODE : …

 case MODIFY_MODE : …

 case DELETE_MODE : …

 }

 return(ASE_SUCCESS);

}

Index ASEs

You can specify which terms are to be indexed (either to exclusion of the

terms within the actual data, or in addition) by interacting with TRIP when it is

preparing entries for the index file.

For example, you may wish to have the term ‘United States’ indexed

wherever the term ‘US’ occurs within the database. Users can then search for

either, and find both.

When processing languages with a high degree of complexity, such as

Finnish or German, you can determine which terms should be indexed in their

entirety and which should be indexed by their stems. For example, in German

the stem ‘geschl’ occurs in many terms, and so in a large database the

search:

Find geschl$

will be relatively slow in completing. As this is a very useful type of search, an

index ASE can be used to direct the index engine to add the stem ‘geschl’ to

the index at every point where a derived term occurs, such as ‘geschlossen’.

An index ASE can only be defined on a per-field basis. Your ASE routine will

be called for each term which occurs in that field, with the term specified in

the Argstr/Arglen parameters. Any changes that you make to these

parameters will be reflected in the index files, according to the circumstances

detailed below.

To define the names of the ASE routine to be called:

• In TRIPmanager, user the entry boxes on the Advanced tab of the

Field Properties form to specify the names of the routines to be called

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 388 of 416

during TForm load and scanning. Specify the scanning ASE if you

wish your routine to be called during Index.

• With TRIPapi, use the field scanit_ase in the TRIPsystem

 field specification data structure (field_spec_rec /FieldSpecRecord) to

specify the name of the routine to call during Index.

The conventions used for the Index ASE are slightly different, depending on

the type of field to which the ASE routine is attached.

If the field is of type TExt, NUmber, INteger, DAte or TIme, your routine will

be called for each term which is scanned in that field. If you want your routine

to have only the original term indexed, then:

• do not modify the contents of Argstr

• set Arglen to zero before return

• return ASE_SUCCESS from your routine

If your routine should have new terms indexed instead of the original, then:

• modify the contents of Argstr to the new term(s) required

• set Arglen to the length of the new term(s)

• return ASE_FAIL from your routine

If you want your routine to have new terms indexed as well as the original,

then:

• modify the contents of Argstr to the new term(s) required

• set Arglen to the length of the new term(s)

• return ASE_SUCCESS from your routine

If you are specifying more than one term, either in addition to the original or

as a replacement, the terms should be separated by one space character.

If the field being scanned is of type PHrase, your routine will also be called

with the entire subfield as well as with each component term. When TRIP has

written an entire subfield into Argstr, Arglen will be negative, to signal the

difference between the two.

If Arglen is negative, your routine can have just the original phrase indexed

by:

• setting Arglen to zero before return

• not modifying the contents of Argstr

• returning ASE_SUCCESS

If Arglen is negative, you can have a new phrase indexed instead of the

original by:

• modifying the contents of Argstr

• setting Arglen to the length of the new phrase

• returning ASE_FAIL

If Arglen is negative, you can also have both a new phrase and the original

indexed by:

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 389 of 416

• modifying the contents of Argstr

• setting Arglen to the length of the new phrase

• returning ASE_SUCCESS

If Arglen is positive, you can have just the original term indexed by:

• not modifying the contents of Argstr

• setting Arglen to zero before return

• returning ASE_SUCCESS from your routine

If Arglen is positive, you can have new terms indexed instead of the original

by:

• modifying the contents of Argstr to the new term(s) required

• setting Arglen to the length of the new term(s)

• returning ASE_FAIL from your routine

If Arglen is positive, you can also have new terms indexed as well as the

original by:

• modifying the contents of Argstr to the new term(s) required

• setting Arglen to the length of the new term(s)

• return ASE_SUCCESS from your routine

Thus, your routine could be called for any of the following:

• the original phrase subfield

• each term within the original subfield

• each term within a replacement for the original subfield

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 390 of 416

For example (this example can be found in the SAMPLES directory of the

TRIP tree, called SCANASE.C):

#include "tripase.h"

int indexase(char *argstr, int *arglen)

{

 if(*arglen < 0) { /* entire subfield */

 argstr[-(*arglen)] = '\0';

 if(!strcmp(argstr, "UNITED STATES"))

 /* Accept United States without modification */

 *arglen = 0;

 return(ASE_SUCCESS);

 }

 else if(!strcmp(argstr,

 "GREAT BRITAIN")) {

 /* Add "United Kingdom" to "Great Britain" */

 strcpy(argstr, "United Kingdom");

 *arglen = strlen(argstr);

 return(ASE_SUCCESS);

 }

 else if(!strcmp(argstr, "TIMBUKTU")) {

 /* Replace Timbuktu with "Where?" */

 strcpy(argstr, "Where?");

 *arglen = strlen(argstr);

 return(ASE_FAIL);

 }

}

else { /* single term */

 argstr[*arglen] = '\0';

 if(!strcmp(argstr, "UNITED")) {

 /* Replace "united" with "divided" */

 strcpy(argstr, "divided");

 *arglen = strlen(argstr);

 return(ASE_FAIL);

 }

 }

 /* Catch all - no new terms, index original

 */

 *arglen = 0;

 return(ASE_SUCCESS);

}

This example will:

1 Allow ‘United States’ to be indexed as an entire phrase

2 Add ‘United Kingdom’ wherever ‘Great Britain’ occurs

3 Replace ‘Timbuktu’ with the WHERE?

4 Replace the term ‘United’ with the term ‘Divided’

This will have several effects:

• Field-specific searches for ‘United States’ will fail, unless the search

term is single-quoted:

Find MYPHRASE = UNITED STATES - No hits!

Find MYPHRASE = 'UNITED STATES' - Hits

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 391 of 416

This is because the phrase ‘United States’ was indexed, but the individual

term ‘United’ was replaced with ‘Divided’. Thus, the following search will find

records containing ‘United States’:

Find MYPHRASE = DIVIDED STATES - Hits

• Searching for ‘United Kingdom’, with or without single quotes, will

locate records containing ‘Great Britain’.

• Searching for ‘Timbuktu’ will always fail, but searching for WHERE? will

hit records containing ‘Timbuktu’.

Data Entry ASEs (TRIPclassic only)

There are six types of ASE defined for data entry forms, none of which pass

any arguments to the ASE routines. All interaction with the data onscreen, or

in the record in memory, must be performed using a set of specialized

routines for TRIPclassic interaction or by using the TRIPapi.

The six ASEs defined are:

1 On initialization of the form prior to the user being allowed to input.

2 On the user leaving the form via a <Leave> action, e.g. <PF 3>.

3 On the user committing the record using <Enter>, before the record is

actually written to the database.

4 After the record has actually been written to the database and before

the initialization ASE is invoked once more (if further data entry is to

be performed).

5 On entry to a particular field box.

6 On exit from a particular field box.

To define the routines to be called at a form-based point (numbers one

through four above), press <kp 1> at any time when the field properties

overlay is not shown during data entry form design. You will be prompted to

supply up to four ASE routine names.

To define the routines to be called at a box-based point (numbers five and six

above), press <kp 1> when the field properties overlay is shown, i.e. you

have pressed <Gold><kp 9> in an attached field box. You will be prompted to

supply up to two ASE routine names.

There are a number of return code bit settings that are specific for data entry

ASE routines:

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 392 of 416

Setting Name Function

ASE_REFRESH signals TRIP to repaint the screen on
return from your routine

ASE_CONTINUE signals TRIP to simulate a repeat of the
keystroke which occurred just before the
invocation of your routine

ASE_MESSAGE signals TRIP to report a message
registered using the MESSAGE callback
function (useful when you want to report a
message without returning a fail code)

ASE_FIXFIELD signals TRIP to leave the cursor in the box
to which you have set it, rather than simply
moving to the next in sequence

ASE_NOFIELD signals TRIP to disallow any user input to
the form

There are also a number of TRIPclassic specific callback functions,

summarized below and documented fully in the section entitled ‘TRIPclassic

Callback Functions for ASE Routines’:

Function

Name

Purpose

CHECK ENTRY returns to your routine the field number
and item, or row, number at which the
cursor is currently positioned

GET LINE returns the content of the line in which the
cursor is currently positioned

PUT LINE overwrites the content of the line in which
the cursor is currently positioned

SET ENTRY sets the cursor to a specific field and item,
or row, number

WRITE

MESSAGE

delivers a message on the TRIP message
line immediately, rather than on return
from your routine as is the case with the
MESSAGE callback

Form-Based ASEs (TRIPclassic only)

The form-based ASEs (points one through four of the Data Entry ASE list

given previously) do not allow onscreen modification or interrogation of data.

If you wish to change or read the contents of the record in a routine invoked

from one of these ASEs, you must use the TRIPapi to do so. In this case, you

can use the TRIPsystem function CURRENT ITEM to get the current record

control handle, which can be manipulated using a standard TRIPsystem

cursor.

The only interaction that can be performed with TRIPclassic is via the return

code from your ASE routine, as detailed below.

Form Initialization (TRIPclassic only)

This ASE is called before the user is actually allowed to see the data entry

form. Its normal use is therefore either to initialize data for the later ASEs or

to stop the user from having access to the form.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 393 of 416

When initializing data, your routine should always return a success code.

When preventing form access, your routine should always return a fail code.

TRIP will only act upon this code, however, if the user has attempted to enter

data entry with the CCL EDit command. If the user has entered data entry via

the standard menus, the return code will have no effect.

Typically, if you are preventing the form from appearing, your routine will call

the MESSAGE function from the TRIPsystem to report to the user why his or

her EDit command has failed. This is documented in the section entitled

‘TRIPsystem Callback Functions for ASE Routines’,

Quitting the Form Using <Leave> (TRIPclassic only)

TRIP invokes this ASE when the user makes modifications to the record

onscreen and presses either <Leave> or <Gold><Leave>. Returning a fail

code from your routine at this point will stop the quit action from completing,

i.e. it will keep the user in the form.

Treat this ASE with care. Making it impossible for the user to quit data entry

will result in many records of poor quality being committed to the database,

since <Enter> will then be the only permissible method for leaving data entry.

To avoid the confusion generated by non-working keystrokes, be sure to

provide appropriate messages when such circumstances arise.

Record Commit Before Writing to BAF

TRIP invokes this ASE when the user submits the record, signalling that all

modifications have been completed. You can interrupt the sequence,

however, by returning a fail code from your ASE routine, as the record has

not yet been written to the database.

If you do return a fail code, you will probably want to direct the user to a

particular field for update. You can do this with the callback function SET

ENTRY, as documented in the section entitled ‘TRIPclassic Callback

Functions for ASE Routines’, and setting the FIXFIELD bit in the ASE routine

return code. For example:

#include "tripase.h"

int prewritease(char *argstr, int *arglen)

{

 char msg[80];

 int len;

 if(… some condition …) {

 /* Format and register error message */

 strcpy(msg, "Bad value in field");

 len = strlen(msg);

 TdbMessage(MSG_SET_ERROR, msg, &len);

 /* Move the cursor to the incorrect field (26)

*/

 TedSetEntry(26, 1);

 /* Signal TRIP to leave cursor in place */

 return(ASE_FAIL + ASE_FIXFIELD);

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 394 of 416

 }

 return(ASE_SUCCESS);

}

If you do not use the FIXFIELD bit in the return code, TRIP will place the

cursor in the first box on the entry form and ignore any field placement

performed by the SET ENTRY function.

Record Commit After Writing to BAF

TRIP invokes this ASE once the record has been successfully written to the

database. The ASE will not be invoked if the commit failed.

If your routine returns a success value, the user can continue to the next

record or return to CCL.

If your routine returns a fail value, the record has already been written but the

data entry mode is set to ‘modify’, giving the user the ability to edit it.

Additional record commits of this same record will modify the record further,

rather than adding a new record to the database.

For example:

#include "tripase.h"

int postwritease(char *argstr, int *arglen)

{

 if(… some condition …) {

 /* Create and register a message */

 strcpy(msg,

 "You must update this value");

 len = strlen(msg);

 TdbMessage(MSG_SET_ERROR, msg, &len);

 /* Set the cursor to the required field

 */

 TedSetEntry(26, 1);

 /* Return fail - switch TRIP to modify

 mode */

 return(ASE_FAIL + ASE_FIXFIELD);

 }

 return(ASE_SUCCESS);

}

If you have a TRIPapi license, you can delete the record just created with the

TRIPsystem functions CURRENT ITEM and DELETE RECORD.

Box-Based ASEs (TRIPclassic only)

The box-based ASEs (points five and six of the Data Entry ASE list given

previously) allow onscreen modification of data. By using the routines

documented in the section entitled ‘TRIPclassic Callback Functions for ASE

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 395 of 416

Routines’, any changes in your ASE routine will be discernible to the user at

the time of modification.

TRIP invokes box-level ASE routines differently for TExt fields than for other

field types. If the field in question is of type PHrase, NUmber, INteger, DAte

or TIme, each of the box-based ASEs will be invoked separately for each

subfield in which a modification is made.

During data add, the entry ASE will be invoked when the cursor is first placed

in the box, and the exit ASE will be invoked when the cursor either leaves the

box or is moved to the next subfield using <Return>. If a new subfield is to be

added, the entry ASE is called again before the user can enter the subfield.

For a TExt field, the entry ASE is invoked once on entry to the box, and the

exit ASE is invoked once on exit from the box if the user has made any

modifications to the content of that box.

To enable your routine to make onscreen data modifications, you should

place calls to the TRIPclassic callback functions GET LINE and PUT LINE.

These act on the ‘current’ field and row set using the function SET ENTRY.

To protect a particular box from a certain class of user but not from all users,

set the ASE_CONTINUE bit in the return code. This bit causes TRIP to

simulate a repeated keystroke, for example, as if the user had pressed the

<Tab> key twice to skip over a field.

PART 5: APPENDIX AND INDEX

APPENDIX C: ASE ROUTINES

Page 396 of 416

Search Form ASEs (TRIPclassic only)

The only ASE defined for search forms is used for each search box on the

form. This ASE is defined on page three of the layout screen in the ASE

column of the box specification tuple.

When defined, this ASE will be invoked when the user leaves the box in

question. Your ASE routine can then use the TRIPclassic callback function

GET LINE to retrieve the data input by the user. Your routine can use PUT

LINE to replace that data following data modifications, and can also modify

the content of any other search box on the screen by using SET ENTRY

before PUT LINE.

When calling SET ENTRY, the ‘field number’ should be the ordinal box

number as defined on page two of the layout screen, and the ‘row number’

should always be set to 1.

You cannot use the FIXFIELD bit in the return code on a search form, as

TRIP will ignore any attempt to set the real cursor to another box out of

<Tab> sequence.

TRIPsystem Callback Functions for ASE Routines

Within an ASE routine, it is often useful to be able to place a call into

TRIPsystem to establish the user’s current context, or to report a message in

a standard manner.

TRIPclassic Callback Functions for ASE Routines

Within an ASE routine, it is often useful to be able to place a call into

TRIPclassic to perform such functions as writing data to field boxes in data

entry, or issuing messages before your routine returns.

If you have purchased a TRIPapi license, you can use all of the TRIPapi

functions from within ASE routines. If you have not, the following pages detail

those routines which are available to all ASE programmers.

TRIP API Reference Guide

Refer to the TRIP API Reference guide document, supplied with the

TRIPsystem distribution, for details on all TRIPsystem API calls.

PART 6: APPENDIX AND INDEX

APPENDIX C: LIST OF FIGURES AND TABLES

Page 397 of 416

List of Figures and Tables

Figures

Figure 1–2 The CONTROL database 22
Figure 1–3 Head and part records in a database 23
Figure 1–4 Carroll’s head/part record structure 24
Figure 1–5 A head record 24
Figure 1–6 A part record 24
Figure 1–7 A record entity 24
Figure 1–8 A composite record 25
Figure 1–9 Record components 25
Figure 2–1 New Database Wizard 27
Figure 2–2 New Database General Properties 28
Figure 2–3 Database Name Entry Field 28
Figure 2–4 The Database File Location Selection Boxes 29
Figure 2–5 Transaction log selection 30
Figure 2–6 XML Enabling a Database 31
Figure 2–7 The Database Description field 31
Figure 2–8 New Database Design Wizard Completion page 32
Figure 2–9 DB Creation Confirmation 32
Figure 2–10 Specify Field Collection Query 32
Figure 2–11 The Database General Properties Form 33
Figure 2–12 Sample SYSTEM default report, ‘Dump’ 34
Figure 2–13 The Database Files Properties Form 1 37
Figure 2–14 The Database Files Properties Form 2 38
Figure 2–15 The Database Indexing Properties Form 39
Figure 2–16 Natural Language Treatment selection box 39
Figure 3–1 The ‘Train’ thesaurus, vertical representation 84
Figure 3–2 The ‘Train’ thesaurus, horizontal representation 84
Figure 3–3 New Thesaurus Menu 86
Figure 3–4 STatus for thesaurus ‘Thesali’ 92
Figure 5–1 Entry forms for database CORR 105
Figure 5–2 Properties for CORR entry form FULL 106
Figure 5–3 Copy a Data Entry form 106
Figure 5–4 Name New Data Entry Copy 107
Figure 5–5 Data Entry Copy Confirmation 107
Figure 5–6 Delete a Data Entry form 108
Figure 5–7 Delete Data Entry form confirmation 108
Figure 5–8 Data Entry form Deleted 108
Figure 6–1 Report layout and construction 110
Figure 6–2 Report components 110
Figure 6–3 New Report Menu 112
Figure 6–4 New Output Format name entry dialog 112
Figure 6–5 New report Properties dialog 113
Figure 6–6 New report Content dialog 114
Figure 6–7 Paged output 142
Figure 6–8 The Show Format window 145
Figure 7–1 Search forms for a TRIP installation 202
Figure 7–2 Properties for search form ALICE_DEMO 202
Figure 7–3 Copy a Search Form 203
Figure 7–4 Name Search Form Copy 203

PART 6: APPENDIX AND INDEX

APPENDIX C: LIST OF FIGURES AND TABLES

Page 398 of 416

Figure 7–5 Search Form copy confirmation 203
Figure 7–6 Delete a Search form 204
Figure 7–7 Delete Search Form confirmation 204
Figure 7–8 Search form Deleted 204
Figure 9–1 Indexing the Database TestThes 217
Figure 9–2 Load a TForm file into database TestThes 218
Figure 9–3 Load TForm Specify File Name form 218
Figure 10–1 Creating a New User 224
Figure 10–2 The create New User form 224
Figure 10–3 The User created confirmation dialog 225
Figure 10–4 Deleting the user ‘Fred’ 225
Figure 10–5 The Delete User Confirmation 226
Figure 10–6 The Deleted User Access Loss Confirmation 226
Figure 10–7 Opening Properties for the User, FREDERICO 227
Figure 10–8 The user FREDERICO’s user Properties form 227
Figure 10–9 Date Format selection box 228
Figure 10–10 Ignore TRIP password checkbox 228
Figure 10–11 Date Format selection box 228
Figure 10–12 Date Format Selections 228
Figure 10–13 Changing the date digit separator 229
Figure 10–14 Management privilege settings 229
Figure 10–15 Session parameter settings 229
Figure 10–16 Company information entry area 230
Figure 10–17 Procedures for user FREDERICO 230
Figure 10–18 Group membership for user FREDERICO 231
Figure 10–19 The Add To Group form 231
Figure 10–20 Access Rights for user FREDERICO 232
Figure 10–21 Creating a New Group 232
Figure 10–22 New Group dialogue 233
Figure 10–23 New Group Created Confirmation 233
Figure 10–24 Deleting a group 233
Figure 10–25 Confirming deletion of a group 234
Figure 10–26 The ‘My users’ sub-tree 234
Figure 10–27 The Add Group Member confirmation 234
Figure 10–28 The Delete Member confirmation 235
Figure 10–29 The Change Manager option 235
Figure 10–30 Change Manager Selection box 236
Figure 10–31 Change Manager Confirmation 236
Figure 11–1 Granting Access to Database CARROLL 238
Figure 11–2 The Access Level Form 239
Figure 11–3 Database Name Selection 239
Figure 11–4 Database Name Selection 239
Figure 11–5 Field and Record Restrictions 240
Figure 11–6 Record-level READ rights for ‘FREDERICO’ 242
Figure 11–7 Record-level WRITE rights for ‘FREDERICO’ 242
Figure 11–8 The Change Manager action menu option 245
Figure 11–9 Change Manager Selection 245
Figure 11–10 Carroll’s Show ACcess screen 246

PART 6: APPENDIX AND INDEX

APPENDIX C: LIST OF FIGURES AND TABLES

Page 399 of 416

Tables

Table 0–1 TRIP naming conventions 14
Table 1–2 Sample flat file table 17
Table 1–3 Sample relational database tables 18
Table 1–4 Sample full-text database table 19
Table 2–1 Special characters 41
Table 2–2 The character folding classes 42
Table 2–3 Truncation, masking and special symbols 43
Table 2–4 The character classes 45
Table 2–5 Paragraph definition in TRIP 49
Table 2–6 Sentence definition in TRIP 51
Table 2–7 Field Defaults and Restrictions 58
Table 2–8 Use of the record name field 63
Table 2–9 Symbols used in pattern specification 66
Table 2–10 TRIP’s predefined character sets 67
Table 2–11 A simple pattern 67
Table 2–12 A more complex pattern 68
Table 2–13 More patterns 69
Table 2–14 Sample combined character sets 70
Table 2–15 Modifying a database design 73
Table 3–1 Record contents and thesaurus design for ‘Train’ 85
Table 3–2 The thesaurus template 87
Table 3–3 Record contents and thesaurus design 88
Table 3–4 Hierarchical relationships of the ‘Train’ thesaurus 89
Table 4–1 Hierarchical relationships of the ‘Train’ thesaurus 97
Table 4–2 A sample accounting file 99
Table 6–1 Types of background text 125
Table 6–2 Text string reserved characters 125
Table 6–3 Headers 126
Table 6–4 Separators 126
Table 6–5 Trailers 129
Table 6–6 Text string functions 131
Table 6–7 Field type-dependent functions 133
Table 6–8 Box and box group functions 135
Table 6–9 Format functions 136
Table 6–10 FOR loop functions 137
Table 6–11 Structure of Olympic_Games 139
Table 6–12 Date formats 158
Table 6–13 Samples of <Numform> output 185
Table 8–1 Anatomy of a global update command 207
Table 8–2 Structure of a global update using record numbers 207
Table 8–3 Generic update targets 208
Table 8–4 Structure of a global update using a search result 211
Table 8–5 Record update targets 211
Table 9–1 Operating systems and log file names 219
Table 9–2 Running the BAFINI utility 220
Table 11–1 General field access rights 240
Table 11–2 Unsupported combinations of access rights 241
Table 12–1 Keywords for printer control files 251
Table 12–2 Sample translation table 252
Table 12–3 Bits flags for accounting 256
Table 12–4 CHARS valid values 264

PART 6: APPENDIX AND INDEX

APPENDIX C: LIST OF FIGURES AND TABLES

Page 400 of 416

Table 12–5 CONFLATOR_LANG valid values 269
Table 12–6 TRIP’s demonstration databases 273
Table 12–7 LANG valid values 282
Table 12–8 TRIP printer control files 298
Table 12–9 SORT valid values 305

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 401 of 416

Index
- symbol 44, 66, 67, 229, 241

' symbol .. 43, 47

! symbol 43, 47, 125, 367

" symbol ... 43

symbol .. 43

$ symbol .. 43, 374

%RTNA .. 379

& symbol .. 43

(symbol ... 47

() symbol .. 43, 66

) symbol ... 50

* symbol ... 66

. symbol 43, 47, 229, 367

.. symbol .. 66, 67

/

symbol .. 43

/ symbol 66, 67, 125, 229

// symbol .. 66, 67

/symbol .. 47

: symbol ... 50, 229

: symbol ... 250

? symbol ... 43, 47, 367

@ symbol ... 268

[symbol ... 47

] symbol ... 50

^ symbol ..251, 363

_ symbol .. 28, 125

{ symbol ... 47

} symbol ... 50

+ symbol ... 43, 66, 67

< symbol 47, 109, 114, 125

< >, as convention 13

<Append> ...137, 146

<At_end> ..135, 148

<Base> ...131, 149

<Call> .. 373

format ..136, 150

text string ...131, 152

<Case> ...135, 153

<Chr> .. 131, 155, 156
<CR> .. 45

<CR>, as convention 13

<CR><LF> ..365, 367

and TForm .. 364

<Curdate> ...131, 157

<Dateform> ...131, 158

<Debit> ... 72, 136, 160

<Ff> ..131, 161

<FF> .. 45

<FF>, as convention 13

<Fieldname> .. 133

<Fieldno> ... 133

<Fieldtype> ... 133

<FOR> loops .. 163

<Gold>

<Gold><E> .. 276

<Gold><G> ... 380

<Gold><kp 9>.................................. 374, 391

<Gold><Leave> 393

<Hitlist> .. 137, 166

<Hits> ... 131, 168

<If-changed> 135, 169

<If-empty> .. 135, 171

<If-nonempty> 135, 172

<If-unchanged> 135, 173

<Indent> 111, 135, 175

<kp 1> .. 374, 391

<Leave> ... 393
<LF> 45, 48, 51, 64, 366

<LF>, as convention 13

<Link> .. 135, 177

<Loop variables> .. 137

<NL>, as convention 13

<Noff> .. 136, 180

<Nolf> ... 136, 181

<Noorig> 111, 135, 182

<Numform> .. 131, 184

<Occs> ... 131, 186

<Once>... 135, 187

<Orig> .. 135, 188

<Pageno> ... 131, 190

<Paragraphno> ... 133

<Parts> ... 131, 191

<PF3> .. 391

<Rid> .. 131, 192

<Ris> .. 131, 193

<Rname> .. 131, 194

<Sentenceno> .. 133

<Sortfields> 110, 136, 195

<SP>

and TForm ... 364

<Subfieldno> .. 133

<Subrid> ... 131, 196

<Substring> .. 131, 197

<Tab> ... 64, 366, 395

<Text variables> 136, 198

<Timeform> .. 131, 200

<Trace> .. 135, 199
<VT> .. 45

<Weight> .. 131, 201

> symbol 50, 109, 114, 125

ACCDIR .. 254

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 402 of 416

Access

database

cluster .. 243

defining .. 239

field level ... 241

first form .. 241

general field ... 240

hidden read scope 243

hierarchy of access rights 243

listing ... 245

read ... 240

read scope 240, 241, 243

record level .. 241

write .. 240

write scope 240, 241, 242, 243

print .. 246

show ... 245

Access privileges

database ... 238

ACCFLG ...254, 255

Accounting log

B-line .. 97

C-line .. 97

E-line .. 97

F-line .. 97

M-line .. 97

O-line .. 97

Q-line .. 97

R-line .. 97

S-line .. 97

U-line .. 97

Added fields

thesaurus .. 91

Adding

user group member 234

Administrator

database ... 222

system .. 222

Alice database 12, 13, 34, 273

STatus .. 76

Arglen 376, 379, 380, 383, 387, 388, 389

Argstr 376, 379, 380, 383, 387, 388, 389

ASE ... 315

baffit_

ase .. 373

ase1 .. 373

ase2 .. 373

box-based ... 391

entry .. 395

exit .. 395

box-based (TRIPclassic only) 394

CCL ...373, 379

data entry

field level 374, 375

record level 374, 375

data entry (TRIPclassic only) 374, 391

debugging ... 379

directory .. 377

FAIL .. 379

field-specific .. 382

structured ... 383

unstructured ... 384

form initialization (TRIPclassic only) 392

format .. 376

format-level ... 382

form-based .. 391

form-based (TRIPclassic only) 392

index ... 374, 387

library .. 376, 377

linking to TRIP ... 376

quitting form with <Leave> (TRIPclassic

only) ... 393

record commit

after writing to BAF 393, 394

record-specific ... 386

reports ... 373, 380

RET CODE .. 379

scanit_ase ... 374

search form (TRIPclassic only) 375, 396

template, in C .. 376

text insert ... 380

TForm load 373, 382

TRIPclassic callback functions 396

TRIPkernel callback functions 396

uses of .. 373

ASE_

CONTINUE 392, 395

FAIL .. 376, 388, 389

FIXFIELD .. 376, 392

MESSAGE .. 392

NOFIELD ... 392

REFRESH 376, 379, 392

SUCCESS 376, 379, 388, 389

ASELIBS .. 257

ASEOBJ ... 377

AT_CCL.. 316

AUTH_PROVIDER 258

AUTO_SAVE .. 259

Background text

reports ... 124

BAF .. 25, 206, 216

and general database properties 29

and LOAD procedure 363

and TForm ... 370

and the record name field 63

BAFFINI .. 220

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 403 of 416

BAFFIT 382, 384, 385, 387

MODE 384, 385, 387

Baffit_

ase ..373, 383

ase1...373, 386

ase2...373, 386

BAFFIT_SECURITY 260

BAFFRE_TIMEOUT261, 262

Base access

print .. 246

show ... 245

Base file ... 25

Base File see also BAF

Base index file ... 25

Base Index File see also BIF

Base_spec_rec .. 386

BaseSpecRecord 386

Batch

update .. 12

BATCH

INDEX ...277, 278

LOAD .. 278

BIF ... 25, 206

and general database properties 29

and the record name field 63

Bigram ... 26

Bin directory ... 278

B-line ... 97

Bold, as convention 13

Box .. 110

constituents .. 110

definition ... 110

functions ... 135

group

definition enclosures 123

reports ... 123

layout

defining a ... 114

numbering... 117

page level ... 142

positioning .. 117

using coordinates 117

using preceding boxes 118

proportioning

using columns 122

using lines ... 121

using lines and columns 120

reports

header ... 142

trailer ... 143

simple ... 114

size

reports ... 120

specifications

directed .. 117

nonspecific ... 117

Box/box group

functions

<append> ... 146

<at_end> 135, 148

<case> ... 135, 153

<if-changed> 135, 169

<if-empty> 135, 171

<if-nonempty> 135, 172

<if-unchanged> 135, 173

<indent> 135, 175

<link> ... 135, 177

<noorig> 135, 182

<once> ... 135, 187

<orig> ... 135, 188

<trace> ... 135, 199

BUT_LOCATION .. 263

CALl ... 373, 379

Carriage return

reports ... 125

Carroll database 12, 273

chapter information in 23

page information in 23

records

chapter ... 24

main ... 24

paragraph ... 24

part ... 24

STatus ... 369

Case sensitivity

and global updating 215

CCL

commands and reports 145

search menu option 13

CCLASE.C ... 379

CHAR SET ... 251, 252

Character folding class

and diacritics ... 41

and umlauts ... 41

default ... 41

ENGlish ... 41

specification .. 40

SWEdish ... 41

Character masks, as searchable characters . 43

Character sets

specification .. 67

Characters

control skip .. 364

diacritically-altered 305

ignore search characters 50

non-printable ... 251

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 404 of 416

paragraph separators 48

paragraph start ... 48

paragraph terminators 49

reserved ... 125

searchable .. 43

special .. 41

CHARS .. 264

CHECK ENTRY ... 392

Chevron, as convention 13

CHInese ..264, 282

CHIVOC ... 265

C-line ... 97

CLS.. 266

Cluster

creating ... 77

deleting ... 81

modifying .. 79

Columnar output .. 144

COM .. 268

COMFORTER .. 317

Command

DEfine ... 13

EForm ... 35

Format ... 35

INDex ... 217

Component

in head/part database 25

Composite record 23, 25

CONFLATOR_LANG 269

CONFLATORS .. 270

Constituent

box ... 110

Control

files

printer .. 250

CHAR SET251, 252

HIGHLIGHT OFF.............................. 251

HIGHLIGHT ON 251

INIT .. 251

keywords .. 250

PAGE SIZE 251

QUEUE .. 251

TRANS TAB 251

CONTROL database 22, 223, 225, 253, 271,

303

contents .. 22

Control master, and TForm 364

Control skip characters 364

Control strings

and TForm .. 363

CONV .. 318

Conventions

< > .. 13

<CR> ... 13

<FF> ... 13

<LF> .. 13

<NL> ... 13

boldface... 13

chevrons .. 13

Courier fonts .. 13

italic ... 13

lower case ... 13

naming .. 14

space character ... 13

upper case .. 13

Copying

records with TForm 371

reports ... 111

with global updating 214

Corr database 12, 273

and reports .. 114

database field numbers 366

structure .. 366

Courier fonts, as convention 13

Creating

reports ... 111

search forms ... 203

user ... 224

user group ... 232

CTL .. 271

Current

date form ... 228

CURRENT ITEM 382, 385, 386, 392, 394

Data

models .. 17

normalization ... 18

organization, and TRIP 19

Data entry

database description 36

entry form .. 105

default .. 35, 36

Data Entry Forms 105

copying .. 106

creating ... 106

deleting.. 108

Database

access

cluster .. 243

defining .. 239

field level .. 241

first form ... 241

general field ... 240

hidden read scope 243

hierarchy of access rights 243

listing .. 245

privileges .. 238

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 405 of 416

read ... 240

read scope 240, 241, 243

record level .. 241

write .. 240

write scope 240, 241, 242, 243

administration ... 12

administrator ... 22

Alice... 12, 34, 273

STatus ... 76

Carroll ... 12, 273

chapter information in 23

paragraph information in 23

records

chapter ... 24

main ... 24

paragraph ... 24

part ... 24

STatus ... 369

cluster

reports and .. 144

CONTROL 22, 223, 225, 253, 271, 303

contents ... 22

Corr .. 12, 273

database field numbers 366

description

and general database properties 31

and STatus .. 31

design

copying .. 74

deleting .. 74

modifying ... 73

saving .. 73

field numbers .. 366

general properties 28

head/part

component .. 25

head record ... 24

part record ... 24

record .. 25

record entity ... 24

management system

full-text ... 17, 18

reindexing ... 219

relational ... 17

responsibility, transferring 245

security ... 12

Thesali .. 12, 273

Thesauri ... 83

TRIP basics .. 22

what is a thesaurs? 83

Database administrator 222

Database Administrator.. see also File Manager

Database Cluster

creating ... 77

deleting.. 81

modifying ... 79

Database Corr

structure .. 366

Databases

listing ... 76

Date

form, current .. 228

DAte ... 21

restrictions ... 71

DEBIT.LOG 72, 94, 95, 255

DEFATTR ... 272

Default

data entry form 35, 36

reports ... 34

Define

space character ... 43

DEfine .. 13

EForm ... 35

Format ... 35

PRINTEr .. 250

DEFINE

LPCODE ... 252

PCODE ... 252

Definition

box .. 110

Delete ... 206

field ... 206

paragraph .. 206

record .. 206

sentence .. 206

string ... 206

subfield .. 206

DELete ... 208

DELETE ITEM .. 385

DELETE RECORD 394

Deleting

records with TForm 371

reports ... 111

user ... 225

user group ... 233

user group member 235

Deletion marker .. 371

Delimiter

TForm ... 363

Delineators, as searchable characters 43

DEMO .. 273

Digits, as searchable characters 43

DIR ... 319

Directory

ASE ... 377

bin ... 278

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 406 of 416

INCLUDE .. 376

PRC .. 298

SAMPLES........................ 379, 381, 383, 390

scratch .. 303

SYS ...271, 310

TRM.. 313

DISALLOW_GUEST 274

DISPLAY_ORIG .. 275

Document, and TRIP 20

Dump reports ... 133

EDIT (TRIPclassic only 276

EDITOR ... 276

Editors

system .. 276

vi 276

Element

reports ...110, 124

E-line ... 97

ENGlish 251, 264, 269, 282, 305

character folding 41

Entity

record ... 24

Entry form

data entry ... 105

Environment ... 12

Environment Setup 248

Batch Setup .. 250

Logical Names .. 253

Logical Names Reference Guide 254

tdbs.conf ... 248

ERRLOG ... 219

ERRMAILST .. 277

Error checking

global updating 216

EXE ... 278

F marker ...364, 365

Field

accounting .. 71

attributes ... 62

create new .. 59

database reference 65

defaults and restrictions 58

define ASE.. 71

define pattern .. 66

delete .. 206

edit or delete ... 59

elements

and reports .. 116

head ... 23

index mode ... 61

index settings 61, 62

insert ... 206

layout retained .. 64

list .. 60

list of .. 60

make part field ... 63

mandatory ... 64

marker

TForm .. 363, 365

modify collections 58

name ... 60

organisiation .. 64

part .. 23

record name .. 63

record number ... 63

record part name 64

replace .. 206

set restrictions ... 65

type ... 60

DAte ... 71

description .. 72

INteger ... 70

NUmber.. 70

PHrase ... 70

saving the design 72, 73

Text .. 70

TIme ... 71

types

DAte ... 21

in TRIP ... 20

PHrase ... 20

STring .. 21

TExt ... 20

TIme ... 21

valid values ... 65

Field numbers ... 366

Field_spec_rec 383, 388

Fields

added

thesaurus ... 91

hidden ... 243

and data entry..................................... 244

and reports ... 244

and searching 243

read-protected ... 243

and data entry..................................... 244

and reports ... 244

and searching 243

FieldSpecRecord 383, 388

File

flat ... 17

inverted, and TRIP 25

structures

in TRIP ... 25

File manager .. 222

FIND_TIMEOUT ... 279

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 407 of 416

FINnish 269, 282, 305

FIXFIELD ..393, 396

Flat file ... 17

F-line .. 97

FOR loop

and reports ... 136

functions ... 163

<append> .. 137

<hitlist> ...137, 166

<loop variables> 137

Form

data entry ... 105

Format

functions

<call>..136, 150

<debit> ...136, 160

<noff> ...136, 180

<nolf> ...136, 181

<sortfields>136, 195

<text variables>136, 198

Forms .. 12

Fragment index

and TRIP .. 19

Free text .. 19

Full-text database management system

(TDBS) ... 17, 18

Functions

reports ...130, 136

box .. 135

text string ... 130

FUZz, and the VIF .. 26

G marker ...364, 365

General database properties

creating the database 27

database description 31

database name ... 28

file locations .. 27

modifiying database properties 33

advanced properties 52, 54

files properties 37

general properties.................................. 33

indexing properties 39

physical files ... 29

saving the database 32

transaction log .. 29

XML enabling the database 31

General Settings, Limits and Defaults 331

CCL Command Length Limit 331

Chinese GBK Character Set 331

Database File size Limit in UNIX 332

DEfine command defaults332, 333

Euro Currency Symbol

Character Set 331

Searcing for .. 331

Open databases limit 332

GERman 251, 264, 269, 282, 305

GET LINE 392, 395, 396

GLBUPD_OPEN_DB_ONLY 280

Global updating .. 206

and case sensitivity 215

and log file ... 216

copying with .. 214

DELete .. 208, 209

error checking.. 216

examples

using DELete 210, 213

using INSert 209, 211

using UPDate 210, 212

INSert .. 208, 209

part records ... 214

records ... 210

targets ... 208

type ... 208

update

domain ... 209

target .. 208, 211

type .. 208, 211

value .. 208, 211

UPDate.. 208, 209

upper- and lower-case letters 215

using a search result 210

using record numbers 207

Group

user ... 222, 243

creating .. 232

deleting .. 233

Group member

user

adding .. 234

deleting .. 235

Groups

listing ... 237

Hashed tables... 25

Head

field ... 23

record .. 23, 24

Head/part database

component .. 25

head record ... 24

part record ... 24

record .. 25

record entity .. 24

Header ... 244

reports ... 126

Header_Box

reports ... 142

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 408 of 416

Hidden fields .. 243

and data entry 244

and reports .. 244

and searching 243

HIghlight

print .. 251

HIGHLIGHT

OFF .. 251

ON .. 251

HOME .. 281

HOSTINI .. 320

Ignore search characters 50

INCLUDE directory 376

Indent

reports .. 175

Index

files, in TRIP ... 25

fragment ... 19

INDex

command .. 217

INDEX ...277, 278

Indexing ... 217

failed batch jobs 220

INIT .. 251

Insert .. 206

field ... 206

paragraph ... 206

sentence ... 206

subfield ... 206

INSert .. 208

INteger

restrictions .. 70

Interval

and values list ... 70

in PHrase pattern 67

Italic, as convention 13

IX databasename unique ID.log 219

LANG .. 269, 282, 305

LAtin 1 ..251, 264

LAtin 2 ..251, 264

LAtin 3 ... 264

Layout box

defining a .. 114

Layout retained

and TForm365, 366

LD databasename unique ID.log 219

LDAP_ANONYMOUS 283

LDAP_BASE .. 284

LDAP_MATCH ... 285

LDAP_MECHANISM 286

LDAP_PASSWORD 287

LDAP_SEARCH .. 288

LDAP_SERVER ... 289

LDAP_TIMEOUT .. 290

LDAP_USERNAME 291

Length

marker ... 371

Letters, as searchable characters 43

LI databasename unique ID.log 219

Linefeed

reports ... 125

List

values and intervals 70

Listing

databases .. 76

groups ... 237

LOAD ... 278, 363

Loading and Indexing 217, 218

LOG .. 292, 321

Log file

and general database properties 29

naming .. 219

Logical Names

ACCDIR .. 254

ACCFLG .. 254, 255

ASE ... 315

ASELIBS ... 257

AT_CCL .. 316

AUTH_PROVIDER 258

AUTO_SAVE ... 259

BAFFIT_SECURITY 260

BAFFRE_TIMEOUT 261, 262

BUT_LOCATION 263

CHARS.. 264

CHIVOC .. 265

CLS ... 266

COM .. 268

COMFORTER ... 317

CONFLATOR_LANG 269

CONFLATORS .. 270

CONV .. 318

CTL ... 271

DEFATTR .. 272

DEMO ... 273

DIR .. 319

DISALLOW_GUEST 274

DISPLAY_ORIG 275

EDIT (TRIPclassic only) 276

ERRMAILST .. 277

EXE ... 278

FIND_TIMEOUT 279

GLBUPD_OPEN_DB_ONLY 280

HOME ... 281

HOSTINI .. 320

LANG 269, 282, 305

LDAP_ANONYMOUS 283

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 409 of 416

LDAP_BASE ... 284

LDAP_MATCH 285

LDAP_MECHANISM 286

LDAP_PASSWORD 287

LDAP_SEARCH 288

LDAP_SERVER...................................... 289

LDAP_TIMEOUT 290

LDAP_USERNAME 291

LOG ...292, 321

LONG_PHRASE 293

MAP.. 322

MAP_DIR ... 323

MAX_ALLO_MEM294, 295

NO_GLBUPD_INDEX 296

PRC .. 298

PRINT ... 299

PRINTUSER ... 300

PUTBAF_TIMEOUT 301

RESTART ... 302

SCRATCH303, 324

SIF .. 304

SORT ... 305

SPAWN .. 306

STO_LOCATION 307

STOP_WORDS 308

SUPERMAN222, 309

SYS .. 310

TDBS_

EDIT .. 276

TDBS_HOME ... 281

TERMINAL (UNIX only) 311

TERMLM .. 312

TIMEOUT ... 325

TRIPclassic only 276

TripDaemonHost..................................... 326

TripDaemonPort 327

TripNetPort ... 328

TRM (UNIX only) 313

TRMBUFSZ .. 314

UNIX only 311, 313, 319, 320, 322, 323, 324,

329

UNIXLOGIN .. 329

Windows only326, 327

Logical Names (TRIPclassic only)

EDIT ... 276

Logical Names (TRIPserver) 315

ASE .. 315

AT_CCL .. 316

COMFORTER .. 317

CONV ... 318

DIR ... 319

HOSTINI ... 320

LOG .. 321

MAP .. 322

MAP_DIR .. 323

SCRATCH ... 324

TIMEOUT .. 325

UNIXLOGIN .. 329

Logical-names

OVFBUFSZ ... 297

LONG_PHRASE ... 293

Lower case, as convention 13

Mail messages .. 277

Main record .. 23

TForm ... 369

Manager

file 222, see Database Administrator

privileges

in TRIP ... 22

responsibility, transferring 245

system ... 22, 222

user ... 22, 222, 223

MAP ... 322

MAP_DIR ... 323

Marker

deletion.. 371

field

TForm .. 365

length .. 371

record

name .. 371

name, TForm 365

part, TForm .. 365

TForm .. 365

sentence, TForm 366

subfield, TForm 365

zero

field .. 371

record ... 370

MAX_ALLO_MEM 294, 295

MESSAGE .. 386, 393

Meta-record 20, 23, 25

M-line ... 97

MODCON ... 271, 303

MULtinational ... 251

N marker ... 365

Name

user ... 224

Naming conventions 14

database ... 28

Natural language text 19

NO_GLBUPD_INDEX 296

NORwegian 251, 269, 282, 305

NRX field .. 87

NUmber

restrictions ... 70

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 410 of 416

Numbering

box ... 117

O-line ... 97

Olympic_Games database 139

structure ... 139

Operators, as searchable characters 43

Output

paged ... 142

Output Format Reference Guide 146

Output in columns

reports .. 144

OVFBUFSZ .. 297

P marker ...364, 365

Page

control ... 142

level

box .. 142

PAGE SIZE .. 251

Paged output ... 142

Paragraph

defining a .. 47

delete .. 206

insert ... 206

marker

TForm .. 365

parse checkbox .. 48

replace .. 206

separators... 48

start character ... 48

terminators.. 49

Part

field ... 23

record ... 23, 24

Part record

global updating 214

Pattern

PHrase field .. 66

PHrase ... 20

PHrase field

pattern .. 66

pattern interval .. 67

Positioning

box ... 117

using coordinates 117

using preceding boxes 118

PRC ... 298

PRC directory .. 298

Print

access .. 246

base access .. 246

group ... 237

HIghlight ... 251

PRINTEr ... 250

user .. 237

PRINT .. 299

Printer

control files .. 250

*.PRC ... 298

*.PRN ... 298

CHAR SET 251, 252

HIGHLIGHT OFF 251

HIGHLIGHT ON 251

INIT .. 251

keywords .. 250

PAGE SIZE .. 251

QUEUE .. 251

TRANS TAB ... 251

queues .. 250

CHAR SET 251, 252

HIGHLIGHT OFF 251

HIGHLIGHT ON 251

INIT .. 251

keywords .. 250

PAGE SIZE .. 251

QUEUE .. 251

TRANS TAB ... 251

PRINTUSER ... 300

Privileges

database access 238

first access form 241

Procedure

MODCON .. 271

Properties

user ... 227, 228

Proportioning

box

using columns 122

using lines .. 121

using lines and columns 120

PTR1.PRN .. 250

PTR2.PRN .. 250

PUT LINE 392, 395, 396

PUTBAF_TIMEOUT 301

Q-line .. 97

QUEUE... 251

Queues

printer .. 250

CHAR SET 251, 252

HIGHLIGHT OFF 251

HIGHLIGHT ON 251

INIT .. 251

keywords .. 250

PAGE SIZE .. 251

QUEUE .. 251

TRANS TAB ... 251

R marker ... 364, 365

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 411 of 416

Read protection ... 243

and data entry 244

and reports .. 244

and searching 243

Record

composite ... 23, 25

delete .. 206

description of a

in head/part database 25

entity ... 24

head ... 23, 24

main.. 23

marker

TForm .. 365

meta- ... 20, 23, 25

name .. 63

name field ... 63

name marker .. 371

name marker, TForm 365

name value ... 63

number field .. 63

part ... 23, 24

marker, TForm 365

part name field .. 64

part, TForm ... 369

unit, in head/part database 25

user .. 225

Records

copying

with global updating 214

with TForm .. 371

deleting

with TForm .. 371

global updating 210

in TRIP ... 22

part

global updating 214

replacing with TForm 370

updating with TForm 370

Reindexing ... 219

Relational database management system

(RDMS) .. 17

Replace ... 206

field ... 206

paragraph ... 206

sentence ... 206

string ... 206

subfield ... 206

Replacing

records with TForm 370

Reports .. 109

a descritption .. 109

and database clusters 144

and database Corr 114

and FOR loops .. 136

and specific field elements....................... 116

background text 124

box

functions... 135

group .. 123

size .. 120

carriage return ... 125

copying .. 111

creating ... 111

default ... 34

deleting.. 111

dump ... 133

element ... 110, 124

functions .. 130, 136

<append> 137, 146

<at_end> 135, 148

<base> ... 131, 149

<call>–format 136, 150

<call>–text string 131, 152

<case> ... 135, 153

<chr> 131, 155, 156

<curdate> 131, 157

<dateform> 131, 158

<debit> ... 136, 160

<ff> ... 131, 161

<fieldname> ... 133

<fieldno> .. 133

<fieldtype> ... 133

<FOR> loops .. 163

<hitlist> .. 137, 166

<hits> ... 131, 168

<if-changed> 135, 169

<if-empty> 135, 171

<if-nonempty> 135, 172

<if-unchanged> 135, 173

<indent> 135, 175

<link> ... 135, 177

<loop variables> 137

<noff> ... 136, 180

<nolf> ... 136, 181

<noorig> 135, 182

<numform> 131, 184

<occs> ... 131, 186

<once> ... 135, 187

<orig> ... 135, 188

<pageno> 131, 190

<paragraphno>..................................... 133

<parts> ... 131, 191

<rid> ... 131, 192

<ris> ... 131, 193

<rname>....................................... 131, 194

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 412 of 416

<sentenceno> 133

<sortfields>136, 195

<subfieldno> .. 133

<subrid>131, 196

<substring>...................................131, 197

<text variables>136, 198

<timeform>131, 200

<trace> ...135, 199

<weight>131, 201

header .. 126

header_box ... 142

indent .. 175

linefeed ... 125

output in columns.................................... 144

reserved characters in 125

sample .. 133

separator .. 126

series of spaces or tabs 125

specification file 114

text functions

field-dependent 132

text inserts .. 130

text strings

field-dependent 126

field-independent 129

timestamp ... 116

trailer .. 129

trailer_box ... 143

TStamp ... 116

Reserved characters 125

! symbol .. 125

/ symbol .. 125

_ symbol ... 125

< symbol ... 125

> symbol ... 125

RESTART .. 302

Restrictions

DAte ... 71

INteger .. 70

NUmber .. 70

TIme ... 71

to valid values ... 70

R-line ... 97

ROMan .. 251

S marker ...364, 366

SAMPLES directory 379, 381, 383, 390

SCANASE.C .. 390

Scanit_ase ..374, 388

SCRATCH ..303, 324

Scratch directory .. 303

Search form

creating ... 203

Searchable characters 43

and ' symbol .. 43

and ! symbol .. 43

and " symbol .. 43

and # symbol ... 43

and $ symbol ... 43

and & symbol... 43

and () symbol... 43

and . symbol .. 43

and /

symbol ... 43

and ? symbol ... 43

and + symbol ... 43

and character masks 43

and delineators .. 43

and operators .. 43

and sentence separator defaults 43

and space character 44

and truncation symbols 43

and word masks .. 43

Security

database ... 12

Sentence

Delete .. 206

insert ... 206

marker

TForm .. 366

replace .. 206

separator ... 367

separator defaults, as searchable characters

 ... 43

Separator

reports ... 126

sentence .. 367

Series of spaces or tabs

reports ... 125

Session index file .. 26

SET ENTRY 392, 393, 395, 396

Show

access ... 245

base access .. 245

group .. 237

user .. 237

SIF 26, 95, 97, 302, 304

Simple box .. 114

S-line .. 97

SORT ... 305

Space character

as convention .. 13

defining.. 43

SPAWN .. 306

Specification file

reports ... 114

SQL .. 18

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 413 of 416

Start

module, user profile 229

STatus

and database Alice 76

STO_LOCATION 307

STOP_WORDS ... 308

String

delete .. 206

replace .. 206

STring .. 21

Structured query language 18

Subfield

delete .. 206

insert ... 206

marker

TForm .. 365

replace .. 206

SUPERMAN222, 309

SWEdish 251, 264, 269, 282, 305

character folding 41

symbol .. 13, 47, 50

SYS ... 310

SYS directory271, 310

SYS variable .. 255

System

TRIP basics .. 17

SYSTEM 98, 222, 226, 245

System administrator 222

System logging .. 94

activating .. 94

logicals .. 94

field costs ... 94

file format .. 96

System manager 22, 222

Tab

as convention ... 13

Table

hashed .. 25

translation ... 251

TBS_

ASE .. 315

AT_CCL .. 316

COMFORTER .. 317

CONV ... 318

DIR ... 319

HOSTINI ... 320

LOG .. 321

MAP.. 322

MAP_DIR ... 323

SCRATCH .. 324

TIMEOUT ... 325

UNIXLOGIN .. 329

tdbs.conf 248, 255, 300, 377, 378

TDBS_ .. 253

ACCDIR .. 94, 254

ACCFLG 94, 95, 97, 98, 255

ASELIBS 257, 376, 377, 378

BAFFIT_SECURITY 260

BAFFRE_TIMEOUT 261, 262

BUT_LOCATION 263

CHARS.. 264

CHIVOC .. 265, 266

COM .. 268

CONFLATOR_LANG 269

CONFLATORS .. 270

CTL ... 271

DISPLAY_ORIG 275

EDIT .. 276

EDIT .. 276

ERRMAILST 220, 277

EXE ... 278

EXE/bafini ... 220

FIND_TIMEOUT 279

LANG .. 282

LOG .. 219, 292

LONG_PHRASE 293, 294, 295

NO_GLBUPD_INDEX 296

OVFBUFSZ ... 297

PRC .. 250, 251, 298

PRC:DECSWE.PRC 252

PRC:PTR1.PRN 250

PRC:PTR2.PRN 250

PRINT ... 250, 299

PRINTUSER ... 300

PUTBAF_TIMEOUT 301

RESTART ... 302

SCRATCH ... 303

SIF .. 95, 304

SORT .. 305

SPAWN ... 306

STO_LOCATION 307

STOP_WORDS 308

SUPERMAN .. 309

SYS ... 94, 310

TERMLM . 258, 274, 283, 284, 285, 286, 287,

288, 289, 290, 291, 312

TRM .. 313

TRMBUFSZ ... 314

TERMINAL (UNIX only) 311

TERMLM .. 312

Text

free .. 19

natural language .. 19

TExt .. 20

Text functions

reports

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 414 of 416

field-dependent 132

Text inserts .. 244

reports .. 130

Text string

definition of, in TForm 364

functions

<base> ...131, 149

<call>..131, 152

<chr> 131, 155, 156

<curdate>131, 157

<dateform>131, 158

<ff> ...131, 161

<fieldname>... 133

<fieldno> ... 133

<fieldtype> ... 133

<hits> ...131, 168

<noff> .. 136

<numform>131, 184

<occs> ..131, 186

<pageno>131, 190

<paragraphno> 133

<parts> ...131, 191

<rid> ...131, 192

<ris> ...131, 193

<rname>131, 194

<sentenceno> 133

<subfieldno> .. 133

<subrid>131, 196

<substring>...................................131, 197

<timeform>131, 200

<weight>131, 201

reports ... 130

Text strings

and ! symbol ... 125

and / symbol ... 125

and _ symbol .. 125

and < symbol .. 125

and > symbol .. 125

and TForm .. 364

reports

field-dependent 126

field-independent 129

TEXTASE.C ... 381

TFOFIELD.C .. 383

TForm

and <CR><LF> 364, 365, 367

and <SP> ... 364

and character sets 264

and control master 364

and control strings 363

and layout retained365, 366

and text strings 364

and the BAF .. 370

copying records with 371

deleting records with................................ 371

deletion marker .. 371

F marker .. 364, 365

field marker 363, 364, 365

G marker ... 364, 365

main record ... 369

N marker ... 365

P marker .. 364, 365

paragraph marker 365

paragraph/subfield marker 364

paragraphs and sentences in 367

R marker ... 364, 365

record marker 364, 365

record name marker 365

record part ... 369

record part marker 364, 365

replacing records with 370

S marker .. 364, 366

sample file ... 368

sentence marker 364, 366

subfield marker .. 365

text string, definition of 364

updating records with 370

zero field marker 371

zero record marker 370

The Environment .. 247

Thesali database 12, 273

Thesauri ... 83

what is ... 83

Thesaurus

added fields ... 91

creating ... 86

data layout ... 87

design

character sets .. 91

defaults .. 91

description .. 91

field definition ... 91

general properties 91

other properties 91

special fields .. 91

design ... 91

example... 84

filling .. 92

data entry ... 92

TForm .. 92

structure .. 87

top terms ... 86

TIme ... 21

restrictions ... 71

TIMEOUT ... 325

Timestamp

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 415 of 416

reports .. 116

Top terms

thesaurus .. 86

Trailer

reports .. 129

Trailer_Box

reports .. 143

TRANS TAB ... 251

Translation table .. 251

Trigram .. 26

TRIP

and inverted file organization 25

database basics .. 22

index files in .. 25

jump table ... 377

manager privileges 22

naming conventions 14

records in .. 22

system basics ... 17

system data dictionary see CONTROL

TRIPmanager navigation 16

TRIP_ .. 253

AUTO_SAVE .. 259

DEFATTR ... 272

DEMO ... 273

TERM ... 311

TERMINAL ... 311

TripDaemonHost .. 326

TripDaemonPort .. 327

TripNetPort .. 328

TRM (UNIX only).. 313

TRM directory .. 313

TRMBUFSZ ... 314

Truncation symbols, as searchable characters

 ... 43

TStamp

reports .. 116

U-line ... 97

Unigram ... 26

UNIXLOGIN ... 329

UPDate .. 208

Updating

global .. 206

and case sensitivity 215

and log file ... 216

copying with ... 214

DELete ...208, 209

error checking 216

INSert ...208, 209

part records ... 214

targets ... 208

type ... 208

update

domain .. 209

target .. 211

type ... 211

value ... 208, 211

UPDate .. 208, 209

using a search result 210

using record numbers........................... 207

Upper case, as convention 13

User

administration .. 222

creating ... 224

deleting a ... 225

end .. 223

group ... 222, 243

creating .. 232

deleting .. 233

member, adding 234

member, deleting 235

individual ... 222, 223

name ... 224

password ... 224

print .. 237

print user group 237

properties .. 227

record .. 225

responsibility, transferring 235

show ... 237

show user group 237

User group .. 222

User manager 22, 222, 223

User profile

date form separator characters 228

start module .. 229

User properties ... 228

company information 230

full name .. 228

groups list .. 231

ignore TRIP password 228

login procedure .. 229

privileges ... 229

procedures list ... 230

rights list .. 232

session parameters 229

start module .. 229

Values and intervals list 70

VIF .. 25, 206

and general database properties 29

Vocabulary index file..................................... 25

Vocabulary Index File see also VIF

Word

masks, as searchable characters 43

WRITE MESSAGE 392

Zero

PART 5: APPENDICES, LISTS AND INDEX

APPENDIX C: INDEX

Page 416 of 416

field marker ... 371 record marker .. 370

	About This Guide
	Scope and Assumptions
	End User License Agreement
	The TRIP Documentation Library
	The Structure of this Guide
	Conventions Used in this Guide
	TRIP Naming Conventions
	TRIP Logical Names

	Part 1: Database Administration
	Chapter 1: Fundamentals
	Navigation within TRIPmanager
	TRIP System Basics
	Introduction
	Data Models
	Flat Files
	Relational Database Management Systems
	Full Text Database Management Systems
	Indexing the Data

	Data Organisation
	TRIP Field Types
	The CONTROL Database
	TRIP Manager Privileges

	TRIP Database Basics
	Records
	Figure 1–3 Head and part records in a database
	Figure 1–4 Carroll’s head/part record structure
	Figure 1–5 A head record
	Figure 1–6 A part record
	Figure 1–7 A record entity
	Figure 1–8 A composite record
	Figure 1–9 Record components

	File Structures
	The BAse File (BAF)
	The Base Index File (BIF)
	The Vocabulary Index File (VIF)
	The Session Index File (SIF)

	Chapter 2: Databases
	Notes on File Locations
	Creating the Database
	Figure 2–1 New Database Wizard
	Figure 2–2 New Database General Properties

	General Database Properties
	Database Name
	Figure 2–3 Database Name Entry Field

	Physical File Locations
	Figure 2–4 The Database File Location Selection Boxes
	Creating TRIP Logical Names

	Transaction Log
	Figure 2–5 Transaction log selection

	XML Enabling the Database
	Figure 2–6 XML Enabling a Database

	Description of the Database
	Figure 2–7 The Database Description field

	Saving the database design
	Figure 2–8 New Database Design Wizard Completion page
	Figure 2–9 DB Creation Confirmation
	Figure 2–10 Specify Field Collection Query

	Modifying Database Properties
	Database Properties (1) – General
	Figure 2–11 The Database General Properties Form
	Character Set:
	Default Report
	Figure 2–12 Sample SYSTEM default report, ‘Dump’

	Default Entry Form
	Classification scheme
	Database Description

	Database Properties (2) – Files
	Figure 2–13 The Database Files Properties Form 1
	Files are located collectively using a logical name
	Individually specified File Locations
	Figure 2–14 The Database Files Properties Form 2

	Database Properties (3) – Indexing
	Figure 2–15 The Database Indexing Properties Form
	Character handling
	Figure 2–16 Natural Language Treatment selection box

	Chinese word segmentation
	Folding class
	Additional searchable characters
	Scanning Rules
	Sentences and Paragraphs
	Character Classes
	Defining a Sentence
	Parse sentences
	Extra characters that mark start of sentence
	Characters that mark end of sentence
	Characters classes that separate sentences
	Characters classes that begin sentences
	Defining a Paragraph
	Parse paragraphs checkbox
	Character classes that separate paragraphs
	Paragraphs must begin with a valid sentence
	Paragraphs must end with a valid sentence
	Setting characters to ignore
	Ignore these characters when parsing
	Considerations for Altering Scanning Rules

	Database Properties (4) – Links
	Database Properties (5) – Advanced
	Background Task Execution
	Batch queue for task submission
	Notify On Completion
	Print Log File
	Keep Log File
	Data Loading
	ASE To Be Called Before Submission
	ASE To Be Called After Submission

	Flags
	Database contains XML documents
	Automatically reorganise index files as needed
	Log deleted records to the transaction log file
	Use an audit log file to capture database events

	Field Definition
	Defaults and Restrictions
	The Modify Fields Collection Form
	Editing or deleting existing fields
	Creating new fields
	The Field List
	Field Name
	Field Type
	Index Mode

	Field is included in index
	Create field-specific index
	Create word-based index
	Enforce Unique Field Values
	Non-Boolean Inclusion
	Field Attributes
	Record name field
	Record number field
	Part
	Record Part Name Field
	Required
	Layout Retained
	Field Organisation (Subfields and Paragraphs)
	Setting Field Restrictions
	Valid Values
	Database Reference (Dictionaries)
	Pattern
	TExt Fields
	PHrase Fields
	NUmber
	INteger
	DAte
	TIme
	Defining Field ASEs
	Accounting Information
	Description

	Saving a field design
	Committing field designs and changes to the database
	Deleting a field design
	Saving a Database Design
	Modifying a Database Design
	Deleting a Database Design
	Copying a database Design
	Related CCL Commands
	STatus
	Show
	Print
	IMPOrt and EXPOrt

	Database Clusters
	Creating a Cluster
	Modifying a Database Cluster
	Deleting a Cluster

	Related CCL Commands

	Chapter 3: Thesauri
	What Is a Thesaurus?
	A Simple Thesaurus
	Figure 3–1 The ‘Train’ thesaurus, vertical representation
	Figure 3–2 The ‘Train’ thesaurus, horizontal representation
	Table 3–1 Record contents and thesaurus design for ‘Train’

	Creating a Thesaurus
	Figure 3–3 New Thesaurus Menu

	Thesaurus Structure
	Table 3–2 The thesaurus template
	Data Layout
	Table 3–3 Record contents and thesaurus design
	Table 3–4 Hierarchical relationships of the ‘Train’ thesaurus

	Thesaurus Database Design
	General Thesaurus Properties
	Special Thesaurus Fields
	Defaults
	Character Sets
	Description of the Thesaurus
	Other Thesaurus Properties
	Field Definition

	Filling The Thesaurus
	Using TForm
	Using Data Entry

	Related CCL Commands
	STatus
	Figure 3–4 STatus for thesaurus ‘Thesali’

	Show
	IMPOrt/EXPOrt

	Chapter 4: System Logging Functions
	Overview
	Activating System Accounting Functions
	Assigning Field Costs for Accounting
	Accounting function Logical Names
	TDBS_ACCFLG Bits
	Bit 0
	Bit 1
	Bit 2
	Bit 3
	Bit 4
	Bit 5
	Bit 6
	Bit 7

	Accounting Log File Format
	Table 4–1 Hierarchical relationships of the ‘Train’ thesaurus
	Example
	Table 4–2 A sample accounting file

	Event logging
	Overview
	How to Enable Event Logging
	Parameters
	Event Log Output
	Log File Location and Name

	Part 2: Forms
	Chapter 5: TRIPclassic Data Entry Forms
	Figure 5–1 Entry forms for database CORR
	Figure 5–2 Properties for CORR entry form FULL
	Creating and Modifying TRIPclassic Data Entry Forms
	Copying TRIPclassic Data Entry Forms
	Figure 5–3 Copy a Data Entry form
	Figure 5–4 Name New Data Entry Copy
	Figure 5–5 Data Entry Copy Confirmation

	Deleting TRIPclassic Data Entry Forms
	Figure 5–6 Delete a Data Entry form
	Figure 5–7 Delete Data Entry form confirmation
	Figure 5–8 Data Entry form Deleted

	Chapter 6: Reports / Output Formats
	The Report
	Copying Reports
	Deleting Reports
	Creating a New Report
	Defining Layout Boxes
	Simple Boxes
	Output of Specific Field Elements
	Box Numbering
	Box Positioning
	Positioning Using Coordinates
	Positioning Using Preceding Boxes

	Box Proportions
	Proportioning With Lines and Columns
	Proportioning With Lines Only
	Proportioning With Columns Only

	Box Grouping

	Background Text
	Field-Dependent Text Strings
	Headers
	Separators
	Trailers

	Field-Independent Text Strings
	Text Inserts

	Functions
	Text String Functions
	Field-Dependent Text Functions
	Sample Output Format
	Box Functions
	Format Functions
	<For> Loops
	General Structure
	Example 1:
	Example 2:
	Example 3:

	Page Control
	Page Level Boxes
	Header_Box
	Trailer_Box

	Page Size
	Columnar Output

	Output Formats for Database Clusters
	Related CCL Commands
	Output Format Reference Guide
	<APPEND>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<AT_END>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<BASE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CALL>–Format
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CALL>–Text String
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CASE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<CHR>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CLASS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<CURDATE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<DATEFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:

	<DEBIT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<FF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<FOR> Loops
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<HITLIST>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<HITS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<IF-CHANGED>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-EMPTY>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-NONEMPTY>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<IF-UNCHANGED>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<INDENT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<LINK>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:
	Example 4:
	Example 5:

	<NOFF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NOLF>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NOORIG>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<NUMFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<OCCS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<ONCE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<ORIG>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<PAGENO>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<PARTS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RID>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RIS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<RNAME>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SORTFIELDS>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SUBRID>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<SUBSTRING>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:
	Example 3:

	<Text Variables>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:
	Example 2:

	<TRACE>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<TIMEFORM>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	<WEIGHT>
	Description
	Scope
	Syntax
	Side effects
	Examples
	Example 1:

	Chapter 7: Search Forms
	Figure 7–1 Search forms for a TRIP installation
	Figure 7–2 Properties for search form ALICE_DEMO
	Creating and Modifying TRIPclassic Search Forms
	Copying TRIPclassic Search Forms
	Figure 7–3 Copy a Search Form
	Figure 7–4 Name Search Form Copy
	Figure 7–5 Search Form copy confirmation

	Deleting TRIPclassic Search Forms
	Figure 7–6 Delete a Search form
	Figure 7–7 Delete Search Form confirmation
	Figure 7–8 Search form Deleted

	Part 3: Batch Update
	Chapter 8: Global Updating
	Command Overview
	Updating Using Record Numbers
	Command Structure
	Update Type
	INSert Orders
	UPDate Orders
	DELete Orders

	Update Target
	Update Value
	Update Domain
	INSert Examples Using Record Numbers
	UPDate Examples Using Record Numbers
	DELete Examples Using Record Numbers
	Example 4:

	Updating Using a Search Result
	Command Structure
	Update Type
	Update Target
	Update Value
	Update Domain
	INSert Examples Using Search Results
	UPDate Examples Using Search Results
	DELete Examples Using Search Results

	Global Updating of Part Records
	Copying With Global Update
	Examples:

	Case Sensitivity
	The Log File
	Error Checking

	Chapter 9: Loading, Indexing and Reindexing
	Index
	Figure 9–1 Indexing the Database TestThes

	Load and Load/Index
	Figure 9–2 Load a TForm file into database TestThes
	Figure 9–3 Load TForm Specify File Name form

	Checking the Results
	Table 9–1 Operating systems and log file names

	Error Logging
	Reindexing a Database
	Table 9–2 Running the BAFINI utility

	When Batch Jobs Fail
	On UNIX and Windows systems
	On UNIX systems only

	Part 4: Database Security
	Chapter 10: User Privileges
	TRIP’s internal Access Privileges
	The TRIP System Manager
	The TRIP ‘Superman’ Logical Name
	TRIP File and User Managers
	File Manager
	User Manager

	The TRIP User Group
	The Individual or End User in TRIP

	Creating a New TRIP User
	Figure 10–1 Creating a New User
	this will cause the New User details form to appear:
	Figure 10–2 The create New User form
	Figure 10–3 The User created confirmation dialog
	Deleting a TRIP User
	Figure 10–4 Deleting the user ‘Fred’
	Figure 10–5 The Delete User Confirmation
	Figure 10–6 The Deleted User Access Loss Confirmation

	User Properties
	Figure 10–7 Opening Properties for the User, FREDERICO
	Figure 10–8 The user FREDERICO’s user Properties form

	User Properties (1) – General
	Full Name
	Figure 10–9 Date Format selection box

	Ignore Password
	Figure 10–10 Ignore TRIP password checkbox

	Date Form
	Figure 10–11 Date Format selection box
	Figure 10–12 Date Format Selections
	Figure 10–13 Changing the date digit separator

	Management Privileges
	Figure 10–14 Management privilege settings

	Session Parameters
	Figure 10–15 Session parameter settings
	Start Module
	Login Procedure

	Company Information
	Figure 10–16 Company information entry area

	User Properties (2) – Procedures
	Figure 10–17 Procedures for user FREDERICO

	User Properties (3) – Groups
	Figure 10–18 Group membership for user FREDERICO
	Figure 10–19 The Add To Group form

	User Properties (3) – Access Rights
	Figure 10–20 Access Rights for user FREDERICO

	Creating a User Group
	Figure 10–21 Creating a New Group
	Figure 10–22 New Group dialogue
	Figure 10–23 New Group Created Confirmation
	Deleting a User Group
	Figure 10–24 Deleting a group
	Figure 10–25 Confirming deletion of a group

	Adding a Group Member
	Figure 10–26 The ‘My users’ sub-tree
	Figure 10–27 The Add Group Member confirmation

	Deleting a Group Member
	Figure 10–28 The Delete Member confirmation

	Transferring User Responsibility
	Figure 10–29 The Change Manager option
	Figure 10–30 Change Manager Selection box
	Figure 10–31 Change Manager Confirmation

	Related CCL Commands
	Show
	Print

	Chapter 11: Access Rights
	Figure 11–1 Granting Access to Database CARROLL
	Figure 11–2 The Access Level Form
	Database Access Rights Definition
	Database
	Figure 11–3 Database Name Selection

	User / Group
	Figure 11–4 Database Name Selection

	General Field Access
	Figure 11–5 Field and Record Restrictions
	Table 11–1 General field access rights
	Table 11–2 Unsupported combinations of access rights

	Only Selected Fields Access
	Record-Level Access
	Figure 11–6 Record-level READ rights for ‘FREDERICO’
	Figure 11–7 Record-level WRITE rights for ‘FREDERICO’

	The Hierarchy of Access Rights
	Database Cluster Access
	About Read-Protected Fields
	Hidden Fields and Searching
	Hidden Fields and Output Formats
	Hidden Fields and Data Entry

	Transferring Database Ownership
	Figure 11–8 The Change Manager action menu option
	Figure 11–9 Change Manager Selection

	Related CCL Commands
	Show
	Figure 11–10 Carroll’s Show ACcess screen

	Print

	Part 5: The Environment
	Chapter 12: Environment Setup
	The Configuration File tdbs.conf
	Location of tdbs.conf
	Configuration File Lookup on Windows
	Configuration File Lookup on UNIX
	Effects on System Administration
	Effects on Installation Procedures

	Batch Setup
	Printer Queues and Printer Control Files
	Table 12–1 Keywords for printer control files

	Specifying Non-Printable Characters
	More About Translation Tables
	Table 12–2 Sample translation table

	Logical Names
	UNIX
	Windows

	TRIPsystem Logical Names Reference (TDBS_)
	ACCDIR
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ACCFLG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ASELIBS
	Function
	Usage
	Looked for in
	Default value
	Valid values
	Examples

	AUTH_PROVIDER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	AUTO_SAVE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BAFFIT_SECURITY
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BAFFRE_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	BOLD_COLOR (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Examples

	BUT_LOCATION
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CHARS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples:

	CHIVOC
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CLS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CODEPAGE (Windows TRIPclassic only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	COM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related commands:

	CONFLATOR_LANG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CONFLATORS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CTL
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DEFATTR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DEMO
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DISALLOW_GUEST
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	DISPLAY_ORIG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	EDIT (TRIPclassic only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	ERRMAILST (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	EXE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	FIND_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	GLBUPD_OPEN_DB_ONLY
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	HOME
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LANG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	LDAP_ANONYMOUS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_BASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_MATCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_MECHANISM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_PASSWORD
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_SEARCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_SERVER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LDAP_USERNAME
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:

	LOG
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	LONG_PHRASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAX_ALLO_MEM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAX_THREADS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	NO_GLBUPD_INDEX
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	OVFBUFSZ
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	PRC (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PRINT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PRINTUSER (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	PUTBAF_TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	RESTART
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SCRATCH
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SIF
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SORT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SPAWN
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related commands:

	STO_LOCATION
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	STOP_WORDS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SUPERMAN
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SYS
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TERMINAL (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TERMLM
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	TRM (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TRMBUFSZ
	Function
	Usage
	Looked for in
	Defined by default?
	Default value:
	Valid values
	Examples:
	See also:

	TRIPserver Logical Names (TBS_)
	ASE
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	AT_CCL
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	Related Commands:

	COMFORTER
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	CONV
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	DIR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	HOSTINI
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples
	PLEASE NOTE!
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAP (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	MAP_DIR (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	SCRATCH (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TIMEOUT
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripDaemonHost (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripDaemonPort (Windows only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	TripNetPort
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	UNIXLOGIN (UNIX only)
	Function
	Usage
	Looked for in
	Defined by default?
	Default value
	Valid values
	Examples

	Part 6: Appendix and Index
	Appendix A
	General Settings, Limits and Defaults
	Support for the Euro Currency Symbol
	Searching for the Euro symbol
	Support for the Chinese character set GBK.
	Limit to TRIPclassic CCL Command Length
	No Limits to Database and Index File Sizes
	Limit to the Number of Search Sets
	Limit to the Number of Open Databases
	Defaults for the DEfine command
	TRIPserver Crash Handling (Windows only)

	Appendix B
	Obtaining Version and License Information
	TRIPmanager mmc Version Information
	TRIPsystem Version Information
	TRIP Product License Information
	Updating a TRIP Product License Key

	TRIP User Account Validation Methods
	Overview
	LDAP
	Configuring LDAP
	LDAPS

	Local System Validation
	TRIP Standalone Usernames

	Connecting to TRIP Servers
	Server Connection Overview
	Creating a Server Connection
	Local Connection
	Remote Connections

	Specifying Credentials
	Logging into the New Server Connection

	TRIP Grids
	Introduction to TRIP grid computing
	Creating a Grid
	Creating a Grid Cluster
	Creating a Grid Replica Set
	Publishing to a Replica Set
	Publishing to a Grid Cluster
	Grid Authentication
	Advanced Grid Properties

	Classification Schemes
	Introduction to Classification Schemes
	Attaching a Classification Scheme to a database

	Scope Search Facility
	The new Scope Search facility
	Scope Search Example
	Setting Up the Scope Search
	Using the Scope Search
	Updating the Scope Search

	Appendix C:
	TRIP Programming
	TForm
	Control Strings
	Text Strings
	Record, Record Part, Field and Subfield Markers
	The Record Marker: nR
	The Record Name Marker: N
	The Record Part Marker: nG
	The Field Marker: nF
	The Paragraph/Subfield Marker: nP
	The Sentence Marker: S

	Adding Records With TForm
	Updating Records With TForm
	Data Type STring and the Length Marker
	Copying Records Using Print TForm

	Application Software Exits (ASEs)
	Summary
	CCL
	Output Format
	TForm Load
	Index
	Data Entry (TRIPclassic only)
	Search Form (TRIPclassic only)

	The Format of an ASE Routine
	A Template ASE in C

	Linking ASE Routines to TRIP
	UNIX
	Windows

	Debugging ASE routines
	CCL ASEs
	Output Format ASEs
	Text Insert ASEs
	Format-Level ASEs

	TForm Load ASEs
	Field-Specific ASEs
	Structured Field-Specific ASEs
	Unstructured Field-Specific ASEs

	Record-Specific ASEs

	Index ASEs
	Data Entry ASEs (TRIPclassic only)
	Form-Based ASEs (TRIPclassic only)
	Form Initialization (TRIPclassic only)
	Quitting the Form Using <Leave> (TRIPclassic only)
	Record Commit Before Writing to BAF
	Record Commit After Writing to BAF

	Box-Based ASEs (TRIPclassic only)

	Search Form ASEs (TRIPclassic only)
	TRIPsystem Callback Functions for ASE Routines
	TRIPclassic Callback Functions for ASE Routines
	TRIP API Reference Guide

	List of Figures and Tables
	Figures
	Tables

	Index

