digital
VisSion
group

TRIPnxp & TRIPjxp

Class Library Programmer’s Guide

Version 8.4

Copyright © 2024 DVG Operations GmbH

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by DVG Operations GmbH (DVG) are exclusively
owned by DVG.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of DVG. Furthermore, the customer has the right to use licensed Software and
/ or process solutions supplied by DVG to the extent specified in his contract with DVG.

The free-to-use non-commercial version doesn’t require a prior written agreement with
DVG but such customers, organizations and/or third parties agree by using the software
and / or solution of DVG to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

page 2

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D éirsoiog
u

Table of Contents

LI RSO 110 L@ 1 [] N 8
FFILES AND LOCATIONS .. ittt eeeett e ee et e e et e e e e e e s et e e e s et e e e e aa s e s e aa e e e s aba e s s e aaa e s s aaneeeeabaeesebasesernnseerernss 8
TRIPjXp for Java ProgrammMingoiiicueiiieie e iiiiiiieeseeeessssiseeeseeeesssnsnsaeesseeessssssnsnnsseseessannsnes 8
TRIPNXP fOr Nt ProgramMIMiNgceeieeoiiicieieeeee e e i s sttt e s e e e e s s staeee e eeeessssnreeesseeeesssnsntnnnneseesssnnsnes 9
(OF0] 5] ST N TN = (0] =1 1N T 9
PACKAGE / NAMESPACE CONVENTIONS ...uuuiiittttieittueesetaeeesetaessssassesstanssesstaessssnsssstnsesssnsesssneseesees 12
(ORI N ST S 1= 27X =] = 2 13
RECOMMENDATIONS REGARDING SEARCH AND RETRIEVAL ...cuuutiiittieietieeeitisesesasessstsesssansesssnnsessens 13
= VYW N = W =@ =] =l = 13
(070 i A 20T I =0 1S T 13

1. ERRORS AND EXCEPTIONS ...ttt e e e e e e e e e e et e e e s et e e e sabeeasnaaaaes 15
2. SUCCESS MESSAGESottt e e e e e e e e e e e e s et e e e e s s e s eaaaeerees 18
3. ESTABLISHING / TERMINATING A SESSION ... oottt s v e 20
LOCAL CONNECTIONS ...tutitttiitteetti ettt eseteestesst e et tesaaesstsessesans st tesanesstsessersaesstaressessneestnsesssestnees 23
TRIPNET CONNECTIONS .ttt ttttttttttttteeettiettessteestesassstatestetstaeetaeetessteesntetaneesttessaetsteesstersneesrarees 23
o3 Y7 0] (=T Y= [L PP PPPPRt 24
VVEB CONNECTIONS ..tutiiitttnetetteeeteseseessasesesassesssaesesaasese s ssesssastssaasesstasssssnasesssassssstnseessnssesees 25
(€ { m ol0] N T (o [N 25
YO B [N 17N [T 25
Logging into @ phySiCal CONNECLION.........ciiiiiiiie et 25
Authenticating with @ TRIPGIIA SESSIONcciiiiiiiiiiiiiiii it 26
Logging out from @ PhYSICAl SESSIONeiviiiiiiiiiiiiiiiieieieieeeeeeeeeeeeeeeeeeseeseseeeeesesesereresesesererererene 26
TOKEN-BASED AUTHENTICATION ..t utttutttttettnetttaeesterssesstasestesstsessessnessttesstessneestntessnetseersierneesneee 28
Querying TRIPsystem ConfigUration ... s 28

AP K BY S .. 29
ODbtaiNiNg @ TOKEN PaAIF........uuuiiiiiiiiiiiiii s 29

LR LS (=S 1T o = T 0= PRSPt 30
REVOKING & TOKEN PAIT ..ottt et e e e e 30
Other TOKEN CONSIABIATIONSuniiieteeeeiet ettt e et et e e e e et eeeetae s e e eaaseeseteeeeestsesseaseeeens 31
ACCESSING THE SESSION ..utituituiuneetetnsentaneesetssnraesatessanraeantesesssraeansestessrntesaseersnseresasereenernns 32

F AN o 1 V41 12 0 T 11 L 32
4. PERFORMING CCL COMMANDS ..ottt e e e et e ettt e e e e e e e e e e e s et e earanaas 34
INITIALIZING THE CCL COMMAND INTERPRETER ...vutiitniiitnietteteneetatetaessseesnsessnesstsessssenesrsnsersneesnneees 34
EXECUTING COMMANDS . . .ttuiittiittettettteestetsteestaeeaesstesasersns st esaetstestnestaeestsessetsneestnsessnesstanees 37
RETRIEVING THE RESULT OF THE COMMANDuuiituiiitniiitneettetttessteessessseessssessnesstsssseessneesssersnessaeees 38
Handling search NiStOry UPAALEScovviviiiiiiiieiiiiiiieieeeeeeeeee et veeee e eeeeesasasesesesssesesesesssesennnes 39

[=TT LT T IR =T o I] £ PPPPPPPRt 40
Handling hierarchical DISPlay rESUILS...........uiiiiieiiiiieieeeieieeeeeeeeeeeeeeeeeeeeeeeseeeeeeeseresesesesereserarererane 41
HaNdliNg OULPUL DUFFEIS.....oieeie e e 44

N0 =07y (01N TP 47
The NOtIfiCation MECRANISIT ... et e e e et e e et e e e e et e e s et e e eeaanss 47
(©06] 101 (0] £ (=T £T TP TT 48
TERM LISTS LOADED ON DEMANDcouttieittutetetteeesetseseeassesetessesaaasessaassesssasessessesssasessstseessnassesees 51
5. RETRIEVING DATA FROM DATABASES OR SEARCH SETS ..o 54
PREPARING FOR RETRIEVAL...euuiitutitttitttttestetsteestneetesstesssessnesstasesanesssesssessnesstatessaetseesteesneesaeres 54
SEARCHED RETRIEVAL ..ttutitttitttettteetessteestessnesstasessessssstnssanessteesnetsnesstnteetetsteeettessneestneesnaessnees 55
REVERSE RETRIEVAL ..otuiitiiiieit et s e e e et e et ettt e st e ettt e e s e e s b e e et e s ab e e st e e b e s b s e sbesaasstnsesbneastaeees 56
SORTED RESULTS 1utittuiittutittetetettteest ettt essatesan sttt e st esatssta e saaessbasessesaasstaesansssteetntsssnsastsesnassannns 57
DEFINING RESULT CONTENT .. ttuuttttitttetttttestesstsstaeeanesstnesssessnsstaesanessseesseesnessteessaetsneestseesneesaeres 59
Retrieving STHNG fIRIASuuiiiiie et a e e e 66
PROCESSING RESULTS USING TDBRECORDuuititteteteteeeeeseseeeeeeeeseteeeeesatasesesaaasesstassesssereessaeeesens 67
PROCESSING RESULTS IN XML Lo itiite ittt ettt e e et e e et e e et e e e et e e e e e e e e st e eeeesareeesneeeeeen 72

Copyright © 2024 DVG Operations GmbH

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Structure of the XIML FESPONSE ...ttt e s e e e e e s s e e e e e e e s nnerneeees 72
Transforming the reSUIE XIMILeeireii e e e e e e e s e s e e e e e e s e annes 74
Hit tErMS IN ThE XML .oeiieiiiiiiiiiieieeeeeeeee ettt eeaaa s e seaesasasssasasssasasesasesesssssssnserasernnes 77
51010010 0= 1Y PP PP SRPPPINE 77

B. TDBSEARGCHooiiiiiiiiiiiiiiietiee ettt ettt e ee e et aeee e ae s eaaaasasssasesasasssasasasasssasasssasesssasssssesnrnssreres 78
RATIONALE ... 78
o | o 1OTod (@] 11011 g = 1 (o T 78
Lo | o] R L=Tot0] (0 IST=] T 78
REQUITEIMENTS ...ttt et e s et e e e s s bt e e e b bt e e e nb e e e e e nbb e e e e nnnnas 79
CREATING A TDBSEARCH INSTANCE ...cotuuiiiiiiieiiiiie e ettt e e et e e et e e e et e e e e et e e e st e e sestn e eeaaaeesstanaaeesanss 79
The TADSEAICH ClaSSuuuiiiiieiiieeiee ettt ettt ettt e e e e e e et e e e e e e eessab e eeeeeeeesraen 79
BEe L= e gl o] g) {1 (1 (o | PPN 79
EXECUTING CCL STATEMENTS ... ittt 80
L@ A =T V1 80
PERFORMING A SEARCH......ccciiiie e, 81
F N o IS TU 11 0 g T o PSSP 81
SEAICH EXAIMPIE ..uiiiiiiiiiiiiiii s 84
FETCHING STRUCTURED DATA ..ottt ettt ettt e e ettt e et e e e et e e e e et e e e eaa e e e e st e eeesaneeeesanaeeeeen 84
YT (o IS T AR = L) ([T 84

[=Tot0] (o [l O=To] o [T TR 85

LR Toto (o [l R LY 1 £ [S1V7= | TR 85
TdbSearchSet in fOr-ach [00PScooiiiiiiiiiiii et e e 86
Automatic RetrieVal TEMPIATEScouuiiieiie e 87
Assigning a Custom Retrieval Template ..., 87
USING OUTPUT FORMAT S . .. iiiit i ee ittt et e e et e et e e et e e e e e et e e e e eaa e e e et e e eeaanseeeaan e ee st aeeesanseeesnnnaaenen 89
7. RETRIEVING DATA FROM CONTROL ..ccvviiiiiiiiiiieiiieieieiieeseeeeesessessssssssssssssssssssssesssssssssssersrsse.. 90
(070 N1 2T @] =] =l o 1T 90
CREATING AND USING CONTROL OBJIECT LISTS .ittuuieiitieeeintnieretnnaeeestnaeessnneesssnnaesssnnaesssnneesssnneesssnnns 91
TRANSFORMING CONTROL OBJECT LISTS 1uuuititieeeitunieertueeeestuaaesesnnesssnnaeesstneeesnnnsesssnnaesesnnsesesnnaeeeees 95
8. UPDATING DATABASESoututitiiiiiiiiiiiiiiiiiiiaaeaseaas s nnns 97
CREATING OR RETRIEVING SINGLE RECORDSccevvtttttettesessssssesssssssssessssssssssesesssssesesssssseereserse 97
MODIFYING OR ESTABLISHING THE CONTENT OF A TDBRECORD......cciiiiiiiieiiiieee et e e 101
Working with Structured fIeld tYPESeii i 104
WOrking With TEXE FIEIASeeeiiiieeie e 107
WOrking With STHNG fIEIAScooueiiiii e 110
DELETING SINGLE RECORDS ...cctuuiiittutetttteeeettteesanuneesstanaeeestaeesesnnesssaaesestnaessasneesssnnaeessnnaeeesnnseees 113
AFFECTING MULTIPLE RECORDS WITH ONE REQUEST ..u.iutuiitttiitteitiiertetsteetnseesesstessnessnesstessnaessns 114
Y U101 L= T ES =T o P PPPPPPNt 114

Y U1 T o1 L= T Lo F= L PPNt 115

LY UL T o1 L= 0 1= Y (P PPPPPPRt 115
CALLING ASE ROUTINES WHILE INSERTING OR UPDATING A RECORDucoiiiiiiiiiiiieeeeeeeeeeee e 116
ASE List Properties on the TADRECOrd CIassoocuviiiiiiiiiiiiieieee e 116
ThE TADCAIIASE ClASS ...vuueiieeeeieeeie ettt e e ettt e e e e e e e e e e e e e e e st e s e e e e eeesaaaeeeeeeeeesseaen 117
WItING QN ASE ROULINE ...ttt sttt et e et e e e e e e e e 118
L I o I 1 1 N 119
CREATING A TUPLE LIST e etttteitttteeeeteeesettaeeeeet e eeeaaeee s et e e e eaaa s eeeaaan e e s st eeeeaansesesaneeessnnseeesanseeernnaeereen 119
Specifying a tuple list using a field Qroup ... 119
Specifying a tuple liSt @XPlCIYooiiieie e 119
ENsuring presence Of fIElAS ... 119
INEW TUPLES. ...t i iiii ettt e ettt et e ettt e e et et e e e e et e e e e et e e e e et e e e esan e s s taa e esstasaesasnnesssnnaeeestnsaannnnnaes 120
ACCESSING TUPLES ...uuuiiiitieiiitee e ettt e e et e e et ee et et e e e e et e e s et e e e e ata e e s aaanaasatanaasesaneessnnaeeestnaaassnnnaaes 122
CLEARING TUPLES. ..tuu i etttt e ettt e e ette e et te e e ettt e e e e et e e e et e e e e aaa e e eaaaaeestanaaeeatnsesesnnneestnnaaessanaaeernneaenen 123
REMOVING TUPLES. ... iititittiettee it e et e e et e et e et ee et e s st e et e e ea e e st s e aa e saa e eta e sansestnsesnsessnesstnsennnersnnns 123
10. MANAGING DATABASES AND THESAURI ..ottt 124

page 4

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

CREATING A NEW DATABASE OR THESAURUSccvttieietieeeietn i eeeetaeesstaeessaaasessssnsessstasesssansessssnaeesens 124
MODIFYING AN EXISTING DATABASE OR THESAURUScuuuiiiiitiiieeieteesetieeeeaieeseeaaeeseaanseeeataseesennees 128

[0 1= 1 T Vo I =T o USSR 129
COPYING AN EXISTING DATABASE OR THESAURUS ... civtuiiiiiitieeieiieeesetieeeeatsesssanessstasssesansesesnneesees 130
DELETING EXISTING DATABASES AND THESAURI .. .cvvuuiiitteieieteeeeet e e st eessatsesseaneessaanssesssnseesesnnees 131
11. MANAGING FORM AT S ..ottt e e e e e e e e st e e e et e e e e eba e e s eaaeeeeaaaas 133
CREATING NEW FORMATS ..ttt tettettte ettt et eset e ettt e saaess b se st st aa s s aa e saa s s ab s e aa st aa s sba s sansssassetnssrsnsssrnrees 133
MODIFYING EXISTING FORMATS ..uutittuiiittiettiettteeitatestetstsetaetanesstasestetanessta et ssstaeetntersessteesnasssnnes 134
TESTING OUTPUT FORMATS ..ituiitttiitteeettietaetsteetaetan ettt eeaastasesstatesastaasstnsesanssstsesnessneastsrsnassrnes 137
DELETING EXISTING FORMAT S .. ttutttttittttiettetttesttaeestetstsetsesanesstasesastanessta et ssstasetnterresstaeesnasrsnnes 139
12. MANAGING DATABASE CLUSTERS ... 140
CREATING A NEW CLUSTER ...tutitttiittttti ettt estteettsesaaesstase st st st s sta e st s st sesa s tanesstasssanssstsetnsssrnsasseres 140
MODIFYING EXISTING CLUSTERS .. cvuuuiiettuiieietteessstnesetaneesstaessessnessssneesesnessesneessssseersraseeresnseees 141
DELETING EXISTING CLUSTERSittuuuteiettneeteteseessssnesessneesstaessesssessssessstesresneessssneeerernneerersneees 142
13. MANAGING CLASSIFICATION SCHEMES ..o 143
CREATING A NEW SCHEME ...ituitttiittetttiestessteestessnesstasesaesstsstsesanesstsesaetsnessttestaetsneeernterneesneees 143
MODIFYING AN EXISTING SCHEMEcuuittuiittettteettitettetstestitessesstsessessnesstsesaessteeesierstessaresnersnn. 144
MANAGING CATEGORIES WITHIN A SCHEME .. .cuuiituieitniiiteittetiesstsettssanesstasesanssstsesnsessnessrsesnaersns 146
Creating NEW CAEGOIIES ...c.iiutiieeiiietee ettt e ettt e sttt e abb e e e sbe e e e abbe e e e abbe e e e aabbeeeesabbeeeeanbbeeeennes 147
Retrieving exiStiNg CAtEOMES.uii ittt e e ennes 147
RN gLl Lo o= 11=To o] oY AP P PP PTPPTOPTP 149
Viewing training material for @ CAtEQOIYocuuiiiiiiiiie i 151
Removing training for @ CAtEOOIYuuiii ittt 152
Deleting an eXiStING CAEUOIYuviiiiiiieeeiiieeeieeeeeeeeeeeeeeeeeeeeeeesaseeeeseeeeaeesesreseserererarerererernrnrnrnne 153
TESTING CLASSIFICATION Leuutittuitttittueeetutesuetstestuessnessteestessnessttessetsseestnteesessteersierrieestnresinersn. 153
USING AN EXISTING TRIP DATABASE TO CREATE AND TRAIN CATEGORIESivvuiiiiiiiiieiiieeiineeeneeinnns 154
DELETING AN EXISTING CLASSIFICATION SCHEME .1u.cvuuiiitiiitieetieiteestestneestneesnessteessiessesstseesnaessns 154
13. MANAGING ACCESS RIGHTS ...t e e e s e e raaaas 155
WORKING WITH ACCESS RIGHTS 1utiituiitiiettiitteettiettneseteestesssesstatessststesstnsessesstaeesniessesstnresnesrnns 156
15. MANAGING USERS ... et e e et e e et e e e et e e e e eb e e s sba e e eeabaas 159
CREATING NEW USERS ...etuiittiettiitie ettt e ttesetseaasesaaesetasesaa st et s esa s saa s st s e aa s san s stn s sanssanssesnserrnsasnnrees 159
MODIFYING THE PROPERTIES OF AN EXISTING USER ...uiuuniitiiiitniiitietieieneesteesasssteesnsessnessssesnesssns 161
DELETING EXISTING USERS ...uuieuittitutetteniaetutetsanseaesnsetssneaesnesessnstaesnseaesssrasssnseressnseasrsneeesrnees 162
CHANGING OWNERSHIP «.eetiitttett et e et e et e s e et e e sa e s et eesa s s et s e aase st s s et s e aa s san s etnsesanseanseanseransasrnees 163
16. MANAGING USER GROUPS ...ttt et e e et e et e st e s et e e e e ranas 165
CREATING NEW GROUPS. ... iituiitttiitteettiieta ettt eettte st essta s st esatassta e st et atseaa sttt esstasesaesstesetnserrneestaeees 165
MODIFYING GROUP MEMBERSHIP 1...vuuiiitiiittieiiestteete e saeeste et e s st s eaa e san s sta s e st sssa e et sesbnesstnsesnerannns 165
DELETING EXISTING GROUPS ...uiituiiitniiittittiettiestteeatesstesstasesanesstassstesaneestasestssstaestntersesstresnaessnes 166
CHANGING OWNERSHIP «.cuuiitiiiti e tiee et e e e e ettt e et e s et e e et e s s e e aa s e st e s st s eaa e saa s st s sanesaaasetnessnsastneees 166
17. MANAGING STORED PROCEDURES ... 169
CREATING NEW PROCEDURES. ...uuittiittettt ettt eettesaaesstase st ssatseaa e sanssstaseaa s tanesstasesastenseetnserasasnseees 169
CREATE PROCEDURE BASED ON A SEARCHuuiittiitetit ettt et s et e et e et s sanes et s e sanssanssetnsssansasnneees 170
MODIFYING EXISTING PROCEDURESicuuiitttittteitttestnetetsetnsesassstsessssenesstnsesasssnssesternesseresnersnne 171
DELETING EXISTING PROCEDURESuitttuiittittteitttettetensetasesassstnsesassenesstnsesnsssnssessersnessteresnessnnes 174
18. CONNECTION POOLING ... oottt ettt e e e et e s e et e et s e et s et e san e s st e eenaerannas 175
19. INTERACTION WITH TRIPCOF ...ttt ettt e e et e et e e e naaas 181
YA IOV = A =TT 181
Property TdbStringField:EXtractionTargetceiiiii i 181
Property TdbTextField: TeXtEXtractionInfo ... 182
Class TAdbTeXtEXIraCIONINTO.........iiiie et e e e e e e e e s b e e e e et e e enaaa s 182

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

MethodTdbStriNgFIIAd:CONVEIT.........uviiiieie e e e e e e e e e enraaae s 188
EXTRACTING TEXT FROM A STREAM WITH SERVER-SIDE PROCESSING......uccivvtuieiiiiieieiieeeeeinneeeennnns 190
EXTRACTING TEXT FROM A PREVIOUSLY STORED FILE DURING UPDATEu.iiivtuieeetieererieeeeeineeeesnnns 192
L I It @] N1 7 = =T [N 193
HTML CONVERSION WITH HTML HIGHLIGHTING ...cevuuiiittieieeet e ee et e e st e e e e e s seaa e e s eaaneeesebnsessennnas 195
EXAMPLE OF CLIENT-SIDE HTML CONVERSION WITH HIGHLIGHTINGcvvniiiiieceeeie e s e e eeeenaeeas 197
I QI AN N 2] 1T 198

Class TABNIPINTOeeeeiiiee ettt et e e e st e e e e sbb e e e e sabbeeee e 198

TeXt ANAIYSIS EXAMPIEooiiiiiiiiie ittt e e e e 203

20. USING JSON/XML DATABASES ...ttt ettt e et e e e e e e aa bt e e e e e e e eeraaen 204
(@ A7 =1 AV Y 204
YA AV = A =TT 204

Enumeration TAbXmMIRECOIA.IOMOUEcoiiiiieiiiiei et e e 204

Enumeration TdbXmIRecord. XmIRECOIrATYPE ..uvvviiieiiiiiiiiiiiie et e e e 205

(08 =T o | 0 0a 411 2 LT oT0 T (o 205
INSERT XML DOCUMENTS 11 ituiitiieittittieett ettt s sbeestesstseta e sanesstasestesanesstasesassstseantessesstresnaersnnns 211

INHNE IMPOIT ., 211

DIreCt fil@ IMPOIT.....eeeiieiee ettt e e st e e e st et e e e snbne e e e nnnns 212

i =TT g I 0] oo o AP P PP PO PPPRPPPPRNt 213
INSERT UNSTRUCTURED FILES IN JSON/XML DATABASEScoevvvttieeieeeeeeeeeiiiieeeesseestsiasseesseesssnnnnns 214

INTINE IMPOIT ettt s b e e ek e e et e e e e e nbe e e e e nbneeeennenas 215

DIreCt fil@ IMPOIT.....eeiitiie et e st e e st e e e st et e e e anbne e e e nnnns 215
RETRIEVE DOCUMENTS FROM A JSON/XIML DATABASE ... oetetieeeeee e et itee e et e eaeeaesessaesessatsssssnneees 216

INHNE EXPOI .., 216

[0S0 1 L= = 0L PPNt 216

Y11= T =2 o L] o PO 217
UPDATE JSON/XML DATABASE RECORDSccuuuiiitttniiittnieistieesesssesssseesstaessesnessssesssre s 218
USING XPATH QUERIES ..uuiiiiiitiitiitiie s et e teestttan s e e e seesasbsssseeeseeatas s s e e e e eeaeaba s e e eaeeeesbsaaneeeeaeeaentaa s 219

Using XPath with the TdbSearch Class.............uuviiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee e 219

Using XPath with the TADReCOrdSet Classcooiiiiiieiiiiiecie e 219

Using XPath with the TAbCclCommand ClassSccuvieiiiiiiiiiiiie e 220
RETRIEVING SEARCH RESULTS AS XML FRAGMENT SETS ..uiiiiuiiiiiiiiiiiiieei et ete e et e s s e esaesanaas 221

P2 T o N O o 1 SRR 223
1D = N N 223
Y @3 = ST N I I N 223

[T Y A O F= 1YY F Y 223
USING TRIP A CE T S ittt ittt ettt et e et e e e e b e e et e e e e et e e ea e s sbeeaa e sbaeaabeesnersnnns 224

THE TADFACEISEE ClASSciieeie it e e e e e et e e e e e e e s et e e e eab s e s eaaneeeees 224

The TADFACEIVAIUE CIASScouuiiiiiiee et e et e e e e s e e e e e e e e eaaaeeeeees 224

L= 1oL B T 1] o] = PRSPPIt 224
Y8 = = 7] =1 I V=1 225

Facet Baseline Registration EXamPIE.........cuiii it 227

Facet Baseline Usage EXAMPIEcoouiiiiiiiii e 228

Facet Scrolling Usage EXAMPIEoouiiiiiiiii et 229

A € 2 7 N od o 1 TR 230
GRAPHS IN TRIP ettt e e et e e e e et e et eeeb e e et et e e s et s e et s eaassean e sansaernees 230

MaIN Graph CIASSES ... ittt e ettt e e e e e s et bbbt e e e e e e s et bbb e eeaaeeeeaanrenaeeas 230
BASIC GRAPH OPERATIONS ...euuiitteittititeett ettt s st ee st e sat s ettt e sa s st eatetaaeesta e st ssstsetntersnessteesnaerrnns 231

Source, Target and EAQEe SIScooiiiiiiiiiiiie et e e e e st e e e e e e e anne 231

FOrWArd NAVIQATION. ... eeieeeiee ettt e ettt e e e e e s e bbb et e e e e e e e aanbbar e e e e e e e e e sannneneeas 232

BaCKWard NAVIGATIONueiiiiiiiiiiiiie ettt e ettt e e e e e et b e e e e e e e e e sanreeeeeas 232

RESOIVING VEITICES ..ottt ettt e ettt e e e e e e e bbbt et e e e e e e s e nbbar e e e e e e e e e annnnnneeas 233

R S LAV T 1 o) o F T 234
GRAPH PATH ANALY SIS .ttt itittett e tte et e et ettt et s et e ettt e et st et s et e et se et s e aa s san s st sesanssansetnserrnsastnrees 236
DEALING WITH LENGTHY PATH ANALYSIS OPERATIONS ... cctutituuitittetteteieeetnsesnsssnseesntersnesstnsessesans 238

YT o] o I T 41T 0 10 | TR 238

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

[N 0] (1 ToF=) o] o £ PRSP R PPRPP 239
THE TRIP GRAPH QUERY LANGUAGEceiiutiiitiieiriee st e sitee st sine st e et e sne e s e aneeesnneesnneennneenns 240
)] 240

LT =T o] T 01T oYY 1 PRSP 242
= 0] o] 1= USSP 242
POPULATING A GRAPH ...uttieiiie it si ettt ettt et s e e san e e st e e e st et e s re e e nnn e e snne e e nnneesaneeennnes 244
Create a Graph Database.ccoouiiii ittt 244
Yo (ol o =T g I o (o= P PO PP PO PPPPO 245
AGAING @ VEITEX ettt ettt et e skt e e e b b et e e et et e e e st et e e e nbe e e e e ennnas 245
Modifying @ Graph RECOI......cco it 246
23. CANCELLING COMMANDSooiitiiiitiieatie ettt sttt st e be e sbbe e be e e saeeesabeassbbeesnbeeennes 247

page 7

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Introduction

This manual detail the means by which programmers can access TRIP using two class
libraries of the TRIP SDK; TRIPjxp for Java development and TRIPnxp for development
targeting the Microsoft .NET framework. Both of these class libraries are based on a new,
high performance, XML-based network protocol called TRIPxpi. It exposes a number of
atomic operations intended to collect what would traditionally be a large number of
networked function calls into a single “transaction.”

TRIPxpi is therefore intended to be a high performance, low overhead network-oriented
protocol suite that is well suited for application building in either middle-tier or even Ul-tier
(in the case of the TRIP AJAX toolkit) development.

In order to interact with TRIP using TRIPxpi, the programming model is exposed in two of
the most prevalent programming environments, Java and Microsoft.Net. For the former,
TRIPjxp provides a Java class library compatible with Java 8, 11 and 17, whilst for the
latter, TRIPnxp provides a .Net 4.6.2-compliant assembly.

Each of these libraries expose the underlying functional model of TRIPxpi by encouraging
the programmer to exercise a large number of local interactions with cached data coupled
with a very small number of networked interactions. These networked interactions use the
TRIPxpi protocols to request as much data and/or processing to be made available by the
server as possible in a single request / response cycle.

For example, whilst the traditional TRIP programming model has centered around
executing CCL searches and then using TRIP’s report generator to create either
intermediate or end user-consumable representations, scrolling through the kernel window
buffers as necessary to collect all available data, TRIPxpi collects all of these various
operations into a single request and response, encapsulating a search as well as the
sorting and retrieval of results.

Although the amount of data involved in transmitting these request / response pairs can be
significant, the overall bandwidth impact on individual servers and on the network as a
whole is considerably diminished as compared to older libraries such as TRIPclient or
TRIPcom, resulting in higher performance all around.

Application developers are very strongly encouraged to make use of the new protocols as
described in section 5 (Retrieving data from databases or search sets) and section 6
(Retrieving data from CONTROL) in preference to the more traditional CCL command-
centric interactions as described in section 4 (Performing CCL commands).

Files and locations
The class libraries are shipped using platform-appropriate packaging, as described below.

TRIPjxp for Java Programming

The main TRIPjxp library class files can found in tripjxp.jar. All example code can be found
in tripjxp_examples.jar (executable) and tripjxp_examples_src.zip (Java source). In order
to use TRIPjxp, simply ensure that tripjxp.jar is in your CLASSPATH.

For example, assuming that both tripjxp.jar and tripjxp_examples.jar are in the current
directory, you can run any of the examples using the following type of command (also
assumes that you have JAVA_HOME/bin in your execution path):

page 8

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

java -cp tripjxp_examples.jar;tripjxp.jar
com.tietoenator.trip.jxp.examples.data.Transform

Using a development environment such as Eclipse, simply add the TRIPjxp JAR file to
your workspace as normal.

Reference material (Javadoc) for TRIPjxp can be found in tripjxp_docs.zip. Reference
material for the samples used in this guide can be found in tripjxp_examples_docs.zip.

TRIPnxp for .Net Programming

The TRIPnxp assembly, along with sample code and reference documentation, is shipped
as a single Windows installation package. Install this package as usual, simply choosing a
target directory for the entire installation.

To use TRIPnxp within a .Net project, simply add a reference to your project as usual:

Add Reference

MNET | com | Projects |

Component Name | Version | Path |/_\

Accessibility. dl 1.0.5000.0 C:WINDOWS \Microsoft.NET... Select
adodb 7.0,3300.0 C:\Program Files\Microsoft.M...
CRVsPackagelib 9, 1.5000.0 C:\Program Files\Commaon Fil...

.1,5000.0 C:\Program Files\Common Fil. ..
.1.5000.0 C:\Program Files\Comman Fil...
CrystalDecisions, Shared .1,5000.0 C:\Program Files\Common Fil. ..
CrystalDedsions.Web .1,5000.0 C:\Program Files\Comman Fil...

CrystalDedisions, CrystalRepo... 9
9
9
9
CrystalDedsions, Windows.Fo... 9.1.5000.0 C:\Program Files\Common Fil. ..
9
9
9
q

CrystalDedsions.ReportSource

CrystalEnterpriselib .1,5000.0 C:\Program Files\Common Fil. ..
CrystallnfoStoreLib .1,5000.0 C:\Program Files\Common Fil. ..
CrystalkeyCodelib .1,5000.0 C:\Program Files\Common Fil. ..
CrvstalPhininMarl ib 1. 5000.10 :\Prooram Files\Common Fil. ..

|

Selected Components:

Compaonent Name | Type | Source | Remove
TRIPnxp.dll File C:\Program Files\TietoEnator{T...
Ok Cancel Help

Both the standard example application and the reference documentation are linked via a
start menu folder entitled TietoEnator \ TRIPnxp. The source form of the examples can be
found in the installation directory and can be opened as a project using the provided
VB.Net project file.

Code sample format

There are three kinds of interaction that are common within both libraries: properties,
collections, and methods. Strictly speaking collections are simply a different type of
property, but for clarity we split them out in this guide. Also note that whilst the .Net library
offers class indexers where appropriate, these are not explicitly documented in this guide.
Information on indexers is included in the class library reference documentation.

page 9

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:)) vision
group

When describing any of these interactions in detail, the format used for each will be similar
and will reflect not only what the access mechanism is called, but what interaction types
are legal.

Note that when describing .Net interactions, the data types shown will reflect the
underlying system type (although undecorated with the System namespace for clarity).
Programmers should obviously use the language-appropriate alias for the underlying type
where applicable. The following common types are used in the library:

CLR Type C# VB.Net Type

Type
System.String string | String

System.Int32 int Integer

System.Boolean | bool Boolean

System.Single float Single

System.Byte byte Byte

For example, the following shows a read/write property of the TdbUser class:
Property: TdbUser:RealName

Type: String
Access: Read, Write

Java

String getRealName();

void putRealName(String name);
.Net

String RealName { get; set; }
Retrieve or establish the real name of the TRIP user.

A collection description would be as follows:

page 10

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Collection: TdbDatabaseDesign:Fields

Type: List of TdbFieldDesign
Access: Read, Write

Java

List<TdbFieldbesign> fields()

void putFields(Collection<TdbFieldDesign> fields)
.Net

IList Fields { get; set; }
Retrieve or establish the collection of field design templates for this database.

There are two types of collection used in the library, reflecting collections of items that are
either ordered or not. Ordered collections are reflected as lists (List<E> or IList,
respectively) whereas unordered collections are reflected simply as collections
(Collection<E> or ICollection, respectively). In addition, many of the collections retrieved
from the libraries are read only; programmers should take care to use language facilities to
determine this access restriction before attempting to update collections retrieved from
library properties.

Finally, a method description would be as follows (note the difference in capitalization
between Java and .Net, reflecting the different coding standards for those platforms):

Method: TdbRecordSet:Get

Type: void
Throws: TdbException
Java
void get()
.Net
void Get()

Retrieve the underlying objects from the server. Applications must have set
properties x, y and z prior to attempting to call this method, otherwise an
INVALID_ARGS exception will be thrown.

When showing code fragments to explain the usage of a given method or property, again
we give examples for the different platforms, for example as shown below.

page 11

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java
for(TdbFieldDesign field : myDatabase.fields())
{

String name = field.getName(Q);

}
VB.Net

For Each field As TdbFieldDesign In myDatabase.Fields
Dim name As String = field.Name;

Next

Note that code examples will not show different languages for the .Net platform as aside
from language-specific syntax, the usage of the library is exactly the same between all
CLR-compliant languages.

Package / Namespace conventions
The root package for the TRIPjxp library is:

com.tietoenator.trip.jxp

All classes are found either in this root package or in a child package, for example:
com.tietoenator.trip.jxp.database

Likewise for the .Net assembly, the root namespace is:
TietoEnator.Trip.Nxp

Child namespaces for particular functional areas are grouped appropriately, for example:
TietoEnator.Trip.Nxp.Users

When describing a class location, this guide uses a common layout, as shown here:

Class: TdbXyz

Derived from: <base class>

Located 1in: package / namespace location relative to
root, or “root” if in the root package /
namespace

page 12

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Class hierarchy
There is a basic class hierarchy used within the library that helps ensure that all required
information is available to users of class objects when required, as shown below.

TdbSessionoObject
TdbMessageProvider

<non-serializable objects>

TdbSerializableObject

<serializable objects>

Thus, when using an object of a class such as TdbDatabaseDesign, the class in question
is derived from TdbSerializableObject, which in turn is derived from TdbMessageProvider
and therefore from TdbSessionObject. This means that at all times, the capabilities offered
by the lower level classes, such as retrieving the session to which the object is bound, or
retrieving a list of available information messages, is freely available from the higher level
object.

Very few classes within the library derive directly from an object other than shown in this
hierarchy, and in such cases the classes in question are strict utility / container classes
that afford no server interaction at all.

Recommendations regarding search and retrieval

Although both TRIPjxp and TRIPnxp provides more “traditional” means of search and
retrieval by using classes for direct CCL command invocation and output formatting, the
developer is encouraged to use the classes in the data package/namespace (e.g.
TdbRecordSet, etc) instead whenever possible. These classes are specifically developed
to address shortcomings in previous APIs that forced the developer to use suboptimal
approaches, such as the use of output formats.

Serializable objects

One of the key levels in the class hierarchy is that of TdbSerializableObject. Any class
derived from this base has a number of capabilities for serialization and deserialization, or
in TRIP terms: export and import. Consult the reference documentation for the classes in
question to see exactly how they expose this base functionality.

Control objects

Many of the classes within the library can be constructed using an instance of the class
TdbControlObject as input. These “Control object references” are typically retrieved using
the capabilities of the Control database retrieval classes documented in section 6 of this
guide, and contain information from the Control database that uniquely reference the
specific TRIP entity to which the calling program is binding the new object.

For example, a database entity within TRIP would be represented by a TdbControlObject
with the following standard properties:

page 13

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Name: <database name>

owner: <name of the FM of the database>

CreateDate: <date on which the design was created>
CreateTime: <time at which the design was created>
ModifyDate: <date on which the design was last modified>
ModifyTime: <time at which the design was last modified>
Type: Database (or thesaurus)

comment: <any description assigned to the database>

In addition, due to the object referenced being a database, the object will also have
extended, or custom, properties such as:

RecordCount: <number of records in the database>
ExtendedType: <User, System, Demo, etc.>
Xml?: <Yes / No>

Similarly, every entity type within the TRIP system can be represented using a
TdbControlObject. This class provides a large number of properties and methods for
interrogating the Control reference, allowing the programmer to determine exactly what it
is, but equally the programmer can simply pass an object retrieved from Control (see
section 6) into a constructor for an entity manipulation class, such as TdbDatabaseDesign,
allowing for completely generic application construction.

Also note that all classes that can be constructed using a Control object reference
implement an interface called TdbControlObjectProvider, and can themselves therefore be
passed as construction arguments into any object that specifies a TdbControlObject as
input.

page 14

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:]) vision
group

1. Errors and exceptions

There are many different situations that can cause errors during a typical TRIP interaction.
These errors can range from networking problems to syntax errors in commands to
completely benign error conditions such as reaching the end of available data.

All types of errors and exceptions are reported using a single exception class:
Class: TdbException

Derived from: Exception
Located in: root

Every method of every class that throws an exception does so using an instance of this
basic class. Instances of this class can be queried by the developer to retrieve either the
textual form of the error message, or any assigned numeric error code.

As TdbException derives from the standard Exception class, it can be used in the normal
fashion in exception catching clauses. In addition to the standard methods as required by
Exception, TdbException defines the following properties that can be used to better
understand, or report upon, the underlying problem.

Property: TdbException:Code

Type: Integer
Access: Read

Java
int getCode()
.Net

Int32 Code { get; }

Retrieve the underlying error code that triggered the exception being thrown. This
is most likely to be a TRIP error message, but can also be a TRIPnet
communication error code, etc.

Property: TdbException:DebugMessage

Type: String
Access: Read

Java

String getDebugMessage()
.Net

String DebugMessage { get; }

Retrieves a fully decorated message context for the underlying error, including a
full stack trace of where the error occurred. This stack trace will include any nested
exceptions (for example as thrown by operating system interface classes, etc.) that
contributed in causing the exception to be thrown.

As all class methods can potentially throw TdbException instances, all invocations of
methods must be wrapped in try/catch syntax, catching TdbException at the very least.

page 15

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 ji:' vision
group

Outside of the range of normal TRIP error codes, the following TRIPxpi-specific error
codes can be observed during TRIP interactions, these codes being provided to help the
programmer in understanding context:

TdbException.UNEXPECTED_STATE

The client library is in an unexpected state, potentially due to a server glitch. The
client program should probably restart at this point.

TdbException.COMMUNICATIONS_ERROR

An error occurred when attempting to communicate with the assigned TRIP server.
The message accompanying this error code should help in determining the actual
source of the problem.

TdbException.UNEXPECTED_RESPONSE

The server has responded to your request in a manner that is not consistent. This
typically means a fatal error has occurred within the server’s execution and any
connection to that server should be reset in order to avoid further error conditions.

TdbException.PARSER_ERROR

The server has responded with invalid XML. This should never occur, but if it does
it again points to a fatal error occurring within the server. The best recourse for the
developer at this point is to reset the connection to the server.

TdbException.UNUSABLE_SESSION

The developer has attempted to invoke a method on a connection that cannot
support that method’s execution, for example requesting a grid-specific protocol on
a TRIPnet connection.

TdbException.INVALID_ARGS

This error occurs when arguments passed to a method are invalid, for example null
object references.

TdbException.END_OF_DATA

This is a benign exception code and reflects the program having successfully
iterated to the end of a given collection, for example a particular field’s content.

TdbException.VALIDATION_ERROR

This error occurs when internal state data of an object is invalid in the current
context, e.g. null object references or non existing files to read. This typically
means that some properties on the current object have not been set or have been
assigned invalid values prior to the invocation of the method that threw this
exeption.

TdbException.NO_LICENSE

The current SDK product (TRIPnxp or TRIPjxp) is not licensed for use with the
connected server.

page 16

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

TdbException.GENERAL_ERROR

An error was reported of an unhandled type, for example a heap corruption error
when parsing XML, etc. Examine any nested exceptions for more detail — there will
always be at least one nested exception provided.

page 17

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

2. Success messages

Many of the methods that cause TRIP server activity and that can reasonably be expected
to have been generated by user interaction generate user-consumable messages
indicating success, or information about what happened.

Classes that cause such success messages to be generated all extend a common base
class that contains functionality to deal with, and to serve up, such messages:

Class: TdbMessageProvider

Derived from: TdbSessionObject
Located in: root

Thus, from any class that extends this base, the developer can retrieve any available
success messages and/or message codes:

collection: TdbMessageProvider:MessageList

Type: List of String
Access: Read

Java
List<String> getMessageList()
.Net

IList MessageList { get; }

Retrieve the collection of available information messages. Certain TRIPxpi
interactions involve several, or many, TRIPapi functions being called on the server,
each of which could feasibly generate a success message. In such cases, the
success of the client method results in a list of success messages being made
available to the calling application.

Ccollection: TdbMessageProvider:CodeList

Type: List of Integer
Access: Read

Java
List<Integer> getCodeList()
.Net

IList CodeList { get; }

Retrieve an iterator over the available list of success return codes.

page 18

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Method: TdbMessageProvider:HasMessages

Type: Boolean
Throws: N/A

Java
boolean hasMessages()
.Net

Boolean HasMessages()
Check whether the object is in receipt of one or more success messages.

When the same object is being used for multiple operations, the list of messages should
be reset to a blank state between iterations. The potential for user confusion is otherwise
increased greatly, as the list of success messages would continue to grow with iterations.
To reset any object of a class that extends TdbMessageProvider to a blank list of
messages, use the following method:

Method: TdbMessageProvider:ResetMessages

Type: void
Throws: N/A

Java
void resetMessages()
.Net

void ResetMessages()

Clear any pre-existing list of success messages and/or codes.

page 19

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

3. Establishing / terminating a session

TRIPxpi access is available via several different physical connection mechanisms, such as
local DLL linkage, TRIPnet, or HTTP. For networked interaction, although TRIPnet is the
most efficient means of connecting directly to a single server, HTTP provides flexibility in
terms of more generally-available network routing, and also provides support for
communicating with TRIPgrid storage grids. Certain types of session can also be managed
via a connection pool to help with multi-user performance, see chapter 16 for more details.

Objects of all classes, with the exception of the session classes described here, require an
instance of a session class to be passed into their constructor, explicitly linking new
objects to that session. Thus, the single most important first step in creating a TRIPXpi
program is to create a session, and via that session to detail how the client will connect to
the server for the purpose of exercising that session.

Class: TdbSession

Derived from: TdbSessionObject
Located 1in: session

Objects of this class cannot be created directly, however, as this base class does not
provide a means of connection to a TRIP server. Instead, developers should create an
object of one of the following types, depending on the transport desired:

Class: TdbLocalsession

Derived from: TdbSession
Located 1in: session

Class: TdbTripNetSession

Derived from: TdbSession
Located 1in: session

Class: TdbwebSession

Derived from: TdbSession
Located 1in: session

For TRIPgrid connections only, developers can create an object of the following type (see
the appropriate sections of this document for the subset of protocols available on TRIPgrid
connections — note that attempting to use non-grid aware protocols via a TRIPgrid
connection will cause an UNUSABLE_SESSION exception to be thrown; likewise,
attempting to use a grid protocol via a non-grid connection will cause the same exception):

Class: TdbGridsession

Derived from: TdbSession
Located 1in: session

The following code example shows how to create a session (we use TRIPnet in this
example) and then login to that session.

page 20

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Java
import com.tietoenator.trip.jxp.TdbException;
import com.tietoenator.trip.jxp.session.TdbSession;

import com.tietoenator.trip.jxp.session.TdbTripNetSession;

TdbSession init(String server, int port, String user, String pw)

{
TdbSession session = null;
try
{
session = new TdbTripNetSession(server, port);
session.login(user, pw);
}
catch(TdbException e)
{
e.printStackTrace();
}
return session;
}

page 21

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net
imports TietoEnator.Trip.Nxp;

imports TietoEnator.Trip.Nxp.Session;

Public Function init(Byval server As String, _
Byval port As Integer,
Byval user as String,

Byval pw As String) As TdbSession
Dim session As TdbSession = nothing

Try
session = New TdbTripNetSession(server, port)
session.Login(user, pw)

Catch e As TdbException
MsgBox e.Message

End Try
Return session

End Function

For an example of creating all kinds of session, please consult the following source
examples

Java
com.tietoenator.trip.jxp.examples.util.SessionFactory
.Net

Session\login.vb

The following sections describe each type of session connection and its available
constructors. In general, connections that are either local (DLL linkage), or via TRIPnet or
the TRIP web service are referred to as physical, versus connections to a TRIPgrid.
Operations that are valid for any one type of physical connection are valid for all types of
physical connection, but are typically not valid for a TRIPgrid connection (and vice versa,
of course).

page 22

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Local connections
This type of connection uses direct DLL linkage to access a TRIP installation on the local
machine.

In order for this to work with TRIPnxp, the TRIP ‘bin’ folder must be in the user’'s PATH, or
else the application and the assembly must be installed in the TRIP ‘bin’ folder.

For TRIPjxp, the use of local connections require that the 'tripjxp_local.jar' file is on the
class path, and that the ‘jxplocal' .dll/.so file is on the library path environment variable
(PATH on Windows and LD_LIBRARY_PATH on most Linux/Unix systems). The library
path can also be specified using the system property java.library.path.

There is only one constructor available for this type of connection (note that any attempt to
construct an object of this class in Java will result in an UNUSABLE_SESSION exception
being thrown):

Cconstructor: TdbLocalSession
.Net & Java

TdbLocalsession()

Create a connection to a TRIP installation running locally, using direct DLL linkage
rather than any network protocol.

TRIPnet connections
There are four available constructors for TRIPnet connections:

constructor: TdbTripNetSession
Java
TdbTripNetSession(String server, int port,

String inifile, int timeout)
TdbTripNetSession(String server, int port)
TdbTripNetSession(String server, int port,

String inifile, int timeout,

boolean encrypt)

TdbTripNetSession(String server, int port,

boolean encrypt)

page 23

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

.Net
TdbTripNetSession(String server, Int32 port,

String inifile, Int32 timeout)
TdbTripNetSession(String server, Int32 port)

TdbTripNetSession(String server, Int32 port,
String inifile, Int32 timeout,

bool encrypt)

TdbTripNetSession(String server, Int32 port,

bool encrypt)

Create a connection to the TRIPserver on the named server at the identified port. If
specified, the named initialization file is requested to be executed by the server,
and the connection timeout is set as specified (timeout is specified in milliseconds).
If using the version of the constructor that does not specify timeout, a default
timeout of 60 seconds is used.

Encrypted sessions
Support for encrypted sessions were added to version 7.0 of TRIPsystem and
version 3.0 of TRIPnxp and TRIPjxp.

The TdbTripNetSession constructors that take a boolean "encrypt" parameter are
used to establish encrypted sessions. Passing true to this parameter will result in
an encrypted network communications channel being set up between the client
process and the TRIP server.

The following steps are performed when establishing an encrypted session>
1. The client creates an asymmetric 1024 bit RSA key pair.

2. The public part of the RSA key is sent to the server along with a request to
set up an encrypted session.

3. The server creates the session key. When used with TRIPsystem 8.2 or
later, this is a 256-bit symmetric AES key. Older TRIPsystem versions
creates al92-hit symmetric Triple-DES encryption key.

4. The server encrypts the session key with the public part of the RSA key
received from the client.

5. The encrypted key is sent to the client. Any further communications are
hereafter assumed to be encrypted using the session key.

6. The client decrypts the session key using the private part of the RSA key it
generated in step 1.

page 24

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

7. All communications for this session between the client and the server are
hereafter encrypted.

Web connections

When connecting to the standalone TRIP web service, there is only one relevant
constructor:

Constructor: TdbwebSession

Java

TdbwebSession(String server, int port)

.Net

TdbwebSession(String server, Int32 port)

Create a connection to the TRIP web service running on the named server at the
identified port. The end point of this connection must be a servlet container with the
TRIP web service deployed and active.

Grid connections
When connecting to the TRIPgrid web service, there is only one relevant constructor.

constructor: TdbGridSession
Java
TdbGridsession(String server, int port)

.Net

TdbGridSession(String server, Int32 port)

Create a connection to the TRIPgrid web service running on the named server at
the identified port. The end point of this connection must be a servlet container with
the TRIPgrid web service deployed and active.

Authentication

Depending on the type of connection, there are two ways in which programs must identify
themselves with the TRIP server. TRIPnet, local DLL linkage, and standalone web service
connections are session-based and must therefore login to the target server. TRIPgrid
connections, however, are not session-based and can therefore only authenticate a
credentials set with the grid — note that if a grid session is not authenticated, any defined
anonymous credentials as established by the grid DBA will be used by the grid web
service when constructing slave TRIPnet sessions.

Logging into a physical connection
In order to login, the developer must provide a username and password, and can also
choose to provide a language identifier and a restart flag.

page 25

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbSession:Login

Type: void
Throws: TdbException

Java
void Togin(String username, String password,

TdbLanguage language, boolean restart)

void Togin(String username, String password)
.Net
void Login(String username, String password,

TdbLanguage language, Boolean restart)

void Login(String username, String password)

Validate the combination of username and password provided (the password is
always encrypted for transmission). If this succeeds, the resulting TRIP session is
initialized to use the defined language as its CCL dialect, optionally restarting from
a previously saved session file. If the version of the method is used that does not
specify a language identifier, English is the default dialect.

Authenticating with a TRIPgrid session

In order to identify the calling process with the grid, the developer must use the following
method call. Note that this is only legal on TRIPgrid sessions and results in the provided
username and password being validated by the grid and then stored within the grid in
order to identify the user in all interactions with slave TRIPnet connections.

Method: TdbSession:Authenticate

Type: void
Throws: TdbException

Java
void authenticate(String username, String password)
.Net

void Authenticate(String username, String password)

Dispatch the provided username and password to the TRIPgrid for authentication.
The password is encrypted for transmission, as usual.

Note that there is no requirement to explicitly shut down, or terminate, a grid connection as
all grid requests are atomic. Following 30 minutes of inactivity, however, any credentials
authenticated with the grid will become invalid and further requests will operate within the
context of the grid’s anonymous user. If no such anonymous user has been established,
all grid requests will fail until such time as the user is re-authenticated.

Logging out from a physical session
In order to explicitly terminate a physical connection, the following method instructs the
server to shut down.

page 26

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Method: TdbSession:Logout

Type: void
Throws: TdbException

Java:

void logout(boolean save)

void logout()

.Net

void Logout(Boolean save)
void Logout()

Instruct the server to shut down its connection with the TRIP server and to release
any resources associated with that connection. The ‘save’ flag can be used to
request the user’s session file to be saved for later recovery during a subsequent
login (this obviously requires a coherent site-wide policy with regards TDBS_SIF
settings and session file storage).

If applications do not call this method, the server session will automatically terminate under
the following circumstances:

Local Upon process termination
TRIPnet Upon client process termination
Web Service After 30 minutes of inactivity

page 27

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Token-based Authentication

Token based authentication is supported in TRIP from version 8.4. This commonly used
type of authentication uses a pair of cryptographically secured tokens; one short-lived
access token, and one longer-lived refresh token. Such a token pair can be obtained by
any authenticated non-SYSTEM user. When the access token expires, the associated
one-time use refresh token can be used to acquire a new token pair without having to
authenticate with the user’'s username and password again.

The intended use case for the TRIP token-based authentication is to help TRIP based
applications that use TRIP as their end user identity provider (i.e. the app users log on as
TRIP users) implement an authentication scheme that can recall the user’s identity over
time, reducing the need for the user to explicitly log in with their username and password
every time they wish to access the app. If returned from the web application server to the
browser, the TRIP tokens should first be wrapped as JWT tokens. The exchange of such
tokens is typically done via a cookie.

Note that despite access tokens elsewhere are mostly used for REST and stateless
access, the TRIP token functionality is only an alternative means to authenticate (login).
Authenticated TRIP sessions are always stateful, even if tokens are used.

This document will not go further into the details of token-based authentication for web
applications; there are plenty of third-party resources for this purpose.

Querying TRIPsystem Configuration

Applications should use the TdbSession properties [is]TokensEnabled and
[get]ApiKeyMode in order to determine if and to which extent token-based access is
possible with the connected TRIPsystem server.

The [is]TokensEnabled property returns true if token-based access is enabled, and false if
it is not.

Property: TdbSession:TokensEnabled

Type: Boolean
Access: Read

Java
booTlean isTokensenabled()
.Net

bool TokenstEnabled { get; }

The [get]ApiKeyMode property returns an TdbApiKeyMode enum instance that denote if
an API key is required for token use and, if so, for which operations.

page 28

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbSession:ApiKeyMode

Type: TdbApiKeyMode
Access: Read

Java

TdbApikKeyMode get ApikKeyMode();

.Net

TdbApiKeyMode ApiKeyMode { get; }
Retrieve the API key mode that the connected TRIPsystem server requires.
Enumeration: TdbApiKeyMode

Located 1in: session

API Keys

API keys, if enabled, provide an extra level of protection for token-based authentication.
Not only must the application provide a valid access token, but also a valid API key. Such
keys are generated by the TRIPsystem administrator and provided manually. There is no
automatic way for applications to obtain such keys. API keys typically remain valid until the
TRIPsystem administrator revokes them.

The possible values of the ApiKeyMode property are (with “Always” being the default
unless otherwise configured in TRIPsystem):

No API keys are not required

Always An API key is required for the creation and refresh of tokens as well as for
token-based login.

Refresh An API key is only required for the refresh of a token pair.

Tokens An API key is required for the creation and refresh of tokens, but not for
token-based login.

Unless the ApiKeyMode is “No”, applications that use TRIP tokens must have a valid
TRIPsystem API key. Make sure to store this key securely. Do NOT store the key in a
source control repository or any other location where it is likely that it may be accessed by
unauthorized parties!

Obtaining a Token Pair

If no refresh token is available or if it has expired, the application can request a new token
pair on the behalf of the logged in user using the requestAccessToken method of the
TdbSession class.

page 29

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:]) vision
group

Method: TdbSession:RequestAccessToken

Type: TdbTokenPair
Throws: TdbException

Java
TdbTokenPair requestAccessToken(String apikey, String tag)
.Net

TdbTokenPair RequestAccessToken(String apikey, String tag)

This method returns a TdbTokenPair instance that contains the access and refresh token
strings and information on their expiration times. The data in this instance should be
securely stored and accessible by the associated end user only. If returned to the
application web frontend, the tokens should first be JWT encoded.

The apikey argument must be a valid TRIPsystem API key if the ApiKeyMode of the
session is “Always” or “Tokens”.

The tag argument is an indicator to the TRIPsystem administrator regarding the intended
use for the requested token. This can, for example, denote the application and/or app
functionality that the TRIP sessions authenticated by the token will be used for. If you are
unsure about what to specify here, ask your TRIPsystem administrator.

Refreshing a Token

An access token is typically rather short-lived, normally not longer than an hour. However,
a refresh token can be valid for much longer (e.g. 30 days), but is one-time-use only. To
use a refresh token to obtain a new token pair, the RefreshAccessToken method of the
TdbSession class should be used.

Method: TdbSession:RefreshAccessToken

Type: TdbTokenPair
Throws: TdbException

Java

TdbTokenPair refreshAccessToken(String apikey,
String refreshToken)

.Net

TdbTokenPair RefreshAccessToken(String apikey,
String refreshToken)

This method returns a TdbTokenPair instance that contains the access and refresh token
strings and information on their expiration times. The data in this instance should be
securely stored and accessible by the associated end user only. If returned to the
application web frontend, the tokens should first be JWT encoded.

The apikey argument must be a valid TRIPsystem API key if the ApiKeyMode of the
session is “Always” or “Tokens”.

The refreshToken argument must be a valid and as yet unused refresh token exactly as
previously obtained via a call to RequestAccessToken or RefreshAccessToken.

Revoking a Token Pair
Revoking a token pair will permanently remove both the access token and its associated
refresh token. No further authentication using this token will be possible. While

page 30

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

TRIPsystem administrators can unilaterally revoke tokens (e.g. as part of a scheduled key
rotation, or due to a security leak), applications may in some cases also revoke tokens.
Such revocation should be done whenever the application determines that the token pair
will no longer be needed. Instead of letting the token pair fully expire by itself, it is in such
cases more secure to explicitly revoke it.

Method: TdbSession:RevokeToken

Type: TdbTokenPair
Throws: TdbException

Java
TdbTokenPair revokeToken(String apikey, String token)
.Net

TdbTokenPair RevokeToken(String apikey, String token)

This method may be called without being logged in if a valid apikey is provided. If the
session is in logged in state, the token must either be owned by the logged in user, or the
logged in user must be the user manager (UM) of the user owning the token. Note that
TRIPsystem may be configured to always require an API key for this operation, regardless
of login status.

The token argument is expected to be the access or refresh token of the token to revoke.

Other Token Considerations

Each token pair requested for an end user via the RequestAccessToken method will have
its cryptographically secured representation stored in TRIPsystem. A TRIP user may
therefore have multiple tokens valid at the same time, where each one may be tagged for
the same or a different purpose. However, if the application repeatedly keeps requesting a
new access token for the same purpose without using the previous refresh token, the user
will end up having a lot of unused token pairs whose refresh tokens remain valid. This is a
serious security issue, should it happen!

Applications MUST therefore always use a refresh token if a valid one is available for the
given purpose instead of requesting a new token pair from scratch. Ignoring this principle
will make the TRIP installation less secure and give the TRIP administrator more work.

page 31

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Accessing the session

In addition to passing a reference to the actual session object around, programs can make
use of the fact that all objects in the library that interact with a session are derived from a
common base class, TdbSessionObject, that exposes the session to which the object is
linked via a property (as described in the Introduction section of this guide):

Property: TdbSessionObject:Session

Type: TdbSession
Access: Read

Java
TdbSession getSession()
.Net

TdbSession Session { get; }

Retrieve the TdbSession with which the object is associated, for use in constructing
any other object that requires a valid session as input.

For example, the following code shows how objects can be constructed from each other.
Java
TdbDatabaseDesign db = new TdbDatabaseDesign(session);
TdbFormatList ofs = new TdbOutputFormatList(db.getSession(), db);
VB.Net
Dim db as New TdbDatabaseDesign(session)

Dim ofs as New TdboutputFormatList(db.Session, db)

Applications can also access the session’s type, i.e. its connection type, using the
SessionType property:

Property: TdbSession:SessionType

Type: TdbInterfaceType
Access: Read

Java
TdbInterfaceType getSessionType();
.Net

TdbInterfaceType SessionType { get; }

Retrieve the type of connection with which this session was created.
Enumeration: TdbInterfaceType

Located 1in: session

Activity logging
When creating or debugging applications using the libraries, it is often useful to see what
the library is actually doing in response to the method calls being made. The class libraries

page 32

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

support logging of their TRIPxpi activity, i.e. all protocol requests and responses to and
from the server, via the ActivityLog property of the TdbSession object.

Property: ActivityLog

Type: TdbActivityLogger
Access: Read, Write

Java

TdbActivityLogger getActivityLog()

void putActivityLog(TdbActivityLogger Togger)
.Net

TdbActivityLogger ActivityLog { get; set; }

Establish or retrieve the instance of an activity logger that should be used to record
all activity to/from the server.

This property uses classes that implement the TdbActivityLogger interface, all of which can
be found in the “logging” package / namespace.

Class: TdbConsoleLogger

Derived from: Object
Located in: Togging

Class: TdbFileLogger

Derived from: Object
Located 1in: logging

The first of these outputs all activity to the console whilst the latter outputs activity to the
end of a named file. If neither of these methods is suitable for the application context,
developers can simply implement the TdbActivityLogger interface on a class of their own
to perform custom logging.

page 33

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

4. Performing CCL commands
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Also note that this section does not cover CCL syntax in any detail, although familiarity
with the language is assumed in order to understand the examples. Full detail on CCL
syntax can be found in the TRIP CCL Reference Guide.

For a complete example of interpreting and responding to CCL commands, consult the
example applications:

Java
com.tietoenator.trip.jxp.examples.ccl.TRIPtty
.Net

Search\cclsearch.vb

Initializing the CCL command interpreter

Whenever a program has a need to execute a CCL command, either on behalf of the end
user or for some internal purpose, the developer must create an instance of the following
class:

Class: Tdbcclcommand

Derived from: TdbMessageProvider
Located in: ccl

Depending on the type of CCL command that is expected to be executed, the developer
may choose to establish certain management structures that enable the retrieval of the
results of those commands. Without these management structures in place, the display of
results to an end user, for example, is impossible.

There are three types of management structure currently supported: kernel windows, term
lists and term trees. The first of these is used to reflect the content of a kernel window
buffer, i.e. the result of an output-generating command such as Show, STatus, etc. The
second is used to hold terms generated by a Display command, whilst the third is used to
hold term hierarchies generated by a thesaurus-driven Display command.

The classes in question are:

page 34

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Class: TdbKernelwindow

Derived from: TdbMessageProvider
Located 1in: ccl

Class: TdbTermList

Derived from: Vector<TdbTerm> (Java), ArrayList (.Net)
Located 1in: ccl

Class: TdbTermTree

Derived from: ob%ect
Located 1in: cc

After constructing a TdbCclCommand object, the developer should map any management
structures that will be used before attempting to execute any CCL commands using that
object. The following code extract shows how to establish a fully mapped object:

page 35

TRIPNXP & TR

Java

import
import
import
import
import
import

import

pubTic
{

VB.Net
import
import

import

digital
IPJxP PROGRAMMER’S GUIDE V8.4 D vision
group

com. tietoenator.trip.jxp.TdbException;
com.tietoenator.trip.jxp.ccl.TdbCclCommand;

com. tietoenator.trip.jxp.ccl.TdbKernelwindow;
com. tietoenator.trip.jxp.ccl.TdbKernelwindowType;
com.tietoenator.trip.jxp.ccl.TdbTermList;

com. tietoenator.trip.jxp.ccl.TdbTermTree;

com. tietoenator.trip.jxp.session.TdbSession;
TdbCclCommand init(TdbSession session) throws TdbException

// Create the CCL command interpreter

TdbCclCommand command = new TdbCclCommand(session);

// Establish a term 1list/tree to hold Display command results
command.setTermList(new TdbTermList());

command.setTermTree(new TdbTermTree());

// Map in a kernel window buffer for each type of output
command.mapKernelwindow(new Tdbkernelwindow(session,
TdbKernelwindowType.Show)) ;
command.mapKernelwindow(new Tdbkernelwindow(session,
TdbKernelwindowType.Expand));
command.mapKernelwindow(new TdbkKernelwindow(session,

TdbKernelwindowType.SysInfo));

return command;

s TietoEnator.Trip.Nxp;
s TietoEnator.Trip.Nxp.Ccl;

s TietoEnator.Trip.Nxp.Session;

page 36

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Public Function init(Byval session As TdbSession) As TdbCclCommand

// Create the CCL command interpreter

Dim command As New TdbCclCommand(session)

// Establish a term list/tree to hold Display command results
command.TermList = New TdbTermList

command.TermTree = New TdbTermTree

// Map in a kernel window buffer for each type of output
command.MapKernelwindow(New Tdbkernelwindow(session,
TdbKernelwindow. Show));
command.MapKernelwindow(New Tdbkernelwindow(session,
TdbKernelwindow.Expand)) ;
command.MapKernelwindow(New Tdbkernelwindow(session,

TdbKernelwindow.SysInfo));
Return command

End Function

Notice that we create output window buffers for Show, Expand and Sysinfo (this final
window being used for commands like Help, STatus, etc.) but not for the history or display
window as we would in a normal TRIPapi application, as results for these windows are
handled separately. This handling is described in the section on retrieving results, below.

Executing commands

In order to a CCL command, applications must use the following method. Note that as
described above, in order to retrieve the results of any such command, the
TdbCclCommand object being used must have been appropriately mapped to the various
kernel window buffers and term list/tree structures.

page 37

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbCclCommand:ExecDirect

Type: void
Throws: TdbException

Java
void execDirect(String command)
.Net

void ExecDirect(String command)

Execute the command specified. Any result generated by the command must be
retrieved from the object following successful completion. Any error condition,
whether benign or fatal, will be thrown as a TdbException.

Retrieving the result of the command

Following successful execution of a command using the ExecDirect method, the results of
the command may be retrieved using the various properties exposed by the
TdbCclCommand class. In general, the first property used will be that to determine the
type of operation that occurred on the server, so that appropriate processing may be
performed:

Property: TdbCclCommand:CommandType

Type: Integer
Access: Read

Java
int getCommandType()
.Net

Int32 commandType { get; }

This property yields a value from the TdbCclCommandType enumeration signifying
the general type of command that was executed, and its general effect on the
user’s environment.

Enumeration: TdbCclCommandType

Located in: ccl

The values within this enumeration are as follows:

TdbCclCommandType:Misc

A command was executed that generated no resulting modification to the user’s
environment, except perhaps for one or more messages.

TdbCclCommandType:HistoryUpdate

One or more updates to the user’s search history are available. See the section
below on how to handle search results. Specifically, however, the results sent are
to be appended to any Ul representation of the user’s search history.

page 38

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:)) vision
group

TdbCclCommandType:HistoryReplace

The user’s entire search history is included within the results. See the section
below on how to handle search results. This command type is reflected in response
to commands such as “list” or “renumber” or following the successful execution of a
stored procedure.

TdbCclCommandType:TermList

The command generated a term list, i.e. a non-hierarchical Display command. The
results will be contained within whatever term list structure was mapped to the CCL
command object, as described in the section on initializing, above.

TdbCclCommandType:TermTree

The command generated a term tree, i.e. a hierarchical Display command using a
thesaurus. The results generated will be contained within whatever term tree
structure was mapped to the CCL command object, as described in the section on
initializing, above.

TdbCclCommandType:Output

The command generated windowed output, e.g. a Show command. The output will
be reflected in the appropriate TdbKernelWindow object as mapped into the CCL
command object during initialization, as described in the initialization section,
above. See the section below on retrieving window output for more detail.

TdbCclCommandType:Abort

The user has signaled a desire to stop doing whatever they’re doing, using the
“Stop” CCL command, either interactively or via a stored procedure.

Based on the value of the CommandType property, developers can create handler code
that reflects the user's command appropriately through the Ul, or simply updates internal
structures if a Ul is not part of the application context.

Handling search history updates

Several commands cause updates to, or indeed the wholesale replacement of, the user’s
search history. When the CommandType property signals that such a command has been
interpreted, the program can retrieve whatever updates have been made using the
following property:

Property: TdbCclCommand:HistoryuUpdates

Type: List of TdbHistorybDetail
Access: Read

Java

Collection<TdbHistoryDetail> getHistoryuUpdates()
.Net

IList HistoryUpdates { get; }

Retrieve the collection of search history updates generated by the most recent
command.

The TdbHistoryDetail class contains methods to retrieve the ID of the search result
generated, the number of records hit by the search, the number of terms hit by the search,

page 39

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:, vision
group

and the parsed form of the CCL command that generated the search result. From version
7.2-1, the name of the database associated with the search set is also provided. This
information can be used to reflect a detailed search Ul to end users, or simply for internal
informational purposes.

Handling term lists

When the CommandType property signals that a term list has been updated, the
information in the mapped term list (if any) is replaced with the newest information
retrieved from the server. The currently mapped TdbTermList instance is retrieved from
the command processor using the TermList property:

Property: TdbCclCommand:TermList

Type: TdbTermList
Access: Read, Write

Java
TdbTermList getTermList()

void putTermList(TdbTermList 1list)

.Net

TdbTermList TermList { get; set; }

The appropriate TdbTermList object can then be queried to retrieve the terms for display
or processing. The following example shows one way of handling Display term lists (note
that in both cases, the “command” variable is assumed to be the active TdbCclCommand
instance):

page 40

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java

case TermList:

{
TdbTermList 1list = command.getTermList();
System.out.println(“” + list.size() + “ terms”);
for(TdbTerm term : list)
System.out.println(“<” + term.getRecordCount() +
“>\t” + term.getTerm() + “\n”);
break;
}
VB.Net

Case TdbCclCommandType.TermList
For Each term as TdbTerm in command.TermList
myListBox.Items.Add(term.Term)

Next

Handling hierarchical Display results

When the CommandType property signals that a term tree has been generated, the
information in the mapped term tree (if any) is replaced with the newest information
retrieved from the server. The currently mapped TdbTermTree instance is retrieved from
the command processor using the TermTree property.

Property: TdbCclCommand:TermTree

Type: TdbTermTree
Access: Read, Write

Java
TdbTermList getTermTree()

void putTermTree(TdbTermTree tree)

.Net

TdbTermTree TermTree { get; set; }

As with the term list, the application can then use properties of the retrieved TdbTermTree
to represent the tree in some consumable fashion.

page 41

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

collection: TdbTermTree:Roots

Type: List of TdbTreeEntry
Access: Read

Java
List<TdbTreeEntry> roots()
.Net

IList Roots { get; }

Retrieve the set of tree nodes that are most generic, i.e. which have no parent
nodes, or more generic terms. Each node retrieved is the root of a tree, the first
generation of which can be retrieved using the Children property of each root node.

Property: TdbTermTree:RootCount

Type: Integer
Access: Read

Java
int getRootCount()
.Net

Int32 RootCount { get; }

Retrieve the number of nodes in the tree that are root nodes, i.e. which have no
parent nodes, or more generic terms. Applications could also use the size() or
Count of the Roots property to save traversing the tree twice for the same
information.

The following examples show ways of interacting with the TdbTermTree.

page 42

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Java

case TermTree:

{
TdbTermTree tree = command.getTermTree();
System.out.println(“” + tree.getRootCount() + “ trees.”);
for(TdbTreeEntry node : tree.roots())
showTree(node, 0);
}

// Simply print out nodes from the tree, using spaces
// to indent child levels from parent Tevels

static final String spaces = ;

void showTree(TdbTreeEntry node, int indent)

{
System.out.print(spaces.substring(0, indent));
System.out.println(node.getName());
for(TdbTreeEntry child : node.children())
dumpTree(child, indent + 2);
}
VB.Net

Case TdbCclCommandType.TermTree
Dim tree as TdbTermTree = command.TermTree
For Each node As TdbTreeEntry In tree.Roots
addNodeToTree(node, Nothing)

Next

page 43

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,) vision
group

’ Recursively construct a TreeView control’s node Tist from
’ the term tree
Public Sub addNodeToTree(Byval node as TdbTreeEntry, _

Byval parent as TreeNode)
Dim entry as new TreeNode(node.Name)

If parent Is Nothing Then
myTree.Nodes.Add(entry)
Else
parent.Nodes.Add(entry)

End If

For Each child As TdbTreeEntry In node.Children
addNodeToTree(child, entry)

Next

End Sub

Handling output buffers

Various CCL commands result in output being made available by the output formatter.
This can be output from the currently open database, or a generated summary of statistics,
or information from the CONTROL data dictionary, etc. All such output, however, is
handled in exactly the same way by TRIPxpi.

Upon being signaled that output has been generated, applications should query the
TdbCclCommand object to determine which window buffer was affected using the
AffectedWindow property.

page 44

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Property: TdbCclCommand:Affectedwindow

Type: TdbKernelwindow
Access: Read

Java
TdbKernelwindow getAffectedwindow()
.Net

TdbKernelwindow Affectedwindow { get; }

Retrieve the most recently affected TdbKernelWindow object. From that object
applications can retrieve the content of the window buffer and any hit points that
might be relevant.

The following sample shows one simple way of handling window output:
Java
case Output:
System.out.println(command.getAffectedwindow().toSstring());

break;

VB.Net
Case TdbCclCommandType.Output

myEditControl.Text = command.Affectedwindow.ToString();

In this example, hit terms are ignored. In a more robust application, of course, hit terms are
important and should be reflected in any output generated for end users.

For the .Net platform only, the ToRtfString method creates valid Rich Text Format from the
kernel window buffer, including marking up hits in a different font than normal text.

Method: TdbKernelwindow:ToRtfString

Type: String]
Throws: TdbException

Java

Not available

.Net

String ToRtfstring(TdbKernelwindowFont normalText,

TdbKernelwindowFont hitpointText)

This method returns an RTF-compliant text string suitable for viewing with the .Net
RTF viewer control (or any other RTF-compliant application, e.g. WordPad / Word /
etc.). The two fonts provided are used to output normal and hit point text,
respectively.

page 45

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Class: TdbKernelwindowFont

Derived from: Object
Located 1in: ccl

The following example shows how to use this method.
VB.Net
’ Create two fonts for normal text and hit terms; the default
> font attributes, which can be overridden using properties of
’ the TdbKernelwindowFont class, are Lucida Console, 10pt, normal
> (or whatever the platform equivalent is, depending on the
> windows version installed)
Dim normal As New TdbKernelwindowFont

Dim hit As New TdbKernelwindowFont

’ Define hits as being shown in red

hit.Red = 255

’ Send the RTF to a standard RTF viewer control

myRtfControl.Rtf = command.Affectedwindow.ToRtfString(normal, hit)

For both Java and .Net, the ToFormattedString method can be used to create a
highlighted rendition of the window’s content, including inserting arbitrary markup before
and after hit terms:

Method: TdbKernelwindow:ToFormattedString

Type: String]
Throws: TdbException

Java

String toFormattedstring(string before, String after,
String linebreak)

.Net

String ToFormattedstring(String before, String after,

String linebreak)

Create a string representation of the window’s content, inserting arbitrary markup
before and after hit terms, for example “" and “" in the simplest of HTML
cases. The linebreak argument can be used to arbitrarily delimit lines within the
buffer, e.g. “\n” for text, etc.

The following example assumes that the output format in question is actually outputting
HTML and that all that the program wishes to do is to emit SPAN tags around hit points. In
this context, emitting line-break sequences would be unwarranted, of course:

page 46

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jz:’ vision
group

Java

TdbKernelwindow w = command.getAffectedwindow();

String before = "";

String after = "";

String content = w.toFormattedsString(before, after, ”7);
VB.Net

Dim w As TdbKernelwindow = command.Affectedwindow

Dim before As String = ”""
Dim after As String = "”
Dim content As String = w.ToFormattedstring(before, after, ””)

Most generally, the text lines and hit positions within the buffer are available using the
Lines and Hits collections.

collection: TdbKernelwindow:Lines

Type: List of String
Access: Read

Java
List<String> getLines()
.Net
IList Lines { get; }
Retrieve the collection of lines that comprise the buffer's contents.

collection: TdbKernelwindow:Hits

Type: List of TdbHitPoint
Access: Read

Java
List<TdbHitPoint> getHits()
.Net
IList Hits { get; }
Retrieve the collection of hit points for the buffer’s current contents.

Note that as kernel window buffers are tied to the capabilities of TRIP’s output formatter,
the recommended method of generating rich output such as is required for modern web
applications is to use the data retrieval capabilities described in the next section.

Notifications

The Notification Mechanism

Notifications is a mechanism introduced in TRIPsystem 6.2-8 for which APIs were added
to TRIPjxp and TRIPnxp in version 2.1-1. This mechanism is a means by which the server
can inform the client of various events as it is processing a client request.

page 47

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

In order to receive notification messages, the application must subclass the
TdbNotificationSink class and assign an instance of it to the NotificationSink property of
the active TdbSession.

Class: TdbNotificationSink

Derived from: TdbMessageProvider
Located in: session

Property: TdbSession:NotificationSink

Type: TdbNotificationSink
Access: Read/write

Java

void setNotificationSink(TdbNotificationSink sink)
TdbNotificationSink getNotificationsink()

.Net

TdbNotificationSink NotificationSink { get; set; }

Comforters

The notification types currently supported are search and sort comforters. These
notifications can be sent by the server when it is processing queries and sort orders that
take a long time to complete. To receive comforter notifications, the application must
override the methods onSearchComforter and/or onSortComforter in its
TdbNotificationSink subclass.

Method: TdbNotificationSink:onSearchComforter

Type: boolean
Throws: TdbException

Java
boolean onSearchComforter(String message)
.Net

bool onSearchComforter (String message)

Return true from onSearchComforter to tell the server to continue processing the
query, and false to abort it.

page 48

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:, vision
group

Method: TdbNotificationSink:onSortComforter

Type: booTlean
Throws: TdbException

Java
boolean onSortComforter(String message)
.Net

bool onsortComforter (String message)

Return true from onSortComforter to tell the server to continue sorting, and false to
abort it.

Java: Notification handler

public class MyComforter extends TdbNotificationsink

{
pubTic MyComforter(TdbSession session)
{
super(session);
}
public boolean onSearchComforter(String message)
{
System.out.println(message);
return true;
}
}

Comforter signaling is not enabled by default in the server. So in addition to subclassing
TdbNotificationSink and overriding one or more of its methods, the application must also
call the TdbSession.enableNotification method.

The application can also disable comforter signaling by calling
TdbSession.enableNoatification(TdbNotificationType,boolean) with ‘false' as the the second
argument .

page 49

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbNotificationSink:EnableNotification

Type: void
Throws: TdbException

Java

void enableNotification(TdbNotificationType,
int interval)

void enableNotification(TdbNotificationType,
boolean enable)

.Net

void EnableNotification(TdbNotificationType,
int interval)

void EnableNotification(TdbNotificationType,
bool enable)

The first version of the EnableNotification method enables notifications of a certain
type for the specified number of seconds. The second version of the method
enables or disables natifications of a specified type. If the second version of the
method is used to enable notifications, a default interval of 5 seconds will be used.

The example below enables comforter signaling with an interval of four seconds. Any
search or sort order that takes longer than four seconds will after this cause the notification
sink to be invoked.

Java
session.setNotificationSink(new MyComforter(session));

session.enableNotification(TdbNotificationType.COMFORTER,4);

.NET
session.NotificationSink = new MyComforter(session);

session.EnableNotification(TdbNotificationType.COMFORTER,4);

Comforter notifications can be sent regardless of the origin of the search or sort order.
Search and sort orders sent via the classes TdbCclCommand, TdbRecordSet and
TdbSearch all can cause notifications to be sent. This also applies to search and sort
orders that are part of TRIP procedures or executed in the context of an Application
Software Exit (ASE) routine.

page 50

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Term lists loaded on demand

When using TRIPjxp and TRIPnxp 3.0 or later with TRIPsystem 7.0 or later, term lists that
are the result of DISPLAY orders can be retrieved on demand and "streamed" from the
client in blocks of 100 terms each. This behavior reduces processing and I/0O wait time
when generating very large term lists, but may add extra some extra network 1/0 with
small term lists.

The on-demand term list feature can be enabled using the UseOnDemandTermLists
property which is available on both the TdbSearch and TdbCclCommand classes.

Property: TdbSearch:UseOnDemandTermLists
TdbCc1Command:UseOnDemandTermLists

Type: Boolean
Access: Read/write

Java

boolean getUseOnDemandTermLists()

void setUseonDemandTermLists(boolean enable)
.Net

bool UseOnDemandTermLists { get; set; }

Check if on-demand term lists are enabled, and enable/disable on-demand term
lists. If on-demand term lists cannot be enabled, the setter method for this property
will throw a TdbException.

You can use several term lists concurrently provided they are in on-demand mode. You
can check if this is so using the property IsOnDemand on the TdbTermList class:

Property: TdbTermList:IsonDemand

Type: Boolean
Access: Read

Java
booTlean isonbemand()
.Net

bool IsonDemand { get; }

If the term list is in on-demand mode, the terms in the list will be retrieved as
needed. No terms at all will be retrieved until the application requests a term from
the list.

page 51

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

On-demand term lists have a timeout such that the associated server-side resources get
removed automatically after 120 seconds. This timeout is in place in order to protect
against overuse of server resources. This timeout period can be extended or even
disabled using the TermListTimeout property on the TdbCclCommand and TdbSearch
classes.

Property: TdbSearch:TermListTimeout
TdbCclCommand:TermListTimeout

Type: Boolean
Access: Read/write

Java

int getTermListTimeout ()

void setTermListTimeout (int seconds)
.Net

int TermListTimeout { get; set; }

This property determines the life span of on-demand term lists. Set to zero in order
to disable the timeout for the next DISPLAY order that you intend to access using
the on-demand term list feature.

In order to keep an on-demand term list active while you are issuing a new DISPLAY
command, you must assign a new TdbTermList instance to the TdbSearch or
TdbCclCommand instance you used to generate the first term list. See example below
(error handling omitted for clarity):

Java
TdbCclcommand cmd = new TdbCclCommand(session);
cmd.execDirect("BASE ALICE");

cmd. setUseoOnDemandTermLists(true);

cmd.execDirect("DISPLAY PERSON=#");
TdbTermList firstList = cmd.getTermList();

cmd.setTermList(new TdbTermList());
cmd.execDirect("DISPLAY SPEAKER=#");
TdbTermList secondList = cmd.getTermList();
cmd.setTermList(new TdbTermList());

// Work with the 1lists, then close() them when you're done

firstList.close();

secondList.close();

page 52

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 jE:’ vision
group

VB.Net
Dim cmd As TdbCclCommand = new TdbCclCommand(session)
cmd.execDirect("BASE ALICE")

cmd.UseOnDemandTermLists = true;

cmd.execDirect("DISPLAY PERSON=#")
Dim firstList as TdbTermList = cmd.TermList

cmd.TermList = new TdbTermList()

Cmd.exeCDireCt("DISPLAY SPEAKER=#")
Dim secondList as TdbTermList = cmd.TermList

cmd.TermList = new TdbTermList()

work with the Tists, then Close() them when you're done

firstList.Close()

secondList.Close()

page 53

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

5. Retrieving data from databases or search sets
Note that this chapter relates physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

As mentioned before, developers are strongly encouraged to consider developing new
applications using the data retrieval classes and methods described in this section, rather
than using the CCL command interpreter described in section 4, where appropriate.

Many applications can be boiled down to, at their simplest, a cycle of search, view result
list, view one or more documents in their entirety, and repeat. This cycle is encapsulated
within the data retrieval classes in its most efficient form, performing searches, sorting
results and retrieving data from hit records, all within the context of a single server request.

The basis for all such operations is the TdbRecordSet class:
Class: TdbRecordset

Derived from: TdbMessageProvider
Located in: data

This class defines the notion of a set of records extracted from a database or search set,
each record comprising a set of components, each component comprising a set of fields,
each field comprising a set of values.

The record set defines a series of operations to determine its eventual function, although
only one method actually involves any network interaction with the server.

To take a simple example, assume that an application wishes to follow the basic order of
operation discussed here:

e Accept search criteria from the end user
e Perform the search, report on the number of records hit
e Sort the results, according to relevance or other data-driven keys

¢ Retrieve a result set consisting of titles and focused hits from the textual content of
the record

e Present this result set to the end user via some Ul mechanism such as a web
browser

Using the TdbRecordSet class, this entire cycle can be performed in a single network
operation, and the results retrieved can be processed in a number of different ways, as
described below.

Preparing for retrieval

In order to retrieve data, we have to prepare the record set in terms of where it should be
retrieving data from, what criteria the data must match in order to be retrieved, in what
order records should be retrieved, etc.

For sake of example, assume that we wish to retrieve the first 5 records from the database
ALICE:

page 54

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setbatabase(“alice”);
rs.setFrom(l);

rs.setTto(5);

rs.get(Q);

VB.Net

Dim rs as New TdbRecordSet(session)
rs.batabase = “alice”;

rs.From = 1;

rs.To = 5;

rs.cet(Q);

The basic networked operation here is the Get method, which retrieves whatever range of
records have been requested, from a database, a search set, or the results of a query
statement. All the properties on the record set exist to allow the developer to state the
nature of the retrieval request, but nothing is sent to the server until the Get method is
invoked.

Method: TdbRecordSet:Get

Type: void
Throws: TdbException
Java
void get()
.Net
void Get()

Send a request for information to the server. The records retrieved are deserialized
into a collection of TdbRecord instances.

Searched retrieval

The most common type of data retrieval request, of course, is that following a query. In
support of this requirement, TdbRecordSet allows for the statement of queries as the
bounding domain of a data retrieval operation, using the normal CCL dialect.

Extending the example from above, assume that instead of retrieving the first 5 records
from the database ALICE, we want to retrieve the first 5 results for the search “Find mad
hatter” within the database ALICE.

page 55

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 ;i:]’ vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setbatabase(“alice”);
rs.setQuery(“find mad hatter”);
rs.setFrom(l);

rs.setto(5);

rs.get();

VB.Net

Dim rs as New TdbRecordSet(session)
rs.Database = “alice”

rs.Query = “find mad hatter”
rs.From = 1

rs.To = 5

rs.cet()

Reverse Retrieval

From version 1.2 of TRIPnxp and TRIPjxp it is possible to specify retrieval of the record set
in reverse. This is equivalent of the CCL command “SHOW REVERSE”, but will work on
sorted retrieval as well. The range of records to retrieve (the From and To properties) here
specify ordinal numbers of the reversed set, i.e. number 1 represents the last record in the
unreversed set.

Java

TdbRecordset rs = new TdbRecordSet(session);
rs.setDatabase(“alice”);
rs.setFrom(l);

rs.setto(5);
rs.setRetrieveReversed(true);
rs.get(Q);

VB.Net

Dim rs as New TdbRecordSet(session)
rs.Database = “alice”

rs.From = 1

rs.To = 5

rs.RetrieveReversed = true;

rs.cet()

page 56

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Following such a query operation, applications have access to extra information about the
query results:

Property: TdbRecordSet:QueryRecords

Type: Integer
Access: Read

Java
int getQueryRecords()
.Net

Int32 QueryRecords { get; }

Retrieve the total number of records hit by the search; the records retrieved by the
operation will be a subset of this total.

Property: TdbRecordSet:QueryHits

Type: Integer
Access: Read

Java

int getQueryHits()

.Net

Int32 QueryHits { get; }

Retrieve the total number of term occurrences hit by the search.

Sorted results

By default, records are retrieved from databases and search sets in database order, i.e.
sorted simply by record number. This behavior is easily modified to specify arbitrary sort
sequences, as shown by this modification of the example used above.

page 57

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setbDatabase(“alice”);
rs.setQuery(“find mad hatter”);
rs.setFrom(l);

rs.setto(5);
rs.setSortKeys(“speaker, chaptnr”);
rs.get();

VB.Net

Dim rs as New TdbRecordSet(session)
rs.Database = “alice”

rs.Query = “find mad hatter”
rs.From = 1

rs.To = 5

rs.sortkeys = “speaker, chaptnr”

rs.cet()

The string specified as the SortKeys property can contain any collection of valid field
names from the database(s) set as the domain of the retrieval request.

Applications can also request results to be sorted by relevance rank. Note that relevance
rank is always used as the primary sort key if specified, and is always sorted in
descending order. Applying relevance ranked sorting is shown in this modification of the
example used above:

page 58

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setbatabase(“alice”);
rs.setQuery(“find mad hatter”);
rs.setFrom(l);

rs.setto(5);
rs.setSortKeys(“speaker, chaptnr”);
rs.setSortRanked(true);

rs.get(Q);

VB.Net

Dim rs as New TdbRecordSet(session)
rs.Database = “alice”

rs.Query = “find mad hatter”
rs.From = 1

rs.To = 5

rs.sortkeys = “speaker, chaptnr”
rs.sortRanked = True

rs.cet()

Defining result content

Thus far, we have defined queries and parameters but we have yet to request any actual
result record contents. Without record content being requested, the server will execute the
query and return the summary results (i.e. number of records, number of hits,
success/failure messages, etc.), but will not return any actual data.

To request data to be retrieved, the calling application must define a template to which all
records retrieved should conform. This template is defined in terms of components and
fields, and can be as broad or as specific as required.

To create a template, the application must create a TdbRecord instance, and then add
fields and component definitions to that record’s template. For example:

page 59

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Java
TdbRecordSet rs = new TdbRecordSet(session);

TdbRecord tmpl = new TdbRecord(session);

// Create a simple template: the fields “chapter” and “speaker”
// are to be retrieved in their entirety; the field “txt” is to
// be retrieved in focused form, showing context around hit terms
tmpl.addToTemplate(“chapter”);

tmpl.addToTemplate(“speaker”);

tmp1.addToTemplate(new TdbFieldTemplate(“txt”, true, false, 100));

// Link the template to the record set

rs.setRetrievalTemplate(tmpl);

// Set any other properties of the record set

// Retrieve the records from the server

rs.get();

page 60

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

VB.Net

Dim rs As New TdbRecordSet(session)
Dim tmpl As New TdbRecord(session)

Create a simple template: the fields “chapter” and “speaker” are

to be retrieved in their entirety; the field “txt” is to be
’ retrieved in focused form, showing context around hit terms
tmpl.AddToTemplate(“chapter”);
tmpl.AddToTemplate(“speaker”);

tmpl.AddToTemplate(New TdbFieldTemplate(“txt”, true, false, 100));

// Link the template to the record set

rs.RetrievalTemplate = tmpl;

// Set any other properties of the record set

// Retrieve the records from the server

rs.cet()

Depending on how the template addition is constructed, various different retrieval options
can be specified.

Method: TdbRecord:AddToTemplate

Type: void
Throws: N/A

Java

void addToTemplate(String name)

void addToTemplate(TdbFieldTemplate fieldTemplate)
.Net

void AddToTemplate(String name)

void AddToTemplate(TdbFieldTemplate fieldTemplate)

Add a field request to the retrieval template. Using the simple version adds a
request for the field in its entirety. For more options, create an instance of the
TdbFieldTemplate class to pass in to the method. If the field specified is a member
of the part record structure, then all parts are retrieved unless otherwise restricted.

page 61

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Class: TdbFieldTemplate

Derived from: Object
Located 1in: data

constructor: TdbFieldTemplate
Java

TdbFieldTemplate(String name)

TdbFieldTemplate(String name, boolean focused,
boolean summarized, int size_hint)
.Net

TdbFieldTemplate(String name)

TdbFieldTemplate(String name, Boolean focused,

Boolean summarized, Int32 size_hint)

Construct a field request that can be added to a record set’s retrieval template.
Using the simple version, the field is requested in its entirety. Further options on
the fully specified version of the constructor allow the request to specify whether
the field’s content should be focused on search terms, should be summarized, and
if so how much text should be returned at a minimum.

In order to mark hits within retrieved fields, applications can either set field-specific markup
using properties of each TdbFieldTemplate instance added to the retrieval template, or can
establish a common set of markup strings for all fields in the template, once those fields
have been added.

Property: TdbFieldTemplate:BeforeHits

Type: String
Access: write

Java
void setBeforeHits(String markup)
.Net

String BeforeHits { set; }

Set the markup that should be emitted before hit points that occur in this specific
field.

page 62

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Property: TdbFieldTemplate:AfterHits

Type: String
Access: write

Java
void setAfterHits(String markup)
.Net

String AfterHits { set; }

Set the markup that should be emitted after hit points that occur in this specific
field.

Method: TdbRecord:SetTemplateMarkup

Type: void
Throws: N/A

Java
void setTemplateMarkup(String before, String after)
.Net

void SetTemplateMarkup(String before, String after)

Establish markup strings that will be emitted before and after hit terms in all fields
that have been added to the retrieval template to date. Fields added to the
template after calling this method will not receive the markup specified here.

The following example shows how these various properties and methods might be used to
show different types of hit term markup in different fields within a request.

page 63

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Java
TdbRecordSet rs = new TdbRecordSet(session);

TdbRecord template = new TdbRecord(session);

// Add three fields, all of which will receive the same markup
template.addToTemplate(“chapter”);
template.addToTemplate(“speaker™);

template.addToTemplate(“person”);

// Set the markup that fields added so far will receive

template.setTemplateMarkup(“>>", “<<”);

// Now add a fourth field with field-specific markup
TdbFieldTemplate fld = new TdbFieldTemplate(“txt”,true,false,100);
fld.setBeforeHits(“**");

fld.setAfterHits(“**”);

template.addToTemplate(fld);
// Set other record set parameters
// Now retrieve the record set

rs.setRetrievalTemplate(template);

rs.get(Q);

page 64

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

VB.Net
Dim rs As New TdbRecordSet(session)

Dim template As New TdbRecord(session)

’ Add three fields, all of which will receive the same markup
template.AddToTemplate(“chapter”)
template.AddToTemplate(“speaker™)
template.AddToTemplate(“person”)

’ Set the markup that the fields added so far will receive
template.SetTemplateMarkup(“>>", “<<”

> Now add a fourth field with field-specific markup

Dim fld as New TdbFieldTemplate(“txt”, true, false, 100)
fld.BeforeHits = “**”

fld.AfterHits = “**”

template.AddToTemplate(fl1d)

Set of other record set parameters

Now retrieve the record set
rs.RetrievalTemplate = template

rs.cet()

To restrict the components that are retrieved, calling applications can set additional
properties of the template record.

page 65

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Property: TdbRecord:RetrieveHead

Type: Boolean
Access: write

Java
void setRetrieveHead(boolean mode)
.Net

Boolean RetrieveHead { set; }

If set true (the default), then values from the head record are retrieved. If set false,
values from the head record are omitted from any results, even if fields from the
head record are added to the retrieval template.

Property: TdbRecord:RetrieveParts

Type: Boolean
Access: write

Java
void setRetrieveParts(boolean mode)
.Net

Boolean RetrieveParts { set; }

If set true (the default), then values from available part records are retrieved. If set
false, values from part records are omitted from any results, even if fields from the
part record are added to the retrieval template.

Property: TdbRecord:PartId

Type: Integer
Access: Write

Java
void setPartId(int partid)
.Net

Int32 PartId { set; }

To restrict the retrieval to a particular part record (optionally including the head,
unless the RetrieveHead property is set false), applications can set the Partld to
the unique ID of the part to retrieve.

Retrieving STring fields

Note that the binary content of STring fields can be retrieved exactly as with any other
field, i.e. by defining a TdbFieldTemplate for the field and adding that template to the
retrieval record. In addition, however, applications can also request extra processing in the
form of a rendition to be applied to the field prior to retrieval. In order to request a specific
rendition, instead of creating a TdbFieldTemplate, applications should create an instance
of a derived class called TdbRendition.

page 66

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Class: TdbRendition

Derived from: TdbFieldTemplate
Located 1in: data

This specialization of the field template allows the calling application to set the type of
rendition that is to be produced during retrieval using the constructor:

Java

TdbRendition(String name, TdbRenditionType type)

.Net

TdbRendition(String name, TdbRenditionType type)

The rendition types currently supported via the TdbRenditionType enumeration are Default
(i.e. binary, or no rendition), HTML, and Mime-Encoded HTML (MHTML file format,
including all embedded graphics).

Processing results using TdbRecord

If the results of a retrieval operation are to be processed programmatically, or in some
other way that doesn’t allow for easy transformation from XML, the most useful way of
interacting with the results is as a collection of TdbRecord instances.

To generate such a collection of records, use the simple form of the Get method on the
record set and then the calling program can retrieve records from the result set using the
Records collection.

Collection: TdbRecordSet:Records

Type: List of TdbRecord
Access: Read

Java
List<TdbRecord> records()
.Net

IList Records { get; }

Each TdbRecord instance consists of a head component and, optionally, a list of part
components. Each of these components is of type TdbComponent.

Class: TdbComponent

Derived from: Object
Located 1in: data

To retrieve a reference to the head record, use the Head property:

page 67

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

Property: TdbRecord:Head

Type: TdbComponent
Access: Read

Java
TdbComponent getHead()
.Net

TdbComponent Head { get; }

Retrieve a reference to the record’s head component.

Equally, to retrieve the collection of part record components, use the Parts property:

collection: TdbRecord:Parts

Type: List of TdbComponent
Access: Read

Java
List<TdbComponent> parts()
.Net

IList Parts { get; }

Retrieve a list of available part record components.

To retrieve a specific component, use the GetComponent method:
Method: TdbRecord:GetComponent

Type: TdbComponent
Throws: TdbException

Java
TdbComponent getComponent(int 1id)
.Net

TdbComponent GetComponent(int 1id)

Retrieve the specified component from the record, if it exists. If id is zero, the head
component is returned; any value > 0 will return the appropriate part component, if

available.

Each component offers access to the fields within the component using a variety of
different access mechanisms, the simplest of which is to retrieve the collection of all fields.

page 68

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Collection: TdbComponent:Fields

Type: List of TdbField
Access: Read

Java
collection<TdbField> fields()
.Net

ICollection Fields { get; }

Retrieve the collection of fields. Each retrieved element will be of a type that
implements the TdbField interface (in Java this is actually an abstract base class).

Interface: TdbField

Located 1in: data

To retrieve a specific field from the component, applications can use the method shown
below.

Method: TdbComponent:GetField

Type: TdbField
Throws: TdbException

Java
TdbField getField(String fieldName)
.Net

TdbField GetField(String fieldName)

Each field offers methods and properties for retrieving field values. The two most important
for this discussion are: OriginalValues, and Values. The former offers the content of the
field, complete with any hit term markup specified, as retrieved from the server. The latter,
in contrast, offers the content of the field as it exists at the current moment (more detail on
updating data is given in section 7) and does not contain hit term markup.

collection: TdbField:Originalvalues

Type: List of String
Access: Read

Java
List<String> originalvalues()
.Net

IList originalvalues { get; }

Retrieve the collection of field values, one String for each value (i.e. subfield or
paragraph), complete with any hit term markup specified in the retrieval template.

page 69

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

collection: TdbField:values

Type: List of String
Access: Read

Java
List<String> values()
.Net

IList values { get; }

Retrieve the collection of values that reflects the field’s current contents. Each
String in the collection reflects a specific value from the field (i.e. subfield or
paragraph). See section 7 of this guide for text field-specific circumstances under
which this property is invalid.

Note that each field retrieved using either the GetField method or the Fields collection will
be one of the following concrete types:

Class: TdbTextField

Derived from: TdbField
Located 1in: data

Class: TdbPhraseField

Derived from: TdbStructuredField
Located 1in: data

Class: TdbIntegerField

Derived from: TdbStructuredField
Located 1in: data

Class: TdbNumberField

Derived from: TdbStructuredField
Located 1in: data

Class: TdbDateField

Derived from: TdbStructuredField
Located 1in: data

Class: TdbTimeField

Derived from: TdbStructuredField
Located 1in: data

page 70

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Class: TdbstringField

Derived from: TdbField
Located 1in: data

Note that in addition to the normal processing supported on fields, TdbStringField
allows the application to request the rendered version of the field, using the
Rendition property. This property is invalidated by any operation that updates the
content of the field.

For an example of processing a record set after deserializing into a collection of
TdbRecord objects, see the following examples.

Java
com.tietoenator.trip.jxp.examples.data.RecordSet
com.tietoenator.trip.jxp.examples.data.view

.Net

Databases \ Data \ Explorer.vb

page 71

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Processing results in XML

By using a different version of TdbRecordSet’s Get method, applications can retrieve the
full XML document directly, rather than having the class library deserialize the document
into a set of TdbRecord instances.

Method: TdbRecordSet:Get

Type: XML DOM Document
Throws: TdbException

Java
org.w3c.dom.Document get(TdbbDataFormat format)
.Net

System.Xml.XmlDocument Get(TdbDataFormat format)

Retrieve the record set, returning the XML document sent from the server rather
than deserializing the returned document into a sequence of records. The content
of the record set is blank following this call.

Enumeration: TdbbDataFormat

Located 1in: data

TdbbDataFormat. RAW

Fields are represented within the returned document using <FIELD>
elements. The NAME attribute of the FIELD element gives the field’s name.
For example:

<FIELD NAME="CHAPTER” TYPE="3">
_{Chapter 1}
</FIELD>

TdbDataFormat. ELEMENT

Fields are represented within the returned document using elements named
for the field. Using the same field as shown above:

<CHAPTER>
_{Chapter 1}
</CHAPTER>

Structure of the XML response

Depending on the format requested (i.e. either RAW or ELEMENT), the content of each
record will appear differently, although the framework within which record content appears
will always be the same.

page 72

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4]i:]’ vision
group

Each response will contain the following elements:

<FETCH_RES>

[<SUMMARY RECS=".." HITS=".." />]

<RECORD ID="..”" BASE="..”" RANK="..”" RAWRANK=".">
</RECORD>

<RECORD .. > ... </RECORD>

</FETCH_RES>

That is, all valid responses are bound in a root FETCH_RES element, and consist of a list
of <RECORD> elements. If the response is generated by a query, i.e. if the Query property
was set on the record set, the result will include a SUMMARY element detailing the total
number of records and terms hit by the query.

Each RECORD element will specify at least four attributes, namely the record’s ID, the
database from which it was retrieved, the relevance rank (percentage), and the raw
relevance rank (not necessarily a percentage, and not normalized) assigned to the record.
Note that the RANK and RAWRANK attributes are really only useful following a non-
Boolean query.

Record content formatted according to the RAW request type will appear with a FIELD
element representing every field retrieved. For example:

page 73

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:,) vision
group

<RECORD ID="98" BASE="ALICE” RANK="2">
<FIELD NAME="CHAPTER” TYPE="3">
_{Pig and Pepper}
</FIELD>
<FIELD NAME="CHAPTNR” TYPE="9">
₆
</FIELD>
<FIELD NAME="SPEAKER” TYPE="3">
_{Cheshire Cat}
</FIELD>
<FIELD NAME="TXT” TYPE="2">
<P> ... </P>
</FIELD>

</RECORD>

Each field is named and identified with a field type, following which each subfield or
paragraph is emitted.

This type of retrieval is useful in generic applications, where the application itself is not
necessarily in control of what content is being retrieved, or where the style sheet that will
be applied to the content is not specific to field name, but rather to field type.

Alternatively, in more controlled environments, the ELEMENT data format shows as in this
example:

<RECORD ID="98” BASE="ALICE” RANK="2">
<CHAPTER>_{Pig and Pepper}</CHAPTER>
<CHAPTNR>₆</CHAPTNR>
<SPEAKER>_{Cheshire Cat}</SPEAKER>
<TXT>
<P> ... </P>
</TXT>

</RECORD>

This type of retrieval is useful when the application is in complete control over what is
being retrieved, and wishes to format its response using a field-specific style sheet.

Transforming the result XML

Regardless of the format of the request, the response will require transformation of some
kind in order to be useful to end users. As the response from the request is a DOM
Document, the application is at complete liberty as to the transformation that makes most
sense to perform. This could include constructing a tree of objects (as the default
deserialization to TdbRecord instances does), constructing a transport format such as
JSON, constructing a representational format such as HTML or PDF, or indeed simply

page 74

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

constructing another XML document for further processing by other tiers or components of
the application.

The following example shows how to turn a retrieved XML document from a TdbRecordSet
request into a String using an XSLT style sheet.

Java

import java.io.*;

import javax.xml.transform.¥;

import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;

import org.w3c.dom.*;

// Create the record set, set any retrieval parameters / template

TdbRecordSet rs = new TdbRecordSet(session);

// Make the request, return the result as an XML document

Document result = rs.get(TdbDataFormat.ELEMENT);

// Read the style sheet from somewhere, could be a file/URL/etc.

InputStream is = acquireStyleSheet();

// Create somewhere for our transformation to be written

ByteArrayoutputStream os = new ByteArrayoutputStream();

// Transform the result into a String
TransformerFactory

.newInstance()

.newTransformer(new StreamSource(is))

.transform(new DOMSource(result), new
StreamResult(os));

// A1l done

String final_result = os.toString(Q;

page 75

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net

Imports System.IO
Imports System.Text
Imports System.Xml

Private xslt As String = “.. your stylesheet ..

This procedure requests the record set from the server, then
transforms the resultant DOM Document using a stylesheet that
is created as a string (the “xs1t” variable) and outputs the
the result of the transformation to a named file
Public sub transformToFile(Byval filename as String)

’ Create the record set, set any retrieval parameters, etc.

Dim rs As New TdbRecordSet(session)

Retrieve the result document

rs.Get(TdbDataFormat.ELEMENT)

’ Create a transformation processor from our stylesheet

Dim tx As New Xsl.XslTransform

tx.Load(New XmlTextReader(New StringReader(xslt)), _
Nothing, Me.GetType().Assembly.Evidence)

’ Create an output writer for the result file

Dim xw As New XmlTextwriter(filename, Encoding.UTF8)

’ Generate the transformation

tx.Transform(doc.CreateNavigator(), Nothing, xw, Nothing)

xw.Flush(Q)

xw.Close()

End Sub

page 76

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Hit terms in the XML

Search hits are represented within the XML result using a <HIT> element containing the
term in question. Even if two terms are coincident, each term will be separately contained
within their own <HIT> element. For example, consider searching for the phrase “mad
hatter”:

<SPEAKER>
_{March Hare}
_{<HIT>Mad</HIT> <HIT>Hatter</HIT>}

</SPEAKER>

Summary
For examples of this kind of data transformation, see the following modules:

Java
com.tietoenator.trip.jxp.examples.data.Transform
com/tietoenator/trip/jxp/examples/data/html.xs]
com/tietoenator/trip/jxp/examples/data/text.xs]
.Net

Databases \ Data \ Transform.vb

page 77

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

6. TdbSearch

Rationale

The TRIPxpi client libraries TRIPnxp and TRIPjxp both contain numerous classes for
search and retrieval, with TdbRecordSet and TdbCclCommand being the two most central
ones.

So why introduce yet another search class, if the functionality is there already? To
understand this, we must look at the designed behavior of the TdbCclCommand and
TdbRecordSet classes. By understanding the kind of problems they solve, and more
importantly the kind of problems they do not solve, we set the stage for the new classes
described in this document.

TdbCclCommand
This class provides a front-end to the TRIP CCL command interpreter.

Pro:
e Any CCL command can be executed via this class.
e Provides access to output format reports via the TdbKernelWindow class.

e Provides access to term lists via the TdbTermList and TdbTermTree classes.

¢ A higher degree of network communication than with e.g. TdbRecordSet (still,
lower than that of TRIPjtk and TRIPclient).

e Applications have to parse output format reports to get data for modification
purposes.

TdbRecordSet

This class defines the notion of a set of records extracted from a database or search set,
each record comprising a set of components, each component comprising a set of fields,
each field comprising a set of values.

Pro:
e Network communication is kept to a minimum.
e Possible to fetch only the necessary data from found records.
e Good for stateless apps; does all in one go and cleans it up afterwards.
e Provides data in structured form via the classes TdbRecord, TdbField, etc.
e Possible to use search sets produced by TdbCclCommand.
Con:

e Impossible to reuse search sets produced by executing queries via the
TdbRecordSet class.

page 78

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

e Requesting additional data from a search result involves executing the query again,
which can result in a rather severe performance hit for large databases and/or
complex queries.

Requirements
Stateless applications already seem to be covered rather nicely. However, we seem to
lack something to make stateful application development as easy.

A new class for searching should have the following characteristics:
o Low degree of network 1/0O
¢ Reuse of pre-existing search sets.

e Provide data via output format reports or in structured form via the classes
TdbRecord, TdbField, etc.

e Access term lists and trees.
In addition, we'd also like a few bells and whistles:

¢ Option for automatic cleanup operation (removal of search sets, etc) to make
stateless use more practical.

e |teration/enumeration of the records in a search set, without the application having
to bother with explicitly fetching the next block of records from the server.

Of course, we can do all this already, by combining the use of TdbCclCommand and
TdbRecordSet in an application. All the functionality is there. The crux is, of course, that it
may not be obvious how to combine the necessary features so that all the items listed
above are fulfilled.

So this is where TdbSearch comes into play. As stated, it contains nothing new; all the
functionality it provides can be accomplished in an application using version 1.x of
TRIPnxp or TRIPjxp. The idea with this new class is to provide access to pre-existing
functionality with best practices for stateful applications in mind.

Creating a TdbSearch Instance

The TdbSearch Class
The TdbSearch class is available in the data package/namespace.

Class: TdbSearchset

Derived from: TdbMessageProvider
Located in: data

Its behavior is a mix of the TdbCclCommand class and the TdbRecordSet class.

TdbSearch Constructor
There is only one constructor in the TdbSearch class.

page 79

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

constructor: TdbSearch
Java
TdbSearch(TdbSession session)
.Net

TdbSearch(TdbSession session)

The constructor creates a new, blank TdbSearch instance ready for use. This
operation will cause network I/O. The following operations are done:

e Creates a kernel window of type HISTORY with default size.

o Creates a kernel window of type DISPLAY with default size.

e Creates a kernel window of type SHOW with 20 rows and 80 columns.

e Creates a kernel window of type SYSINFO with 20 rows and 80 columns.

So by creating a TdbSearch instance, you will already have caused four network
transactions to be performed. This means that you should try to keep your TdbSearch
instance alive for as long as you possibly could need it. Destroying it and recreating it
whenever you need an instance of TdbSearch is not best practice.

Executing CCL Statements

Overview

Using the TdbSearch instance for searching is similar to using the TdbCclCommand class.
Utilizing an almost "classic" behavior, an executed CCL command that may result in a
search set will only report back information about the search set. Data is not fetched at this
point.

Method: TdbSearch:Execute

Type: void
Throws: TdbException

Java
void execute(String cclStatement)
.Net

void Execute(String cclStatement)

Although the TdbSearch class is mainly designed to support searching, the
Execute method accepts any kind of CCL statement.

After a successful call to the Execute method, the state of the TdbSearch object will reflect
the command just executed. To make sure what action is appropriate, check the
CommandType property.

page 80

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Property: TdbSearch:CommandType

Type: TdbCc1CommandType
Access: Read

Java
TdbCclCommandType getCommandType()
.Net

TdbCclCommandType CommandType { get; }

Check the table below for what command types are associated with what type of CCL
command.

Command type Commands

HistoryUpdate BASE, FIND, FUzZZ
HistoryRenum DELETE, RENUM
TermList DISPLAY

TermTree DISPLAY

Output SHOW

Misc (any other command)

Performing a Search

APl Summary
A command like BASE, FIND or FUZZ generates a search set if successful. The following
properties and methods are useful after a successful search operation:

o GetSearchSetByld
e LastSearchSet

e SearchSetCount

e SearchSetNumbers

e SearchSets

.NET only: indexer property

Java only: getSearchSet

Search sets are repsented by the class TdbSearchSet.
Class: TdbSearchset

Derived from: TdbSessionobject
Located in: data

The TdbSearchSet object for the last search order is available via the LastSearchSet
property. You can also access all search sets created using the current TdbSearch
instance via the indexer property (.NET only), the getSearchSet method (Java only), or the
GetSearchSetByld method.

More about the TdbSearch class under the "Fetching Structured Data" topic on page 84.

page 81

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Below follows brief description of the mentioned properties and methods.
Method: TdbSearch:GetSearchSetById

Type: TdbSearchset
Throws: TdbException

Java
TdbSearchset getSearchSetById(int searchid)
.Net

TdbSearchSet GetSearchSetById(int searchId)

Retrieve a TdbSearchSet object for the specified search id. If the search set does
not exist, or if the search set is not created via the current TdbSearch instance, null
is returned.

Property: TdbSearch:LastSearchset

Type: TdbSearchset
Access: Read

Java
TdbSearchSet getLastSearchSet()
.Net

TdbSearchset LastSearchset { get; }

This method returns a TdbSearchSet object for the last search conducted via the
current TdbSearch instance.

The TdbSearchSet instance returned is to be regarded as volatile. A DELETE or
RENUM command, for instance, may cause the search set to be deleted or
renumbered. The application should therefore not keep any copies of
TdbSearchSet instances, but instead access them when required via the properties
on the TdbSearch class.

Property: TdbSearch:SearchSetCount

Type: int
Access: Read

Java
int getSearchSetCount()
.Net

int SearchSetcCount { get; }

This method returns the number of search sets associated with this TdbSearch
object.

page 82

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

Property: TdbSearch:SearchSetNumbers

Type (java): int[]
Type (.NET): IList<int>
Access: Read

Java

int[] getSearchSetNumbers ()
.Net

IList<int> SearchSetNumbers { get; }

This method returns the numbers (or ids) of the search sets associated with this
TdbSearch object. Only these numbers are valid as arguments to the
GetSearchSetByld method.

Property: TdbSearch:SearchSets

Type (java): List<TdbSearchset>
Type (.NET): IList<TdbSearchSet>
Access: Read

Java

List<TdbSearchset> searchsets ()
.Net

IList<TdbSearchset> Searchsets { get; }

This method returns a read-only list of the TdbSearchSet objects associated with
the current TdbSearch instance.

Property: TdbSearch:Item

Type (.NET): TdbSearchset
Access: Read

Java

n/a

.Net

TdbSearchset Item[int index] { get; }

This method is an indexer property and returns a TdbSearchSet instance. The
index is the zero-based index of the search set to fetch, and is not to be confused
with the id of the search. Valid index values range from 0 to one below the value
returned by the SearchSetCount property.

page 83

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbSearch:getSearchSet

Type: TdbSearchsSet
Throws: TdbException

Java

TdbSearchsSet getSearchSet(int index)
.Net

n/a

This method is used in TRIPjxp in place of an indexer property and returns a
TdbSearchSet instance. The index is the zero-based index of the search set to
fetch, and is not to be confused with the id of the search. Valid index values range
from O to one below the value returned by the SearchSetCount property.

Search Example
The following simple example shows how to conduct a search and check its results.

C#

using TietoEnator.Trip.Nxp.Data;

void SearchTest (TdbSearch searchHandler)

searchHandler.Execute("FIND MAD HATTER");

// Here we really should check CommandType first,
// but this IS a (very) simple example...

TdbSearchSet searchSet = searchHandler.LastSearchSet;

console.writeLine("{0} hits in {1} records",
searchSet.HitCount,
searchset.RecordCount);

Fetching Structured Data

This topic deals with fetching data as instances of TdbRecord and its associated classes
(TdbComponent, TdbField, etc). The idea is somewhat similar to that of TdbRecordSet,
but does not require advance knowledge of how many records to retrieve.

What is similar to the behavior of TdbRecordSet is that before you retrieve anything, you
will have to define a retrieval template. See chapter 5 (retrieving data from databases or
search sets) in the TRIPnxp & TRIPjxp Programmer's Guide for more details about how to
create retrieval templates.

Search Set Statistics

A search order executed via a TdbSearch instance gets a TdbSearchSet instance to
represent it. It carries information about the search itself, such as the number of hits and
records in the set, but also - and more importantly - it provides the means by which
structured data (TdbRecord, TdbField, etc) is retrieved from the server.

page 84

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

When you have executed a search order and have retrieved the TdbSearchSet instance,
you can examine the state of the search set using the following properties:

Property Name Property Type Description

DidYouMean String Returns a "did-you-mean" suggestion for the
command just executed. Only applies to the FUZZ
command. Is an empty string for everything else.

HitCount Int32 The total number of hits in the search set.

Database String The name of the database or cluster associated
with the search set. Available from version 7.2-1.

ParsedCommand String Retrieve a constructed version of the command
with fully expanded tokens, suitable for display to
an end user.

RecordCount Int32 The number of records in the search set.

Searchld Int32 The numeric ID of the search set.

Record Cache

Just like the TdbRecordSet does, the TdbSearchSet retrieves records in intervals. What
differs is that the application does not have to specify any interval size, nor it have to
explicitly fetch each "block" of records.

The TdbSearchSet class employs a cache of the last 10 blocks of 10 records fetched from
the server. The cache size is configurable, but with the default setup, the cache can hold
up to 100 records.

If the application requests a record from the TdbSearchSet that is not available in the
cache, the appropriate block of 10 records will be automatically fetched from the server. If
the cache is full, the block with the least recently accessed records will be removed from
the cache.

BEST PRACTISE

Clear the cache using the ClearCache method before assigning a new
retrieval template to a TdbRecordSet, or when you are done with your
TdbSearchSet instance!

Record Retrieval
The TdbSearchSet class is, as mentioned, also used for data retrieval. Instances of
TdbRecord can be retrieved for the records in the search set.

One way is to use the getRecord method in Java, and the indexer property in .NET.

page 85

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Method: TdbSearchset:getRecord

Type: TdbRecord
Throws: TdbException

Java
TdbRecord getRecord(int index)
.Net
n/a
Returns a TdbRecord instance for a record in the current search set.

The index is the zero-based index of the search set to fetch, and is not to be
confused with the record id. Valid index values range from 0 to one below the value
returned by the RecordCount property.

Property: TdbSearch:Item

Type (.NET): TdbRecord
Access: Read

Java

n/a

.Net

TdbRecord Item[int index] { get; }

This method is an indexer property and returns a TdbRecord instance for a record
in the current search set.

The index is the zero-based index of the search set to fetch, and is not to be
confused with the record id. Valid index values range from 0 to one below the value
returned by the RecordCount property.

If the requested record is in the cache, it will be returned from there. Otherwise, the
appropriate block of 10 records will be fetched from the server, cached, and the requested
record returned to the caller. If the cache has reached its size limit, the least recently used
block of records will be removed from the cache to make room for the new one.

TdbSearchSet in for-each loops

The TRIPjxp version of TdbSearchSet implements the Iterable interface and the TRIPnxp
version implements the IEnumerable interface. This means that the TdbSearchSet
instance can be used in a “for-each loop” in both the Java and the .NET environment.

C#

foreach (TdbRecord rec in searchSet)

// Use the record instance here...

page 86

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Automatic Retrieval Templates

The TdbSearch class can create automatic retrieval templates for the search sets
generated by this class. The templates created consist of all fields in the database queried.
This is default behavior.

Property: TdbSearch:AutomaticRetrievalTemplate

Type: boolean
Access: Read, Write

Java

boolean getAutomaticRetrievalTemplate()

void setAutomaticRetrievalTemplate(boolean enable)
.Net

bool AutomaticRetrievalTemplate { get; set; }

If you choose to use automatic retrieval templates, you don't have to do anything about
retrieval templates at all. However, you are strongly recommended to disable this behavior
(setting this property to false) if either of the following is true.

e You query a cluster. If this property remains set to true, the retrieval template
created by the TdbSearch class will not include any field templates.

e You do not intend to use all fields in the records retrieved.

Assigning a Custom Retrieval Template
You will have to use your own, custom retrieval template if you are using a database
cluster, or if you only wish to retrieve values from some of the fields in a database.

BEST PRACTISE

Even if an automatic retrieval template happens to be a valid choice, you
should seriously consider always using custom retrieval templates. Being
explicit gives you control over exactly what you are retrieving!

The following example shows how to use a custom retrieval template with a search set.

page 87

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

C#

private TdbSession session;
private TdbDatabaseDesign db;
private TdbRecord template;
private TdbSearch search;

}nt main(String[] args)

oneTimeSetup();
SearchTest2();
return O;

¥oid OoneTimeSetup()

// Log on to a TRIP server
session = new TdbTripNetSession("localhost",23457);

session.Login("myuser", "mypass");

// Fetch the DB designs only once per session.
TdbDatabaseDesign db = new TdbDatabaseDesign(session)
db.Get("ALICE");

// Templates you might as well create now too.
template = new TdbRecord(sesion,db,false);
template.AddToTemplate("CHAPTER") ;
template.AddToTemplate("TXT");

// Not strictly required here, but a good idea to keep
// the search object alive for as long as they're needed.
search = new TdbSearch(session);
search.AutomaticRetrievalTemplates = false;

// Open database. Only relevant here if we're only using
// a single database or cluster.

search.eExecute("BASE " + db.Name);

search.clear();

}
¥oid SearchTest2()

// Execute a search order
search.eExecute("FIND JABBERWOCKY");

// Get the search set and assign the template to 1it.
TdbSearchSet searchSet = searchHandler.LastSearchSet;
searchSet.RetrievalTemplate = template;

// Fetch the results from the server
foreach (TdbRecord rec in searchSet)

Console.writeLine(rec.Head["CHAPTER"].Tostring());
console.writeLine(rec.Head["TXT"].ToString());
ks

// IMPORTANT: Clear the search object when you don't
// need the search sets associated with it anymore.
search.clear();

page 88

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Using Output Formats

If you wish to retrieve the result of a search using an output format, you can. Just execute
the SHOW order via the same TdbSearch object you used to do the search. If successful
and the CommandType is Output, the property AffectedWindow contains the
TdbKernelWindow object with which you can fetch the output format report.

Example (error handling omitted):
c#
search.eExecute("FIND MAD HATTER");
TdbSearchset searchSet = search.LastSearchSet;

search.Execute("SHOW FORMAT=SHORT S=" +
searchsSet.searchid.Tostring());

output = search.Affectedwindow;

do

{
Print the lines in the buffer.
Console.WriteLine(output.ToString());
Scroll down the window one page.
output.Scrollbown();

}

while (output.IsAtBottom == false);

page 89

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

7. Retrieving data from CONTROL

Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

The purpose of the classes described in this section is to provide a simple and consistent
mechanism for retrieving lists of information as would normally be available via CCL
commands such as “show base list” or “show base access”, etc.

Retrieving information via these list classes removes any requirement for understanding
the format of CONTROL, the format of the reports used to show information from
CONTROL (as generated by the CCL commands referenced above), etc.

The base class of all such list classes is:
Class: TdbControlobjectList

Derived from: TdbMessageProvider
Located in: control

The TdbControlObjectList class is an enumerable list, natively supporting the “for-each”
pattern. Each element of the list is of type TdbControlObject, as described below.

Control objects

A TdbControlObject instance is a reference to a particular TRIP entity, for example a user
or a database. Lists of these Control object references are retrieved using a derivation of
the list class TdbControlObjectList. Each Control object reference contains information
from the Control database that uniquely references the specific TRIP entity to which it
refers.

For example, a database entity within TRIP would be represented by a TdbControlObject
with the following standard properties:

Name: <database name>

owner: <name of the FM of the database>

CreateDate: <date on which the design was created>
CreateTime: <time at which the design was created>
ModifyDate: <date on which the design was last modified>
ModifyTime: <time at which the design was last modified>
Type: Database (or thesaurus)

comment: <any description assigned to the database>

In addition, due to the object referenced being a database, the object will also have
extended, or custom, properties such as:

RecordCount: <number of records in the database>
ExtendedType: <User, System, Demo, etc.>
xml?: <Yes / No>

Similarly, every entity type within the TRIP system can be represented using a
TdbControlObject. This class provides a large number of properties and methods for

page 90

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:,) vision
group

interrogating the Control reference, allowing the programmer to determine exactly what it
is, but equally the programmer can simply pass a TdbControlObject into the constructor of
many different entity manipulation classes, such as TdbDatabaseDesign, allowing for
completely generic application construction.

Class: TdbControloObject

Derived from: Object
Located 1in: root

Each instance of the TdbControlObject class contains a standard set of properties shared
by all data types and an extensible set of custom properties that are specific to the type of
data retrieved.

Creating and using Control object lists

In order to generate a list of information from the Control database, simply construct an
object of the desired class and then iterate over the object collection, as shown in the
following example.

Java
// The constructor actually makes the request of the server

TdbControlobjectList Tist = new TdbDatabaseList(session);

// At this point, the list is populated, so we can simply
// iterate over 1its content

for(TdbControlobject db : 1ist)

{

// ... do whatever 1is required with the object ...

VB.Net

The constructor actually makes the request of the server

Dim list As New TdbDatabaseList(session)

At this point, the 1ist is populated, so we can simply

’ iterate over its content
For Each db As TdbControlobject In Tist

. do whatever is required with the object ...

Next

In general there is at least one, and sometimes several, list class that pertains to each type
of TRIP entity.

page 91

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Class: TdbClassificationSchemesList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of available classification schemes. Classification schemes are
specialized databases optionally accompanied by one or more data files specific to
the classification algorithm in use by the scheme.

Class: TdbDatabaseAccessList

Derived from: TdbControlobjectList
Located in: control

Retrieve a list of users and/or groups who have some level of access to the
database or cluster provided to the constructor. For each object in the list, the
calling application can retrieve the level of access granted using the custom
properties ReadAccess and WriteAccess, both of which return a value from the
TdbAccessRights enumeration.

Class: TdbDatabaseFieldList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of fields from the design for a specific database or thesaurus.
Various constructors are available to allow the calling application to specify field
types or component memberships that are of interest. Note that the resulting
Control objects contain only field names and no other field attributes. If the calling
application requires field attributes, it must retrieve the database design (see
section 10).

Class: TdbDatabaseList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of databases, thesauri and clusters to which the calling user has
some level of access. An additional constructor is available to allow the calling
application to restrict the list to a particular extended type of database. The
retrieved objects can be tested for type using the custom properties IsDatabase,
IsCluster, IsThesaurus(), IsDemoDatabase(), IsSystemDatabase() and
IsUserDatabase().

Class: TdbEntryFormList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of TRIPclassic data entry forms defined for the database or
thesaurus provided to the constructor.

Class: TdbFileManagerList

Derived from: TdbUserList
Located 1in: control

Retrieve a list of users who have file manager privilege. In order to use this class,
the calling user must have some level of management privilege, either FM, UM or
SM.

page 92

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Class: TdbGroupAccessList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve the access rights for a named group, i.e. all databases, thesauri and
clusters to which the group has some level of access, and what the level of access
is. Calling applications can retrieve the level of access from the retrieved objects
using the properties ReadAccess and WriteAccess, both of which return a value
from the TdbAccessRights enumeration.

Class: TdbGroupList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of groups owned by the calling user. Alternative constructors allow
the list to pertain to a specific user, which must be a user owned by the calling
user, and/or to include or exclude the PUBLIC group.

Class: TdbGroupMemberList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of group members.
Class: TdbManagerList

Derived from: TdbUserList
Located 1in: control

Retrieve a list of users with any kind of management privilege. In order to use this
class, the calling user must themselves have management privilege of some kind.

Class: TdboutputFormatList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of output formats defined for the database or thesaurus named in the
constructor.

Class: TdbownedDatabaseList

Derived from: TdbControlobjectList
Located in: control

Retrieve a list of databases, thesauri or clusters owned by the calling user.
Class: TdbProcedureList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve a list of procedures or macros owned by a specific user or group.

page 93

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Class: TdbPublicAccessList

Derived from: TdbGroupAccessList
Located 1in: control

Retrieve a list of databases, thesauri or clusters to which the special PUBLIC group
has been granted some level of access. Calling applications can retrieve the level
of access from the retrieved objects using the properties ReadAccess and
WriteAccess, both of which return a value from the TdbAccessRights enumeration.

Class: TdbPublicMemberList

Derived from: TdbGroupMemberList
Located 1in: control

Retrieve a list of all users on the system, i.e. all members of the special PUBLIC
user group.

Class: TdbSearchFormList

Derived from: TdbControlobjectList
Located in: control

Retrieve a list of all TRIPclassic search forms.
Class: TdbUserAccessList

Derived from: TdbControlobjectList
Located 1in: control

Retrieve the access rights for a named user, i.e. all databases, thesauri and
clusters to which the user has some level of access, and what the level of access
is. Calling applications can retrieve the level of access from the retrieved objects
using the properties ReadAccess and WriteAccess, both of which return a value
from the TdbAccessRights enumeration.

Class: TdbuUserList

Derived from: TdbControloObjectList
Located 1in: control

Retrieve the list of users owned by the calling user, optionally including the calling
user’s object. Alternative constructors support retrieving users owned by other user
managers, or retrieving users of a certain management privilege level.

Class: TdbUserManagerList

Derived from: TdbUserList
Located 1in: control

Retrieve a list of users who hold the user manager privilege. In order to use this
class, the calling user must themselves have management privilege of some kind.

There are several examples of retrieving information from the Control database, which can
be found at the following locations.

page 94

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Java
com.tietoenator.trip.jxp.examples.control.DatabaseList
com.tietoenator.trip.jxp.examples.control.ListGenerator
.Net

Databases \ DatabasesNode.vb

Forms \ *.vb

Schemes \ SchemesNode.vb

Users \ *.vb

Transforming Control object lists

The content of any given Control object list is a set (potentially ordered) of
TdbControlObject elements, each of which is potentially specialized according to the
derived type of the list in question. In certain circumstances, however, it is useful to be
able to transform those Control objects into objects of other types, for example to place
within web controls using frameworks such as JSF.

For this purpose, all Control object lists support a method that provides for arbitrary
transformation of each element within the list to a new object type, the result of the
operation being a new list of such new object types.

To support such transformation, the calling application must provide an instance of a class
that implements the interface TdbTransformer. This simple interface defines a single
method that transforms a Control object into an arbitrary object (note that this is a strongly-
typed operation under Java only).

page 95

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:, vision
group

Interface: TdbTransformer

Derived from: Object
Located 1in: <root>

Method: TdbTransformer:Transform

Type: Specialized object
Throws: N/A

Java

pubTlic interface TdbTransformer<ge> {
public E transform(Object 0);

s

.Net

pubTlic interface TdbTransformer {

object Transform(Object o);

};
Method: TdbControlobjectList:Transform
Type: List of objects
Throws: N/A

Java

class mytx implements TdbTransformer<String>
public String transform(object o)
return ((TdbControlobject)o).getName();
};

TdbControlobjectList 1 = new TdbDatabaseList(session);
List<String> names = T.transform(new mytx());

c#

class mytx : TdbTransformer

public string Transform(object o) {
return ((TdbControlobject)o).Name;

};

TdbControlobjectList 1 = new TdbDatabaseList(session);
IList names = T1.Transform(new mytx());

page 96

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

8. Updating databases
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Updating a database is performed using the same classes as were used for retrieving data
from databases, i.e. the TdbRecord and TdbRecordSet classes. The former is used when
updating, deleting or inserting a single record, the latter when projecting a common update
onto a set of records, when deleting a set of records, or when inserting a set of records at
once.

Class: TdbRecord

Derived from: TdbMessageProvider
Located in: data

Class: TdbRecordset

Derived from: TdbMessageProvider
Located in: data

In either case, the content of one or more TdbRecord instances must be established or
modified locally, after which various type of commit operations can be performed.

Creating or retrieving single records
To create a new TdbRecord instance for data update purposes, associate the new
TdbRecord with the database design for the database that is to be affected.

Constructor: TdbRecord
TdbRecord(TdbSession session,
TdbbDatabaseDesign design,

Boolean createTemplate)

TdbRecord(TdbSession session,
String name,

Boolean createTemplate)

TdbRecord(TdbSession session,
TdbControlobject obj,

Boolean createTemplate)

Create a new TdbRecord instance associated with the database whose name or

design is provided. The constructor reads the design (fetching it from the server if
necessary) and establishes all required relationships between the record and the
design, such as the existence and identity of key fields, etc.

If the “createTemplate” flag is set true, a retrieval template containing all fields
within the associated design is automatically created, so that any following Get
operation will retrieve records in their entirety from the server.

page 97

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

If this flag is set false, the application must explicitly add fields to the retrieval
template before fetching records for modification.

To retrieve a specific record from the database set the record’s Recordld or RecordName
property and request the record from the server using the Get method as shown the
following example.

Java

// Retrieve the design for the database we’re going to
// work with

TdbDatabaseDesign db = new TdbDatabaseDesign(session);

db.get(“alice”);

// Create a new record instance, retrieve a record from
// the database

TdbRecord record = new TdbRecord(session, db, true)
record.setRecordid(32);

record.get();

// Modify the record’s content as required

// Store the record back to the server

record.commit(Q);

page 98

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net

’ Retrieve the design for the database we’re going to
* work with

Dim db As New TdbDatabaseDesign(session)

db.Get(“alice”)

’ Create a new record instance, retrieve a record from
‘ the database

Dim record As New TdbRecord(session, db, true)
record.RecordId = 32

record.Get()

’ Modify the record’s content as required

’ Store the record back to the server
record.commit()

Note that it is good practice to use a database design object rather than the database’s
name if the application will be creating more than one TdbRecord instance. When provided
with a name, the constructor must fetch the database design from the server every time it
is needed.

When creating a TdbRecord instance for an insert operation, the database design should
still be provided to the constructor, although the retrieval template can be left blank, as
shown in the following example.

page 99

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java
// Retrieve the design for the database we’re going to work with
TdbDatabaseDesign db = new TdbDatabaseDesign(session);

db.get(“alice”);

// Create a new record instance

TdbRecord record = new TdbRecord(session, db, false)

// Establish the new record’s content as required

// Store the record to the server as an insert

record.commitQ);

VB.Net

’ Retrieve the design for the database we’re going to work with
Dim db As New TdbDatabaseDesign(session)

db.Get(“alice”)

’ Create a new record instance

Dim record As New TdbRecord(session, db, true)

Establish the new record’s content as required

Store the record to the server as an insert

record.cCommit()

In essence, the only difference between an insert operation and an update operation is
whether the record was retrieved from the server before being committed or not. If the
record has been affected by a Get operation, then any Commit operation will update the
record, whilst in the absence of a preceding Get operation, the Commit operation will insert
the record.

page 100

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Method: TdbRecord:Commit

Type: void
Throws: TdbException

Java
void commit()
.Net

void commit()

Commit the record to the database on the server, using either update or insert
semantics depending upon whether the record was first retrieved from the
database or not.

Modifying or establishing the content of a TdbRecord

Whether the application is creating new records or updating existing records, the method
for modifying the TdbRecord instance is the same, although obviously the operations that
occur prior to modification are different.

In order to modify a TdbRecord, first retrieve a reference to the appropriate component of
the record, using the Head property, the Parts collection, or the GetComponent method.

Property: TdbRecord:Head

Type: TdbComponent
Access: Read

Java
TdbComponent getHead()
.Net

TdbComponent Head { get; }

Retrieve a reference to the head component of the record.
collection: TdbRecord:Parts

Type: List of TdbComponent
Access: Read

Java
List<TdbComponent> parts()
.Net

IList Parts { get; }

Retrieve a list of part record components currently defined in the record.

page 101

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbRecord:GetComponent

Type: TdbComponent
Throws: TdbException

Java

TdbComponent getComponent(int index)
TdbComponent getComponent(String name)
.Net

TdbComponent GetComponent(int index)

TdbComponent GetComponent(String name)

Retrieve the record component at the specified index, or with the specified name.
The zero’'th component is the head record, whilst components numbered from 1
upwards are part records. Using the named version will work only if the TdbRecord
instance is associated with a database design that uses a part record name field.

New part records can be created using the AppendComponent method.
Method: TdbRecord:AppendComponent

Type: TdbComponent
Throws: TdbException

Java
TdbComponent appendComponent()
.Net

TdbComponent AppendComponent()

Add a new part record to the end of the current record’s part vector. This method
cannot be used to create a new head record, obviously. If the part record structure
requires a part record name, use the new component’s Name property to establish
this value. The new component’s part number can be retrieved using the
component’s Id property.

Existing part records can be deleted using the DeleteComponent method.
Method: TdbRecord:DeleteComponent

Type: void
Throws: TdbException

Java

void deleteComponent(int id)

void deleteComponent(String name)
.Net

void DeleteComponent(Int32 1id)

void DeleteComponent(String name)

Delete the named or identified part record from the record structure. The named
version is usable only when the record is associated with a database design that

page 102

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

uses a part record name field, and only if the part record’s name was established
either by retrieval from the server or by the application having established the part
name beforehand.

From the component, individual fields are retrieved using the class indexer (.Net only), the
Fields collection, or the GetField method.

Property: TdbComponent:Item (.Net only)

Type: TdbField
Access: Read, Write

c#
TdbField this[String name] { get; set; }
VB.Net

Public Property Item(Byval name As String) As TdbField

Retrieve a reference to the named field, if any (returns null/nothing if not found).
Collection: TdbComponent:Fields

Type: collection of TdbField
Access: Read

Java
collection<TdbField> fields()
.Net

ICollection Fields { get; }

Retrieve the collection of fields defined for the component to date. The collection is
not ordered in any specific way. The collection is live, however, supporting update
to individual fields within the collection, although the collection cannot be extended.

Method: TdbComponent:GetField

Type: TdbField
Throws: TdbException

Java
TdbField getField(String name)
.Net

TdbField GetField(String name)

Retrieve a reference to the named field, if found. The reference returned is live and
can be updated freely.

New fields can be created using the CreateField method.

page 103

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbComponent:CreateField

Type: TdbField
Throws: TdbException

Java

TdbField createField(TdbFieldDesign field)

TdbField createField(String name, TdbFieldType type)
.Net

TdbField CreateField(TdbFieldDesign field)

TdbField CreateField(String name, TdbFieldType type)

Create a new field instance within the component for a field of the defined design,
or with the given name and the given field type. This method will unconditionally
overwrite any existing field with the same name within the component.

The TdbField instance returned will be of a concrete type that is appropriate to the
field type requested, e.g. TdbTextField, TdbPhraseField, etc.

Existing fields can be deleted using the DeleteField method.
Method: TdbComponent:DeleteField

Type: void
Throws: N/A

Java
void deleteField(String name)
.Net

void DeleteField(String name)

Delete the named field from the component. If the field is not found the operation is
legal but has no effect. If the field is found, the field is maintained as a member of
the component, but has a blank value—this ensure that when the record is
committed to the server, the field’s value will be deleted.

Working with structured field types
Having either created or retrieved the field required, the field’s current values can be
retrieved using the Values collection or the GetValue method.

Ccollection: TdbField:values

Type: List of String
Access: Read

Java
List<String> values()
.Net

IList values { get; }

Retrieve the list of values currently stored within the field. In contrast to the
OriginalValues collection described in section 5, the Values collection does not

page 104

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

contain hit term markup and always reflects any modifications that have been
made to the field locally.

Method: TdbField.Getvalue

Type: String
Throws: TdbException

Java
String getvalue(int index)
.Net

String Getvalue(Int32 1index)

Retrieve the field value at the specified offset, i.e. the value of the specified
subfield. This method throws an exception if the specified subfield index is out of
bounds for the current content of the field.

The values that the field holds can be modified using the SetValue and AppendValue
methods.

Method: TdbField:Setvalue

Type: void
Throws: TdbException

Java
void setvalue(int index, String value)
.Net

void Setvalue(Int32 index, String value)

Establish the value of the subfield at the defined index, throwing an exception if the
index is out of bounds of the current field content. Values intended for fields of a
non-textual nature, e.g. numbers, are validated prior to updating with the value
given.

Method: TdbField:Appendvalue

Type: void
Throws: TdbException

Java
void appendvalue(String value)
.Net
void Appendvalue(String value)

Append the defined value to the current content of the field, as a new subfield.

The following example shows a simple insert being performed to the Alice database.

page 105

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,) vision
group

Java

TdbDatabaseDesign db;

TdbComponent head;
TdbRecord record;
TdbField field;

// Retrieve database design, create new record
db = new TdbDatabaseDesign(session);
db.get(“alice”);

record = new TdbRecord(session, db, false);

head = record.getHead();

// Create field values
field = head.createField(db.getField(“Chaptnr”));
field.appendvalue(“99”);

field = head.createField(db.getField(“Chapter”));
field.appendvalue(“Chapter title”);

// Store new record to database
record.commit();

VB.Net

’ Retrieve database design, create new record
Dim db As New TdbDatabaseDesign(session)
db.Get(“alice”)

Dim record As New TdbRecord(session, db, false)
Dim head As TdbComponent = record.Head

’ Create field values

Dim field As head.CreateField(db(“chaptnr”))
field.Appendvalue(*“99”)

field = head.CreateField(db(“chapter”))
field.Appendvalue(“Chapter title”)

page 106

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Store new record to database

record.Commit()

Working with TExt fields

Although the TdbTextField class supports the value-based operations described in the
previous section (with certain restrictions), TEXxt fields tend to require slightly differently
operating procedures than other field types, as dictated by the kernel requirements of the
field type itself.

Whilst it is simple for an application to divide the values in a PHrase field into subfields, for
example, simply by delimiting input on newlines, TExt field values can be significantly
different from one database to another or one application to another, and so expecting
application developers to deal with this complexity is unreasonable.

Therefore, in addition to the SetValue and AppendValue methods, TExt fields can be
modified using the SetText and AppendText methods. For the .Net platform only, there is
an additional property, the Text property, which is intended for use with the Text property
of edit controls and similar Ul widgets.

Method: TdbTextField:SetText

Type: void
Throws: N/A

Java
void setText(String value)
.Net

void SetText(String value)

Establish the content of the TExt field. Any pre-existing content will be removed by
this method.

Applications must be careful to provide the text values exactly as the user enters
them, maintaining all white space and newline equivalents, as these characters are
used by the server to parse the provided text into paragraphs and sentences.

Method: TdbTextField:AppendText

Type: void
Throws: N/A

Java
void appendText(String value)
.Net

void AppendText(String value)

Establish the value of the text field, or if the text field already has text content, as
defined by previous calls to either SetText or AppendText, append the provided
value to the current content.

page 107

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Applications must be careful to provide the text values exactly as the user enters
them, maintaining all white space and newline equivalents, as these characters are
used by the server to parse the provided text into paragraphs and sentences.

Immediately following retrieval from the server using the Get method, and before any
updates have been performed on the field, a TExt field will in fact be divided neatly into
paragraphs that can uniquely be accessed and updated using the GetValue and SetValue
methods. This can be very useful when performing targeted updates, of course. However,
as soon as the application invokes either SetText or AppendText on the field, the value-
based methods become invalid and will throw an exception due to the fact that the
SetText/AppendText methods intentionally do not attempt to divide the provided text into
paragraphs.

Thus, it is important for application developers to understand their end user’s requirements
in terms of interacting with TExt fields. If the interaction is going to be Ul-centric, focusing
on the user editing the content of a TExt field, then the application should write the field’s
value using the SetText and AppendText methods. If, however, the application is to be
used to perform targeted updates, the structured GetValue and SetValue methods should
be used instead.

The following example shows both types of update being performed.

page 108

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Java

TdbDatabaseDesign db;

TdbComponent head;
TdbTextField field;
TdbRecord record;

// Retrieve database design and record from database
db = new TdbDatabaseDesign(session);
db.get(“alice”);

record = new TdbRecord(session, db, true);
record.setRecordId(32);

record.get();

head = record.getHead();

// Use structured update to modify paragraph 1 of
// the TXT field

field = (TdbTextField)head.getField(“txt”);

if(field != null)

field.setvalue(l, “This replaces para 1 of the field”);

// Use unstructured update to establish new TXT2 field content
field = (TdbTextField)head.createField(db.getField(“txt2”));
field.setText

(“Initial field value.\nSome more of the field.”);

field.appendText(“More text for the field.\n\n”);

// Store the modified record to the server

record.commitQ);

page 109

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net
’ Retreive database design

Dim db As New TdbDatabaseDesign(session)
db.Get(“alice”)

’ Retrieve record to be modified

Dim record As New TdbRecord(session, db, true)

record.RecordId = 32

record.Get()

Dim head As TdbComponent = record.Head
Dim field As TdbTextField
’ Use structured update to modify paragraph 1 of the TXT field
field = head(“txt”)
If Not field Is Nothing Then

field.setvalue(l, “This replaces para 1 of the field”)
End If
’ Use unstructured update to establish new TXT2 field content
field = head.CreateField(db(“txt2”))
field.SetText(“Initial field value.\nSome more of the field.”)
field.AppendText(“More text for the field.\n\n”)
> Store the modified record to the server

record.commit()

Working with STring fields

TRIP’s binary large object field type, STring, is represented within the class library using
the TdbStringField class. This is a very restricted implementation of the TdbField interface,
as this field type does not support getting and/or setting individual values within the field,
just the entire value of the field in one operation.

To support this interaction, the class defines the Blob property.

page 110

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Property: TdbstringField:Blob

Type: Array of bytes
Access: Read, Write

Java
byte[] getBlob()

void setBlob(byte[] value)
.Net

Byte[] Blob { get; set; }

Retrieve or establish the value of the field. Note that the byte array used for all
interactions is “live” in order to avoid unnecessary memory usage by copying
values to/from the field’s content. Programmers must be careful when using this
array, therefore, so as to avoid corrupting field values inadvertently.

The following example shows the STring field type in use.

page 111

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java
TdbDatabaseDesign db;
TdbstringField field;

TdbRecord record;

// Load the database design and the appropriate record from
// the DB

db = new TdbDatabaseDesign(session)

db.get(“some_db”);

record = new TdbRecord(session, db, true);
record.setRecordName(“My Unique Key”);

record.get();

// Get the existing value of the string field
field = (TdbStringField)record.getHead() .getField(“my_blob”);
byte[] blob = field.getBlob();

// Launch an app to deal with the blob, generate a new one
myApp. launch(blob);
field.setBlob(myApp.getNewvalue());

// Store record updates
record.commit(Q);

VB.Net

’ Load the database design and the appropriate record
‘ from the DB

Dim db As New TdbDatabaseDesign(session)
db.Get(“some_db”)

Dim record As New TdbRecord(session, db, true)
record.Name = “My Unique Key”

record.Gcet()

Get the existing value of the string field

Dim field As TdbStringField = record.Head(“my_bTlob”)

page 112

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Dim bTlob() As Byte = field.Blob

> Launch an app to deal with the blob, generate a new one
myApp. Taunch(blob)

field.Blob = myApp.Newvalue

’ Store record updates

record.commit()

Deleting single records

In order to delete a single record from a database or thesaurus, create a TdbRecord
instance as usual, identify the record that is to be deleted, using either the RecordId or
RecordName property, and then invoke the Delete method to remove the record from the
database.

Method: TdbRecord:Delete

Type: void
Throws: TdbException

Java
void delete()
.Net
void Delete()

Deletes the current record, as identified by the Recordld or RecordName property,
from the database with which the record is associated, as defined by the Database
property or the constructor.

The following example illustrates how to call this method.

page 113

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jz:’ vision
group

Java

TdbRecord record = new TdbRecord(session);

record.setDatabase(“My_bDatabase”);
record.setRecordName(“My unique key”);
record.delete();

VB.Net

Dim record As New TdbRecord(session)

record.Database = “My_bDatabase”
record.RecordName = “My unique key”

record.Delete()

In this particular case, where there’s no need to create a field-specific association between
the record and the database, we can construct the TdbRecord without having loaded the
database design, and simply reference the database by name.

Affecting multiple records with one request

In addition to interacting with single records, using the TdbRecord class, applications can
interact with multiple records at once using the TdbRecordSet class. The semantics of
these operations vary depending on the type of operation, as described below.

e Multiple insert adds a set of records to a single database with one request.
¢ Multiple update performs the same update operation on a set of records.
¢ Multiple delete removes a set of records from a database with a single request.

Multiple insert

In application scenarios involving mass inserts to a database, where granular insertion
validation isn’t necessarily an issue, for example offline batch loading, it can be very useful
to be able to state an insertion request using multiple records at once.

To do this, the TdbRecordSet class offers an Insert method that takes as argument a
collection of TdbRecord instances. Records within the collection do not themselves need
to be established as rigorously as when performing a singular operation, as the application
must instead define the context of the TdbRecordSet in order for the operation to
complete.

page 114

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:]) vision
group

Method: TdbRecordSet:Insert

Type: void
Throws: TdbException

Java
void Insert(Collection<TdbRecord> records)
.Net

void Insert(ICollection records)

Insert the collection of records to the current database. The TdbRecordSet on
which this method is invoked must be prepared by setting the Database property to
identify the database into which the inserts should be performed. If the database
uses a record name field, each record in the collection must have their record
name established by using the Name property of the TdbRecord instance.

Following the successful invocation of this method, the property AffectedRecords
will reflect the number of records inserted during the operation.

Multiple update

The purpose of multiple update is to allow an application to project a single update
operation onto a set of records identified by record range or query result. For example, to
change the value of a particular field in all records in which that field currently has an
existing incorrect value.

This facility is less granular than the global update capabilities offered by CCL, as it does
not allow for individual words or phrases to be updated based on query results, but if the
update that is required can be defined in terms of rigorous database structure, then this
facility provides a quick and online means of accomplishing the purpose.

To perform a multiple update, prepare the record set by setting some combination of the
Query, Database, From, To, Id, or Name properties and then invoke the Update method.

Method: TdbRecordSet:Update

Type: void
Throws: TdbException

Java
void update(TdbRecord values)
.Net

void Update(TdbRecord values)

Perform the update operation identified by the provided TdbRecord on every record
covered by the record set’s definition. The record set can be prepared either using
a database name or using a query statement, thus allowing records from multiple
databases to be updated.

Multiple delete
To delete a range of records from a database, or a range of records covered by a query
result, simply prepare a TdbRecordSet as usual and then invoke the Delete method.

page 115

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Method: TdbRecordSet:Delete

Type: void
Throws: TdbException

Java
void delete()
.Net

void Delete()

Deletes all records covered by the TdbRecordSet from the record set’s target
database(s). The record set can be prepared either with a physical database name
or with a query, thus allowing records from multiple databases to be deleted.

Calling ASE Routines While Inserting or Updating a Record

An ASE (Application Software EXxit) routine is a server-side function residing outside the
TRIP kernel in an external library. Such routines are often custom-written and can be used
at several predefined points, such as during loading of data into a database from a
TFORM file.

From version 2.0-3 of TRIPnxp and TRIPjxp it is also possible to specify a list of ASE
routines to be called upon commit of a new or modified record. In order for this to work, the
TRIPsystem version used must be 6.2-4 or later.

ASE List Properties on the TdbRecord Class

There are two properties on the TdbRecord class are lists of ASE call information. There is
one such list property for ASE routines to be called when a new record is committed, and
one list property for ASE routines to be called when changes to an existing record are
committed.

Property: TdbRecord:InsertAselList

Type: List<TdbAsecall>
Access: Read

Java
List<TdbAseCall> insertAseList()
.NET

List<TdbAseCall> InsertAseList { get; }

page 116

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision

group

Property: TdbRecord:UpdateAseList

Type: List<TdbAsecall>

Access: Read

Java

List<TdbAseCall> updateAseList()

.NET

List<TdbAseCall> UpdateAseList { get; }

While these two lists are read-only properties, the contents of the lists themselves
can be freely modified by the application.

Note that when calling the Clear() method on the TdbRecord instance, the contents

of these lists is retained.

The TdbCallAse Class

The ASE call information is represented by instances of the TdbAseCall class. Mandatory
information is the name of the ASE routine to call. Since an ASE can take an optional,
single string argument, it is also possible to provide that.

Class: TdbAsecall

Derived from: Object
Located 1in: data

constructor: TdbAsecCall
Java
TdbAseCall (String

TdbAsecall (String

.Net
TdbAsecall (String

TdbAseCall (String

name)

hame, String argument)

name)

hame, String argument)

The first constructor creates a TdbAseCall instance for an ASE that does not take
any arguments. The second constructor creates a TdbAseCall instance for an ASE

that takes an argument.

Use the TdbAseCall class together with the TdbRecord class like this:

page 117

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java

// Data population steps omitted for clarity
record.insertAseList(new TdbAseCall("myinsertase'"));
record.commitQ);

VB.Net

// Data population steps omitted for clarity
record.InsertAseList.Add(new TdbAseCall("myinsertase™))

record.commit()

Writing an ASE Routine

An ASE routine is written in the C programming language and linked as a dynamic library
(DLL or shared object, depending on operating system).

Please refer to Appendix B in the TRIPmanager Administration Guide for detailed
information about how to write ASE routines.

Error Messages from ASE Routines

If the ASE succeeds, it must return ASE_SUCCESS. If it fails, it absolutely must return the
code ASE_FAIL. The application will then receive the error message for the last TRIPapi
function called. However, if the ASE wishes to specify its own error message, it can use
the TdbMessage function like this:

C
void set_error_message(char* msg, int msglen)
{

TdbMessage (MSG_SET_ERROR,msg,&msglen) ;

page 118

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:,) vision
group

9. Tuple Lists
Tuple lists enable the programmer to work with a set of fields in a record through a table-
like abstraction layer.

Class: TdbTupleList

Derived from: Object
Located 1in: data

Class: TdbTuple

Derived from: Object
Located 1in: data

Instead of having to use separate TdbStructuredField instances to manage associated lists
of sub fields, the TdbTupleList can be used instead. An added benefit is that when the
TdbTupleList is used to manage sub fields, all fields in the tuple list are guaranteed to
have the same number of sub fields.

Creating a tuple list
Tuple lists are always specific to a TdbComponent, i.e. the head or a specific part of a
record. All fields except STRING and TEXT fields can be managed by a TdbTupleList.

Specifying a tuple list using a field group
From TRIP version 8.0 it is possible to create tuple lists based on field group definitions in
the database design.

Java

TdbComponent h = record.getHead();

TdbTupleList 1st = new TdbTupleList(session, h, db, “ADDR”);
VB.Net

Dim h as TdbComponent = record.Head

Dim 1st As New TdbTupleList(session ,h, db, ”ADDR”)

Specifying a tuple list explicitly
Tuple lists can also be specified explicitly without a field group in the db design:

Java

TdbComponent h = record.getHead();

TdbTupleList 1st = new TdbTupleList(session,h, “NAME;ADDRESS”);
VB.Net

Dim h as TdbComponent = record.Head

Dim Tst As New TdbTupleList(session,h, ’NAME; ADDRESS™)

Ensuring presence of fields
Note that the fields to be included in the tuple list are not be present in the TdbComponent,
they must first be added. This is the case when a new record is to be created:

page 119

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Java
TdbRecord rec = new TdbRecord(session, “my_db”, false);

TdbComponent h = rec.getHead();

h.createField(“name” ,TdbFieldType.PhraseField);

h.createField(“address”,TdbFieldType.PhraseField);

TdbTupleList 1st = new TdbTupleList(session,h, “NAME;ADDRESS”);
VB.Net
Dim rec As new TdbRecord(session,”my_db”,False)

Dim h as TdbComponent = rec.Head

h.CreateField(“name”,TdbFieldType.PhraseField)

h.CreateField(“address”,TdbFieldType.PhraseField)

Dim 1st As New TdbTupleList(session,h,”NAME; ADDRESS”)

New tuples
There are two methods available that support adding new tuples to a tuple list; the Append
method and the Insert method.

Method: TdbTupleList:Append

Type: TdbTuple
Throws: TdbException

Java
TdbTuple append()
.Net

TdbTuple Append()

The Append method takes no parameters and returns a new TdbTuple object. The
returned object is cached within the tuple list, and all subsequent requests for the newly
appended tuple will be routed to the same object.

Method: TdbTupleList:Insert

Type: TdbTuple
Throws: TdbException

Java
TdbTuple insert(int index)
.Net

TdbTuple Insert(int index)

page 120

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

The insert method inserts a new, blank tuple at the specified zero-based index location.
The returned object is cached within the tuple list, and all subsequent requests for the
newly appended tuple will be routed to the same object.

The following example illustrates the Append and Insert methods.
Java
TdbComponent h = record.getHead();

TdbTupleList 1st = new TdbTupleList(session,h, “NAME;ADDRESS”);

TdbTuple tl1 = 1Ist.append(); // Add a new tuple
TdbTuple t2

Tst.insert(0); // New tuple first in 1list

tl.setvalue(0,”John Doe”);
tl.setvalue(l,”Elm Street”);

t2.setvalue(“NAME”, ”Jane Doe”);

record.commit(); // save changes

VB.Net

Dim rec As new TdbRecord(session,”my_db”,False)
Dim h As TdbComponent = rec.Head

Dim 1st As New TdbTupleList(session,h,” ”NAME; ADDRESS”)

Dim tl As TdbTuple Tst.Append() ‘ Add new tuple

Dim t2 As TdbTuple Tst.Insert(0) ‘ New tuple first in Tist

tl.Setvalue(0,”John Doe”)
tl.setvalue(l,”ETm Street”)

t2.Setvalue(“NAME”,”Jane Doe”)

record.commit()

page 121

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Accessing tuples
The TdbTupleList properties RowCount and ColumnCount together with the get/indexer
method can be used to iterate through a tuple list.

Java
int rowidx,colidx;
TdbTuple tuple;

String tval;

for (rowidx=0;rowidx<tupleList.getRowCount() ;rowidx++)

{
tuple = tupleList.get(rowidx);
for (colidx=0;colidx<tupleList.getColumnCount();colidx++)
{
tval = tuple.getvalue(colidx);
}
}
VB.NET

Dim rowidx As Integer
Dim colidx As Integer
Dim tuple As TdbTuple

Dim tval As String

For rowidx = 0 To tupleList.RowCount
tuple = tupleList.Get(rowidx)
For colidx = 0 To tupleList.ColumnCount

tval t.Getvalue(j)

Next colidx

Next rowidx

page 122

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Clearing tuples
To clear a tuple means to set all subfield values for the tuple to empty. This will not remove

the tuple from the tuple list. The Clear method is available in the TdbTuple class.
Method: TdbTuple:Clear

Type: void
Throws: TdbException

Java
void clear()
.Net

void Clear()

Removing tuples
Tuples can be removed from the tuple list using the Remove method on TdbTupleList or

on TdbTuple.
Method: TdbTuple:Remove

Type: void
Throws: TdbException

Java
void remove()
.Net

void Remove()

The Remove method on the TdbTupleList takes the zero-based tuple index as an
argument.

Method: TdbTupleList:Remove

Type: void
Throws: TdbException

Java
void remove(int index)
.Net

void Remove(int index)

Removed tuples to which the application still holds references will throw a TdbException
upon access. The application should therefore immediately discard any TdbTuple object

that has been removed.

page 123

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:’ vision
group

10. Managing databases and thesauri
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

The management of databases revolves around a core class and a derivation
Class: TdbDatabaseDesign

Derived from: TdbSerializableObject
Located 1in: database

Class: TdbThesaurusbDesign

Derived from: TdbDatabaseDesign
Located in: database

The base class, TdbDatabaseDesign, provides all of the functionality whilst the derived
class, TdbThesaurusDesign, provides type-specific extensions to ensure that when
creating or retrieving designs, TRIP is initialized to correctly interpret the design as a
thesaurus.

As with all library classes, the majority of interaction with the design of a database or
thesaurus takes place on locally cached data; only once the application chooses to commit
any changes made locally is a network transaction performed to store the resulting design
to the server.

Creating a new database or thesaurus

In order to create a new design, simply create an object of the appropriate class, fill its
properties as required and then commit the design to the server. For example, the
following example shows how to create a new database:

Java

TdbDatabaseDesign db = new TdbDatabaseDesign(session);
// Set default DB design properties

db.get(“sample”, true);
db.setBafFile(“DATABASES:SAMPLE.BAF”);

db.setBifFile(“DATABASES:SAMPLE.BIF”);

db.setVvifFile(“DATABASES:SAMPLE.VIF”);

db.put(“sample”);

page 124

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

VB.Net

Dim db As New TdbDatabaseDesign(session)
// Set default DB design properties
db.Get(“sample”,True)

db.BafFile = “DATABASES:SAMPLE.BAF”

db.BifFile
db.vifFile

“DATABASES: SAMPLE.BIF”

“DATABASES : SAMPLE.VIF”

db.Put(“sample”);

This simple example creates a skeleton of a database. To make a more useful database,
the application should add a collection of field designs to the database.

Class: TdbFieldDesign

Derived from: Object
Located 1in: database

Instances of field designs are added to a database design using the following method
Method: TdbDatabaseDesign:AddField

Type: void
Throws: N/A

Java
void addField(TdbFieldbesign field)
.Net

void AddField(TdbFieldbesign field)

Add a copy of the provided field design to the database field list. The field design
object provided can be reused without impacting the underlying database design
due to the copying of the field that occurs during addition.

Applications managing the entire field collection at once can use a collection property that
explicitly clears any pre-existing notion of a field collection and replaces it with a copy of
the application’s version.

page 125

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Collection: TdbDatabaseDesign:Fields

Type: List of TdbFieldDesign
Access: Read, Write

Java

List<TdbFieldbesign> fields()

void putFields(Collection<TdbFieldDesign> fields)
.Net

IList Fields { get; set; }

Retrieve and replace the collection of field designs associated with the database
design.

The following example expands on the example above to add two fields to the database
design before attempting to create it:

Java

TdbDatabasebDesign db = new TdbDatabaseDesign(session);

db.setBafFile(“DATABASES:SAMPLE.BAF”);
db.setBifFile(“DATABASES:SAMPLE.BIF”);

db.setVvifFile(“DATABASES:SAMPLE.VIF”);
TdbFieldbesign field = new TdbFieldDesign();

field.setName(“Field_1");
field.setType(“phrase”);
db.addField(field);

// Note that we reuse the same field design object, as the
// object gets copied into the underlying database design
field.setName(“Field_2");

field.setType(“text”);

db.addField(field);

db.put (“SAMPLE™);

page 126

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 jE:’ vision
group

VB.Net

Dim db as New TdbDatabaseDesign(session)

db.BafFile = “DATABASES:SAMPLE.BAF”
db.BifFile = “DATABASES:SAMPLE.BIF”
db.VvifFile = “DATABASES:SAMPLE.VIF”

Dim field As New TdbFieldDesign

field.Name “Field_1"

field.Type
db.AddField(field)

“phrase”

Note that we reuse the same field design object, as the
’ object gets copied into the underlying database design
field.Name = “Field_2”

field.Type = “text”

db.AddField(field)

db.Put(“sample”)

page 127

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

Modifying an existing database or thesaurus
In order to modify an existing design, simply retrieve that design from the server, modify as
required and then commit the design again. For example:

Java

TdbDatabaseDesign db = new TdbDatabaseDesign(session);

db.get(“SAMPLE”);
db.setbDescription(“Simple update to database”);
db.put(Q;

VB.Net

Dim db As New TdbDatabaseDesign(session)

db.Get(“sample”)

db.Description = “Simple update to database”

db.Put(Q

To modify the field collection, first retrieve all fields from the design then make whatever
modifications are required before storing the complete field collection back in the design.
Finally, commit the database design back to the server, as shown below.

The field collection retrieved using the Fields property is a snapshot of the design at that
point and cannot be used to automatically propagate changes onto the underlying design.
Any changes made must be stored to the design explicitly.

Java

TdbDatabasebDesign db = new TdbDatabaseDesign(session);

db.get(“sample”);

Collection<TdbFieldDesign> fields = db.fields(Q);

// change the “fields” collection however is required

// e.g. modify existing field properties, add new fields, etc.

db.putFields(fields);
db.putQ;

page 128

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net
Dim db as New TdbDatabaseDesign(session)

db.Get(“sample”)
Dim fields As IList = db.Fields

// change the “fields” collection how is required

// e.g. modify existing field properties, add new fields, etc.

db.Fields = fields
db.Put()

Note that there are many different get and put operations supported on the database
design class that are not described explicitly here. All aspects of the database or
thesaurus design can be interrogated and/or modified by the calling application. For more
detail, consult the reference documentation provided.

Deleting fields

One exception to the rule of making all changes locally before committing the design is
removing fields. To remove a field from an existing design, retrieve the design from the
server, locate the field required and delete it. Applications should not mix updates and
delete operations, as this will cause error conditions to become more likely.

page 129

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:’ vision
group

Java
TdbDatabaseDesign db = new TdbDatabaseDesign(session);

TdbFieldbesign field;

db.get(“SAMPLE”);
field = db.getField(“Field_1");
db.removeField(field);

// No need to commit the database design at this point, as the
// field has been removed on the server

VB.Net

Dim db as New TdbDatabaseDesign(session)

db.Get(“sample”)

Use the .Net indexer property to get the field design that

is to be deleted, and remove it from the design

db.RemoveField(db(“Field_1"))

No need to commit the database design at this point, as the

’ field has been removed on the server

At this point, the field has been removed from the database design on the server and the
TdbFieldDesign object on the client is detached from the database design, allowing it to be
re-inserted if required, perhaps into a different database design.

Copying an existing database or thesaurus

There two different kinds of copy operation supported for databases and thesauri. The
methods involved are Copy and DeepCopy, the difference being the level of copy that’s
performed. During a normal copy operation, the database design is copied to a new name,
but file definitions are reset to a default value, formats are not copied and database access
rights are not established.

During a deep copy operation, in contrast, all formats are copied, all database access
rights are copied, and the file definitions for the new copy are established using a
consistent naming scheme to the old database, i.e. located in the same physical location
but with a new name reflecting the name of the new database.

page 130

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbDatabaseDesign:Copy

Type: void
Throws: TdbException

Java
void copy(String newname, TdbControlObject newobj)
.Net

void Copy(String newname, TdbControlObject newobj)

Perform a shallow copy from the current database design to a new name. The
current object must have been created using a valid Control object reference, or
the Get method must have been invoked prior to attempting to copy the database
to a new name.

If the “newobj” parameter is not null on input, and references a valid, blank, Control
object reference, that reference will be updated by the Copy method to contain
information relevant to the new database copy upon completion.

Method: TdbDatabaseDesign:DeepCopy

Type: void
Throws: TdbException

Java
void deepCopy(String newname, TdbControlObject newobj)
.Net

void DeepCopy(String newname, TdbControlObject newobj)

Perform a deep copy from the current database design to a new name. The deep
copy retains database access rights, formats and file specification consistency with
the original. The current object must have been created using a valid Control object
reference, or the Get method must have been invoked prior to attempting to copy
the database to a new name.

If the “newobj” parameter is not null on input, and references a valid, blank, Control
object reference, that reference will be updated by the Copy method to contain
information relevant to the new database copy upon completion.

Deleting existing databases and thesauri
To delete a database or thesaurus, simply create an object of the appropriate type and
invoke the Delete method.

page 131

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,' vision
group

Method: TdbDatabaseDesign:Delete

Type: void
Throws: TdbException

Java

void delete(String name)
void delete()

.Net

void Delete(String name)
void Delete()

Delete the named database or thesaurus from the server. The second version of
the method is only usable if the object was constructed using a valid Control object

reference.

page 132

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:’ vision
group

11. Managing formats
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

To retrieve a list of formats associated with a given database, use the appropriate list
class, as shown in the following example.

Java
TdbDatabasebDesign db;

TdbOutputFormatList fmts;

db = new TdbDatabaseDesign(session);
db.get(“alice”);

fmts = new TdboutputFormatList(session, db);
VB.Net

Dim db As New TdbDatabaseDesign(session)

db.Get(“sample”)

Dim fmts As New TdboOutputFormatList(session, db)

This uses the database design’s associated Control object reference to seed the output
format list. The list retrieved can be iterated upon in the normal manner, as explained in
section 6.

Creating new formats
To create a new format, create a format object of the appropriate type, update its
properties and then use the Create method to commit the new format to the server.

Method: TdbFormat:Create

Type: void
Throws: TdbException

Java

void create(String name, String database)
void create(String name)

.Net

void Create(String name, String database)

void Create(String name)

The first version of this method creates a format that is associated with a database,
i.e. an entry form or an output format. The second version is used to create a
format that is not associated with a database, i.e. a search form.

The following example shows how to create a new output format.

page 133

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Java
TdboutputFormat format = new TdbOutputFormat(session);

Vector<String> design = new vector<String>Q);

design.add(“<”);

design.add(“ <box 1 at b(*)+1,1”);
design.add(“ <t=Hello world>");
design.add(* >7");

design.add(“>");

format.setContent(design);

format.setComment(“A new output format”);

format.create(“new_form”, “alice”);
VB.Net
Dim format As New TdboutputFormat(session)

Dim design As New ArrayList

design.Add(“<”)

design.Add(“ <box 1 at b(*)+1,1”)
design.Add(" <t=Hello world>")
design.Add(* >”

design.Add(*>")

format.Content = design

format.Comment “A new output format”

format.Create(“new_form”, “alice”);

Modifying existing formats
Format designs are manipulated using the following classes.

page 134

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Class: TdbEntryForm

Derived from: TdbFormat
Located 1in: forms

This class encapsulates the design and properties of a TRIPclassic entry form. The
class provides no special parsing or interpretation functions for dealing with the
form definition.

Class: TdboutputFormat

Derived from: TdbFormat
Located 1in: forms

This class encapsulates the design and properties of an output format. In addition
to the standard manipulation methods provided by the base TdbFormat class,
output formats can be exercised in a test mode using a method on this class. This
test mode creates a temporary format on the server, runs some output using the
temporary format and then deletes the format before sending the resulting data
back to the client. This can be extremely useful when testing modifications to
production reports without impacting the user community in any way.

Class: TdbSearchForm

Derived from: TdbFormat
Located 1in: forms

This class encapsulates the design and properties of a TRIPclassic search form.
The class provides no special parsing or interpretation functions for dealing with
the form definition.

Once the desired format is identified, its properties and design information can be retrieved
from the server, as shown in the following example.

Java

TdboutputFormat format = new TdbOutputFormat(session);
format.get(“full”, “alice”);

VB.Net

Dim format As New TdbOutputFormat(session)
format.Get(“full”, “alice”)

The definition of the format, i.e. its content, can be retrieved and/or modified using the
following collection property of the base TdbFormat class. This property does not provide
“live” access to the underlying design, but rather provides a snapshot that can be edited
and then committed to update the design.

page 135

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:, vision
group

Property: TdbFormat:Content

Type: List of String
Access: Read, Write

Java

collection<String> content()

void setContent(Collection<String>)
.Net

IList Content { get; set; }

Note that the collection returned by the .Net version can be freely cast to an
ArrayList for modification.

The following example shows this collection property being used.
Java
TdboutputFormat format;

Collection<String> design;

// Retrieve the format from the server
format = new TdbOutputFormat(session);

format.get(“full”, “alice”);

// Extract the format’s design

design = format.content();

// modify the format’s design

editDesign(design);

// update the format’s design and properties
format.setContent(design);

format.setComment(“Updated to reflect new requirements.”);

// commit the format to the server

format.put(Q;

page 136

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

VB.Net

Dim format As New TdboOutputFormat(session)

Retrieve the format from the server
format.Get(“full”, “alice”)

’ Extract the format’s design

Dim design As IList = format.Content

FiTll a text box with the design, or run a wizard,

or whatever

Store the modified design, commit the format to the server
format.Content = design

format.Put()

Testing output formats

As previously mentioned, output formats can be tested for validity prior to a final commit.
This involves the server in creating a temporary format and attempting to use that format.
Using this test operation allows a form designer to make modifications to a production
format without affecting their end users until all modifications are complete.

To test an output format, use the Test method:
Method: TdboutputFormat:Test

Type: void
Throws: TdbException

Java
void test(TdbKernelwindow window)
VB.Net

void Test(TdbKernelwindow window)

Test the current format, sending any output produced by the format under test to
the provided kernel window structure (see Section 4 for more detail on kernel
window buffers).

The following example shows how to use the Test method to validate changes to a format
before committing.

page 137

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Java

TdboutputFormat format new TdboutputFormat(session);

TdbKernelwindow window

new TdbKernelwindow(session);

// Retrieve the format from the server

format.get(“production_fmt”, “database”);

// change the format, getting and putting the
// Content collection

editFormat(format);

// test changes to the format’s content

format.test(window);

// show the results

System.out.println(window.toString());

// store the final result
if(C confirmwithuser())

format.put(Q);

page 138

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

VB.Net

Dim format As New TdbOutputFormat(session)
Dim window As New TdbKernelwindow(session)
H

Retrieve the format from the server

format.Get(“production_fmt”, “database”)

’ Edit the format

Test the changes made, show the results
format.Test(window)

myQuickviewer.Text = window.ToString()

>’ Commit the result

format.Put()

Deleting existing formats
To delete a format, create a format object of the appropriate type and then use the Delete
method to commit the deletion to the server.

Method: TdbFormat:Delete

Type: void
Throws: TdbException

Java

void delete(String format, String database)
void delete(String format)

void delete()

VB.Net

void Delete(String format, String database)
void Delete(String format)

void Delete()

The first version of the method supports deletion of formats that are associated
with a database, i.e. entry or output formats. The second version supports deletion
of formats that are not associated with a database, i.e. search forms. The third
version supports deletion of any kind of format provided the object in question was
constructed using a valid Control object reference for the format.

page 139

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

12. Managing database clusters
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Database clusters, which are predefined collections of databases and/or thesauri that are
always opened together, are managed using the TdbDatabaseClusterDesign class.

Class: TdbbDatabaseClusterDesign

Derived from: TdbSerializableObject
Located 1in: database

Creating a new cluster

To create a new cluster, simply create a TdbDatabaseClusterDesign object, set its
properties and membership list, then commit the new cluster to the server using the Put
method.

Collection: TdbbDatabaseClusterbDesign:Members

Type: TdbControlobjectList
Access: Read, write

Java

TdbControlobjectList members()

void putMembers(TdbControlobjectList members)
.Net

TdbControlobjectList Members { get; set; }

The membership list retrieved from this collection is a snapshot of the actual
membership list that must be stored back to the object in order to make any
difference to the cluster design.

Method: TdbDatabaseClusterDesign:Put

Type: void
Throws: TdbException

Java

void put(String name)
void put()

.Net

void Put(String name)

void Put()

Store a new or modified cluster definition to the server. The second version of the
method is only usable if the object was constructed using a valid Control object
reference for the database cluster in question, or if the design was been retrieved
from the server using the Get method documented below.

To add a member to the cluster, use the Add method.

page 140

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Method: TdbDatabaseClusterbDesign:Add

Type: void
Throws: N/A

Java

void add(Sstring cluster)

void add(TdbControlobject cluster)
.Net

void Add(String cluster)

void Add(TdbControlobject cluster)

The first version of the method is most useful for adding by name, whilst the second
version is intended for adding when picking from a list generated by a
TdbControlObjectList request.

The following example shows how to create a new database cluster.
Java

TdbDatabaseClusterbDesign cls = new
TdbDatabaseClusterbDesign(session)

// Create the membership list
cls.add(“alice”);

cls.add(“carrol1”);

// Create the new cluster
cls.put(“my_cluster”);
VB.Net

Dim cls As New TdbDatabaseClusterDesign(session)

’ Create the membership 1ist
cls.Add(“alice”)
cls.Add(“carrol1”)

’ Create the new cluster

cls.put(“my_cluster”)

Modifying existing clusters

To modify the definition of a cluster, simply create a TdbDatabaseClusterDesign object,
use the Get method to retrieve the existing definition, modify as required and store the new
definition using the Put method.

page 141

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:, vision
group

Method: TdbDatabaseClusterDesign:Get

Type: void
Throws: TdbException

Java
void get(String clusterName)
void get()
.Net
void Get(String clusterName)
void Get()
The second version of this method requires that the object was constructed with a

valid Control object reference for the cluster being addressed.

Deleting existing clusters
To delete an existing database cluster, simply create a TdbDatabaseClusterDesign object

and invoke the Delete method.
Method: TdbDatabaseClusterDesign:Delete

Type: void
Throws: TdbException

Java

void delete(String name)
void delete()

.Net

void Delete(String name)
void Delete()

Delete an existing cluster definition from the server. The second version of the
method is only usable if the object was constructed using a valid Control object
reference, or if the Get method was used to retrieve an existing design prior to
deletion.

page 142

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

13. Managing classification schemes
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Classification schemes are special purpose databases, managed almost entirely by the
system and whose content is entirely dictated by the subsystem used to create the
scheme. Classification subsystems are kernel modules that enable the use of a specific
classification algorithm.

Class: TdbClassificationScheme

Derived from: TdbMessageProvider
Located 1in: classification

Creating a new scheme

In order to create a new scheme, the application must know which subsystem it wishes to
use for that scheme. Different subsystems can offer widely different classification
capabilities, classification types and end user interaction capabilities, this it is very
important to choose an appropriate subsystem, or let the DBA choose such during the
creation process.

The collection of available subsystems is always available on the TdbSession object.
Collection: TdbSession:SubsystemNames

Type: List of String
Access: Read

Java
List<String> subsystemNames()
.Net

IList SubsystemNames { get; }
Retrieve a collection of classification subsystem names.

Having chosen the name of an appropriate subsystem, the calling application can
dereference that name to a unigue ID, which is required for all other interaction, again
using the TdbSession object.

Method: TdbSession:GetSubsystemID

Type: Integer
Throws: N/A

Java
int getSubsystemID(String subsystemName)
.Net

Int32 GetSubsystemID(String subsystemName)

Retrieve the kernel-specific unique ID for the named subsystem. Note that there is
no guarantee between installations, or even between sessions, that the ID
retrieved for a given name will be identical; applications should always use this
method to retrieve the unique ID for the named subsystem.

page 143

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Having chosen a subsystem with which to create the new scheme, simply create an object
of type TdbClassificationScheme and invoke the Create method. The new classification
scheme’s data files will be created in the directory referenced by the system logical name
TDBS_CLS, although this can be modified later, if required.

Method: TdbClassificationScheme:Create

Type: void
Throws: TdbException

Java
void create(String name, int subsystem, int max_items)
.Net

void Create(String name, Int32 subsystem, Int32 max_items)

Create a new scheme, using the defined subsystem and name. The “max_items”
parameter refers to the maximum number of training items per category that will be
processed by the subsystem.

The following example shows how to create a new scheme.
Java

TdbClassificationScheme cls = new TdbClassificationScheme(session)

// Pick the first available subsystem
String name = session.subsystemNames().get(0);

int id = session.getSubsystemId(name);

// Create a new scheme
cls.create(“my_new_scheme”, id, 100);

VB.Net

Dim cls As New TdbClassificationScheme(session)
* Pick the first available subsystem

Dim name as String = session.SubsystemNames(0)
Dim id As Integer = session.GetSubsystemId(name)
’ Create a new scheme

cls.Create(“my_new_scheme”, id, 100)

Modifying an existing scheme

To modify the attributes of an existing scheme, for example the location used to store its
files, simply create an object of type TdbClassificationScheme, retrieve the current design
using the Get method, modify whatever properties are required and then commit the
changes using the Put method.

page 144

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Method: TdbClassificationScheme:Get

Type: void
Throws: TdbException

Java

void get(String name)
void get()

.Net

void Get(String name)
void Get()

Retrieve a scheme’s properties from the server. In order to use the second version
of the method, the object must have been constructed with a valid Control object

reference for the scheme in question.

Note that when modifying file locations, the DBA is responsible for moving any existing
files relating to the scheme to the new location. Failure to do this will result in the scheme
potentially being unusable, as schemes may require certain data to be present even in an

“empty” scheme.

Method: TdbClassificationScheme:Put

Type: void
Throws: TdbException
Java
void put()
.Net
void Put()

Store any modifications to the scheme’s design to the server. This method can only
be called after a successful invocation of the Get method.

The following example shows how to modify an existing scheme.

page 145

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

Java

TdbClassificationScheme cls = new TdbClassificationScheme(session);
cls.get(“my_scheme™);

// Change properties as required
cls.setbDescription(“New comment”);

cls.setLocation(“MYSCHEMES”);

// Store the modified design to the server
cls.put(Q);
VB.Net

Dim cls As New TdbClassificationScheme(session)

cls.Get(“my_scheme”)

Change the properties as required
cls.Description = “New Comment”

cls.Location = “MYSCHEMES”

Store the modified design to the server

cls.pPut(Q

Note that as shown here, all files for a given scheme are located using a single logical
name. There is no explicit capability to set the file names for each file comprising a
scheme separately due to the fact that a scheme may consist of an arbitrary number of
files over and above the normal BAF/BIF/VIF.

Managing categories within a scheme

In order to classify information, a scheme needs to be trained in how to recognize the
different types, or categories, of information in which the user is interested. Each category
of information has certain properties, such as its name and an optional comment, and a
collection of data with which it has been trained. Adding new information to the training
collection helps the scheme to recognize information that belongs to the category, and to
distinguish that category from others in the same scheme.

page 146

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

In order to interact with categories, the developer uses the TdbCategory class.
Class: TdbCategory

Derived from: TdbMessageProvider
Located 1in: classification

Creating new categories

To create a new category, use the Add factory method on the appropriate scheme object.
This creates a new category, adds it to the scheme, links the local representation of the
category into the scheme, and returns the new category to the caller.

Method: TdbClassificationScheme:Add

Type: TdbCategory
Throws: TdbException

Java
TdbCategory add(String name, String comment)
.Net

TdbCategory Add(String name, String comment)

Create a new category within the scheme with the properties as defined. The
comment parameter is optional and can be set to null if there is no comment
required.

In contrast to the capabilities the server makes available, category names must be unique
in order to be manipulated with the TRIPjxp and TRIPnxp libraries. Underlying each
category is the actual unique ID assigned by the server, which can be retrieved using the
Id property.

Property: TdbCategory:Id

Type: Integer
Access: Read

Java
int getid(Q)
.Net

Int32 1d { get; }

Retrieve the unique ID assigned by the server to this category. This value has no
specific meaning, although schemes may equate the category ID to a record
number in the scheme database.

Retrieving existing categories

Following the successful invocation of the Get method on the scheme, the collection of
categories that have already been defined is retrieved from the scheme using the fact that
the scheme itself is a collection of categories, and can be enumerated appropriately.

page 147

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

Java

TdbClassificationScheme cls = new TdbClassificationScheme(session);

// Retrieve the scheme from the server

cls.get(“my_scheme”);

// Iterate over the categories embodied by the scheme
for(TdbCategory category : cls)
{

ks

VB.Net

Dim cls As New TdbClassificationScheme(session)
’ Retrieve the scheme from the server
cls.Get(“my_scheme”)

’ Iterate over the categories embodied by the scheme

For Each category As TdbCategory In cls

Next

Individual categories may be retrieved from a scheme using the GetCategory method,
provided that the scheme’s information has already been retrieved from the server using
the Get method.

Method: TdbClassificationScheme:GetCategory

Type: TdbCategory
Throws: TdbException

Java
TdbCategory getCategory(String name)
TdbCategory getCategory(int uniqueId)
.Net
TdbCategory GetCategory(String name)

TdbCategory GetCategory(int uniqueId)

Retrieve the category instance with either the name or the unique ID specified.
Note that .Net also provides a class indexer mirroring each of these methods. If the
named or identified category is not found, the methods return null.

page 148

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Training a category
Once the category is created or retrieved, applications can train the category with text that
typifies the information represented by that category.

To train a category, simply invoke the Train method on the appropriate TdbCategory
instance.

Method: TdbCategory:Train

Type: void)
Throws: TdbException
Java
void train(String data, String filename, TdbTrainingInfo
info)
.Net

void Train(String data, String filename, TdbTrainingInfo
info)

Add training data to the category, updating “info” if not null with the result.

When providing training data, the calling application can provide a filename from which the
data was read, simply for labeling purposes. If no filename (or URL, or any kind of location
reference) is involved, the calling application should provide some hopefully meaningful
label that will make sense to the user in charge of the scheme.

If the TdbTraininglInfo instance is non-null on input, the method will update the instance
with information created by the training process.

page 149

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Java

TdbClassificationScheme cls = new TdbClassificationScheme(session);
cls.get(“my_scheme™);

// Create a new category

TdbCategory newcat = cls.add(“new category”, null);

// Acquire the data with which we’re going to train
String file = “/usr/local/training/datal.txt”;

String data = getDataFromFile(file);

// Create an info instance

TdbTrainingInfo info = new TdbTrainingInfo();

// Train the category

newcat.train(data, file, info);

// output training information

System.out.println(“Category: + newcat.getName() +

trained with “ + info.getName() +

generated: + info.getComment());

page 150

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

VB.Net

Dim cls As New TdbClassificationScheme(session)

cls.Get(“my_scheme”)
’ Create a new category

Dim newcat As TdbCategory = cls.Add(“new category”, Nothing)
’ Acquire the data with which we’re going to train
Dim file As String = “C:\training\datal.txt”

Dim data As String = getDataFromFile(file)

’ Create an info instance

Dim info As New TdbTrainingInfo()
’ Train the category
newcat.Train(data, file, info)
> Ooutput training information

Dim msg As String = “Category: “ & newcat.Name & _

trained with “ & info.Name & _

generated: “ & info.Comment

MsgBox (msg)

Viewing training material for a category

The collection of labels and comments for training information already submitted for a
category is available by enumerating the category itself, which yields a collection of
TdbTrainingInfo instances, one for each item of training data submitted to that category.

Class: TdbTrainingInfo

Derived from: Object)
Located 1in: classification

Objects of this class contain the name and optional description of an item of
training data.

The following example shows how to enumerate a category to view the training
information.

page 151

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4]i:]’ vision
group

Java

TdbClassificationScheme cls = new TdbClassificationScheme(session);

// Retrieve the classification scheme from the server

cls.get(“my_scheme™);

// Enumerate the categories in the scheme

for(TdbCategory category : cls)

{
// Enumerate the training info in each category
for(TdbTrainingInfo info : category)
{
}
}
VB.Net

Dim cls As New TdbClassificationScheme(cls)

Retrieve the classification scheme from the server

cls.Get(“my_scheme”)

Enumerate the categories in the scheme

For Each category As TdbCategory In cls

Enumerate the training info in each category

For Each info As TdbTrainingInfo In category

Next

Next

There are only two properties currently recorded as training information: the label, or
filename, provided when submitting the training data, and a comment or description
provided by the classification algorithm.

Removing training for a category
To completely remove all training material for a category, without deleting the category
itself, invoke the Untrain method on the TdbCategory object.

page 152

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Method: untrain

Type: void
Throws: TdbException

Java
void untrain()
.Net

void untrain(Q)

Deleting an existing category
In order to delete a category, invoke the Remove method on the scheme to which the

category is attached.
Method: TdbClassificationScheme:Remove

Type: void
Throws: TdbException

Java

TdbCategory remove(String name)
void remove(TdbCategory category)
.Net

TdbCategory Remove(String name)

void Remove(TdbCategory category)

This method removes the category from its associated scheme on both client and
server. The first version returns the removed category simply for reference.

Testing classification

Once the categories within the scheme have been trained, it is very useful to be able to
test the classification algorithm before attempting to classify databases. To test a scheme
with some text data, simply invoke the Classify method on the TdbClassificationScheme

object.
Method: TdbClassificationScheme:Classify

Type: void
Throws: TdbException

Java
void classify(String data, List<TdbCategory> cats)
.Net

void Classify(string data, IList cats)

Test the classification scheme with the provided data. On completion, the list of
categories will be populated with the categories to which the data was assigned by
the algorithm.

page 153

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Using an existing TRIP database to create and train categories

As an alternative to creating training data in text files or any other environment outside of
TRIP, the classification scheme can instead be trained directly from an existing TRIP
database. For this to work, the database in question must have a field in its design that
holds the name of the category to which the text in the record is assigned.

Method: TdbClassificationScheme:Infer

Type: void
Throws: TdbException

Java
void infer(string database, String field, int max)
.Net

void Infer(string database, String field, int max)

Using this method, all the records in the named database are read, the named field’'s
contents are extracted and treated as the category name to create / train, up to a
maximum number of ‘max’ records per category. All of the text found in fields flagged for
inclusion in non-Boolean indexing is used as training material for that category, with the
label being generated as the database name and record number.

Deleting an existing classification scheme

In order to delete an existing classification scheme, simply invoke the Delete method on
the TdbClassificationScheme object. Note that in contrast to normal TRIP databases, the
scheme does not have to be empty in order for this operation to succeed, as the
classification subsystem is responsible for removing all data from the scheme before the
scheme is actually deleted.

Method: TdbClassificationScheme:Delete

Type: void
Throws: TdbException

Java
void delete()
.Net

void Delete()

Delete an existing classification scheme. Note that the object must have either
been created using a valid Control object reference for the scheme in question, or
the scheme must have been retrieved from the server using the Get method in
order for this method to succeed.

page 154

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

13. Managing access rights
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

All management of access rights, whether to a database, thesaurus or cluster, and
whether for a user or group, is accomplished using the TdbDatabaseAccess class.

Class: TdbDatabaseAccess

Derived from: TdbMessageProvider
Located in: database

The only operations valid to perform using this class are to retrieve a user or group’s
access to a database, thesaurus or cluster, or to update their access. The former
operation uses the Get method, whilst the latter operation uses the Put method.

Method: TdbDatabaseAccess:Get

Type: void
Throws: TdbException

Java

void get(String user_or_group, String database)
void get(String user_or_group)

.Net

void Get(String user_or_group, String database)

void Get(String user_or_group)

Retrieve the access rights for the named user or group to the named database,
thesaurus or cluster. The second form of the method is only usable if the object
was constructed using a valid Control object reference for the database in
question.

Method: TdbDatabaseAccess:Put

Type: void
Throws: TdbException

Java

void put(String user_or_group, String database)
void put()

.Net

void Put(String user_or_group, String database)
void Put()

Commit new access rights for the named user or group to the named database,
thesaurus or cluster. The second form of the method is only usable if the Get
method has preceded a call to this method, establishing the context of the
operation.

page 155

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Working with access rights

Assuming the application has called the Get method to retrieve the current access rights of
a user to a database, the application can now interrogate and modify those access rights
as required. Obviously this only works if the calling user is the FM of the database in
question.

Each of the types of access has an associated property that supports retrieval and
modification of the underlying database access privilege, as documented below. Note that
whilst the documentation here regards properties for read access, the same properties
exist for write access.

Property: TdbDatabaseAccess:ReadAccess

Type: TdbAccessRights
Access: Read, Write

Java

TdbAccessRights getReadAccess()

void setReadAccess(TdbAccessRights rights)
.Net

TdbAccessRights ReadAccess { get; set; }

This property sets the overall read access mode for the user/group. The available
types of access, as taken from the TdbAccessRights enumeration, are: None,
Selected and All. If the mode chosen is Selected, then the ReadFields property
must be used to determine the fields within the database to which the user has
access.

Property: TdbDatabaseAccess:ReadFields

Type: List of Integer
Access: Read, Write

Java

List<Integer> readFields()

void setReadFields(ColTlection<Integer> fields)
.Net

IList ReadFields { get; set; }

Retrieve and modify the set of fields from the database or thesaurus design to
which the user or group has read access. The entries within the list returned or
provided correspond to field numbers within the database or thesaurus design. Not
valid for use with a cluster.

page 156

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Property: TdbDatabaseAccess:ReadScope

Type: String
Access: Read, Write

Java

String getReadScope()

void setReadScope(String scope)
.Net

String ReadScope { get; set; }

Retrieve and modify the content-specific restriction that is to be applied to the
user’s available record set for the database, thesaurus or cluster.

The following example shows how to work with access rights.
Java
// Retrieve the database design for which we’re going
// to be modifying access rights
TdbDatabaseDesign db = new TdbDatabaseDesign(session)

db.get(“alice”);

// Establish an access rights container associated with the
database

TdbDatabaseAccess acc = new TdbbDatabaseAccess(session, db);

acc.get(“my_user”);

// Grant the user unrestricted read access

acc.setReadAccess(TdbAccessRights.AT1);

// Grant the user selected write access to Chapter and Speaker
acc.setWriteAccess(TdbAccessRights.Selected);
ArrayList<Integer> fields = new ArrayList<Integer>;
fields.add(db.getFieldByName(“chapter”).getNumber());
fields.add(db.getFieldByName(“speaker”) .getNumber());

acc.setwriteFields(fields);

// Store the new rights back to the server

acc.put();

page 157

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

VB.Net

’ Retrieve the database design for which we’re going
’ to be modifying access rights

Dim db As New TdbDatabaseDesign(session)

db.Get(“alice”)

’ Establish an access rights container associated with the database
Dim acc As New TdbDatabaseAccess(session, db)

acc.Get(“my_user”)

’ Grant the user unrestricted read access

acc.ReadAccess = TdbAccessRights.All

’ Grant the user selected write access to Chapter and Speaker
acc.writeAccess = TdbAccessRights.Selected

Dim fields As New ArrayList()
fields.Add(db[“chapter”] .Number)
fields.Add(db[“speaker”] .Number)

acc.wWriteFields = fields

’ Store the new rights back to the server

acc.Put()

page 158

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

15. Managing users
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Users are managed using the following class.
Class: Tdbuser

Derived from: TdbSerializableObject
Located 1in: users

Creating new users
To create new users, simply create a TdbUser object and then invoke the following
method:

Method: TdbuUser:Create

Type: void
Throws: TdbException

Java
void create(String username, String password)
.Net

void Create(String username, String password)

Create the named user with the defined password. This password is encrypted for
transmission to the server. If the attempt succeeds, a new user will be created,
owned by the calling user. The new user will not have any management privilege,
will not have any specific database access rights, and will be a member of the
PUBLIC user group.

Prior to calling this method, the application may set any number of properties related to the
user’s profile, for example their desired date format, their real name, etc. All such
properties will be transmitted to the server along with the request to create the new user.

If the calling user is the SYSTEM user, create user and/or file managers by setting the
appropriate privilege properties before creating the user.

Property: TdbuUser:IsuM

Type: Boolean
Access: Read, Write

Java

boolean getIsum()

void setIsuM(booTlean um)
.Net

Boolean IsuUM { get; set; }

Define or retrieve the user’'s UM privilege level. Setting this value only has effect if
the calling user is SYSTEM.

page 159

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Property: TdbUser:IsFM

Type: Boolean
Access: Read, Write

Java

boolean getIsFM()

void setIsFM(Boolean fm)
.Net

Boolean IsFM { get; set; }

Define or retrieve the user’s FM privilege level. Setting this value only has effect if
the calling user is SYSTEM.

The following example shows a new unprivileged user being created.
Java

TdbUser user = new TdbUser(session);

user.setRealName(“My New User”);
user.setLoginProcedure(“Public.Startup”);
user.create(“newuser”, “newpw”);

VB.Net

Dim user As New TdbUser(session)

user.RealName = “My New User”
user.LoginProcedure = “Public.Startup”
user.Create(“newuser”, “newpw”)

The following example assumes that the calling user is SYSTEM and attempts to create a
new file manager. Note that if the calling user is not SYSTEM, the user will be created but
will not be assigned any management privilege. If the calling user isn’'t a user manager, of
course, the new user will not be created at all.

page 160

TRIPNXP & TRIPIXP PROGRAMMER’S GUIDE V8.4]E:’

Java

TdbUser user = new TdbUser(session);

user.setRealName(“My New DBA’);
user.setIsFM(true);
user.create(“new_fm”, “newpw”);
VB.Net

Dim user As New TdbUser(session)

user.RealName = “My New DBA”
user.IsFM = True

user.Create(“new_fm”, “newpw”)

Modifying the properties of an existing user

In order to modify an existing user, simply retrieve the user’s details from the server,
modify locally and then store the modifications. To retrieve an existing user’s properties,
use the following method.

Method: TdbUser:Get

Type: void
Throws: TdbException

Java
void get(String username)
.Net

void Get(String username)

Retrieve the user’s details from the server. This call will fail if the user is not owned
by the calling user.

After making whatever changes are appropriate, commit the user back to the server using
the Put method.

Method: TdbuUser:Put

Type: void
Throws: TdbException
Java
void put()
.Net
void Put()

Store a previously retrieved user back to the server.

The following example shows modifying an existing user:

page 161

digital
vision
group

TRIPNXP & TRIPIXP PROGRAMMER’S GUIDE V8.4 :i:,’

Java

TdbUser user = new TdbUser(session);

// Retrieve the user from the server

user.get(“my_user”);

// Modify the user’s properties locally
user.setRealName(“My User”);

user.setLoginProcedure(“Public.startup”);

// Store the modifications back to the server
user.put(Q);

VB.Net

Dim user As New TdbUser(session)

’ Retrieve the user from the server
user.Get(“my_user”)

> Modify the user’s properties locally
user.RealName = “My User”
user.LoginProcedure = “Public.startup”
’ Store the modifications back to the server

user.Put()

As with creating new users, if the calling user is SYSTEM, the user being modified can be
granted privileges by setting the appropriate property locally before committing the user
object to the server.

Deleting existing users
To remove a user from the system, simply create a TdbUser object and invoke the Delete
method.

page 162

digital
vision
group

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbuUser:Delete

Type: void
Throws: TdbException

Java

void delete(String username)
void delete()

.Net

void Delete(String username)
void Delete()

Delete the named user from the server. This method is only usable by the user’s
manager. The second version of the method is only usable if the object was
constructed using a valid Control object reference for the user, or if the user has
already been retrieved from the server using the Get method.

Changing ownership

Users are normally owned (managed) by the user manager who creates them. However,

over time that user may no longer be valid due to organizational changes, or the structure
of TRIP management may change, requiring users to be moved between user managers.

To move one or more users between managers, use the ChangeMgr method.
Method: TdbuUser:Changemgr

Type: void
Throws: TdbException

Java
void changeMgr(String newMgr, String oldMmgr, String what)
void changeMgr(String newMgr, String oldmgr)
void changemgr(String newMgr)
.Net
void ChangeMgr(String newMgr, String oldMmgr, String what)
void ChangeMmgr(String newMgr, String oldmgr)
void Changemgr(String newMgr)
Move one or more user objects between managers.

The various versions of this method reflect different operations that can be performed via
the same underlying protocol.

¢ To move a single named user between two managers, use the first version of the
method, specifying all parameters of the operation (null as “oldMgr” means the
calling user).

e To move all user and group objects owned by one manager to another, use either
the second or third versions of the method without having first retrieved a user from
the server (null as “oldMgr” means the calling user).

page 163

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iE:’ vision
group

e To move the current object, i.e. the user object after having retrieved the user’'s
properties from the server, use either of the second or third versions of the method.

Note that in order to successfully specify an “oldMgr” that isn’t the calling user, the calling
user must be the SYSTEM user.

The following example shows various types of management change in action.
Java
// First, transfer a single user from me to another UM
TdbUser userl = new TdbUser(session)

userl.changemgr(“someotherumM”, null, “theUserToMove”);

// Again, transfer a specific user to another UM
TdbUser user2 = new TdbuUser(session)
user2.get(“someUser™);

user?2.changemgr(“someotherum”);

// Finally transfer all remaining users from me to another UM
TdbUser user3 = new TdbUser(session)

user3.changemgr(“someotherum) ;

VB.Net
 First, transfer a single user from me to another UM
Dim user As New TdbUser(session)
user.Changemgr(“someotheruM”, nothing, “theuserToMove™)
’ Again, transfer a specific user to another UM
Dim user2 As New TdbUser(session)
user?2.Get(“someuser”)
user?2.Changemgr(“someotherum”)

’ Finally transfer all remaining users from me to another UM

Dim user3 As New TdbuUser(session)

user3.cChangemMgr(“someotherum”)

page 164

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

16. Managing user groups
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

User groups are managed using the following class.
Class: TdbGroup

Derived from: TdbSerializableObject
Located 1in: users

Creating new groups
To create new groups, simply create a TdbGroup object and then invoke the Create
method.

Method: TdbGroup:Create

Type: void
Throws: TdbException

Java
void create(String groupname)
.Net

void Create(String groupname)

Create a new user group with the provided name. This operation will fail if the
calling user is not user manager, or if the group already exists.

Modifying group membership
To add or remove users to or from a user group, use the Add and Remove methods.

Method: TdbGroup:Add

Type: void
Throws: TdbException

Java

void add(String username, String groupname)
void add(String username)

.Net

void Add(String username, String groupname)

void Add(String username)

The second version of this method is only usable if the TdbGroup object was
constructed using the group’s name or a valid Control object reference for the
group in question.

page 165

TRIPNXP & TRIPIXP PROGRAMMER’S GUIDE V8.4 :i:’

Method: TdbGroup:Remove

Type: void
Throws: TdbException

Java

void remove(String username, String groupname)
void remove(String username)

.Net

void Remove(String username, String groupname)

void Remove(String username)

The second version of this method is only usable if the TdbGroup object was
constructed using the group’s name or a valid Control object reference for the

group in question.

Deleting existing groups
To delete a group from the system, use the Delete method.

Method: TdbGroup:Delete

Type: void
Throws: TdbException

Java

void delete(String groupname)
void delete()

.Net

void Delete(String groupname)

void Delete()

Delete the named user group from the system. In order to use the second version
of the method, the object must have been constructed using the group’s name or a
valid Control object reference for the group.

Changing ownership

Groups are normally owned (managed) by the user manager who creates them. However,
over time that user may no longer be valid due to organizational changes, or the structure
of TRIP management may change, requiring users to be moved between user managers.

To move one or more groups between managers, use the ChangeMgr method.

page 166

digital
vision
group

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Method: TdbGroup:Changemgr

Type: void
Throws: TdbException

Java
void changemgr(String newMgr, String oldMmgr, String what)
void changemMgr(String newMgr, String oldmgr)
void changeMgr(String newMmgr)
.Net
void ChangeMgr(String newMgr, String oldMmgr, String what)
void ChangeMgr(String newMgr, String oldmgr)
void Changemgr(String newMmgr)
Move one or more user objects between managers.

The various versions of this method reflect different operations that can be performed via
the same underlying protocol.

¢ To move a single named group between two managers, use the first version of the
method, specifying all parameters of the operation (null as “oldMgr” means the
calling user).

e To move all user and group objects owned by one manager to another, use either
the second or third versions of the method without having constructed the group
object using its name.

e To move the current object, i.e. the group object having been constructed using the
group’s name, use either of the second or third versions of the method.

Note that in order to successfully specify an “oldMgr” that isn’t the calling user, the calling
user must be the SYSTEM user.

The following example shows various types of management change in action.

page 167

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,) vision
group

Java
// First, transfer a single user from me to another UM
TdbGroup groupl = new TdbGroup(session)

groupl.changemgr (“someotherumM”, null, “theGroupToMove™);

// Again transfer a specific group to another UM
TdbGroup group2 = new TdbGroup(session, “someGroup”);

group?2.changeMgr (“someOtherum”) ;

// Finally transfer all users and groups from me to another UM
TdbGroup group3 = new TdbGroup(session)

group3.changeMgr (“someOtherum”) ;

VB.Net
’ First, transfer a single group from me to another uMm
Dim group As New TdbGroup(session)

group.ChangeMgr (“someotherum”, nothing, “theGroupToMove”)
’ Again transfer a specific group to another UM
Dim group2 As New TdbGroup(session, “someGroup”)
group2.ChangeMgr (“someOtherum™)

> Finally transfer all users and groups from me to another UM

Dim group3 As New TdbGroup(session)

group3.cChangeMgr (“someOtherum”)

page 168

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

17. Managing stored procedures
Note that this chapter relates to physical sessions only. Any attempt to use these classes
with a TRIPgrid session will result in an UNUSABLE_SESSION exception being thrown.

Stored procedures are managed using the TdbProcedure class.
Class: TdbProcedure

Derived from: TdbSerializableObject
Located 1in: users

This class provides all management applications for stored procedures, but does not
support execution of such procedures, for which the TdbCclCommand class is intended.

Creating new procedures

To create a new stored procedure, simply create an instance of TdbProcedure, set its
properties as required, and use the Create method to commit the new procedure to the
server.

Method: TdbProcedure:Create

Type: void
Throws: TdbException

Java
void create(String owner, String name, String comment)
.Net

void Create(String owner, String name, String comment)

Create a new stored procedure. If the owner parameter is null or of zero length, the
owner is set to the calling user, otherwise the user or group named will be defined
as the owner of the new procedure.

The content of the procedure is retrieved and/or established using the Content collection.
Collection: TdbProcedure:cContent

Type: List of string
Access: Read, Write

Java

List<String> content()

void setContent(Collection<String>)
.Net

IList Content { get; set; }

The content of the procedure is reflected as a snapshot, not a live collection. That
is, applications should retrieve the content, do with it as they may, and then update
the content explicitly.

Note that the TdbProcedure class is also natively enumerable and that the iterator
generated using that access means is also backed by the Content collection, i.e. a
snapshot and not the live content.

page 169

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

The following example shows how to create a new procedure.
Java

TdbProcedure proc = new TdbProcedure(session)

// Set the content of the new procedure
Vector<String> content = new Vector<String>;
content.add(“base alice”);

content.add(“find mad hatter”);

proc.setContent(content);

// Commit the procedure to the server

proc.create(null, “my_new_proc”, “some comment”);

VB.Net

Dim proc As New TdbProcedure(session)
’ Set the content of the new procedure
Dim content As New ArrayList()
content.Add(“base alice”)
content.Add(“find mad hatter”)
proc.Content = content

Commit the new procedure to the server

proc.Create(Nothing, “my_new_proc”, “some comment”)

Create procedure based on a search
The SaveSearch method of the TdbProcedure class, introduced with TRIP 7.2, provides a
means by which a procedure can be created based on a search more conveniently.

page 170

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Method: TdbProcedure:SaveSearch

Type: void
Throws: TdbException

Java

void saveSearch(int searchSetNumber, String owner,
String name, String comment)

.Net

void SaveSearch(int searchSetNumber, String owner,
String name, String comment)

Create a new stored procedure based on the CCL command that generated the
specified search set. Any other CCL commands that the main CCL command
depends upon will be included in the procedure. If the owner parameter is null or of
zero length, the owner is set to the calling user, otherwise the user or group named
will be defined as the owner of the new procedure.

NOTE: This procedure must be executed using the FIND SAVE command.

Modifying existing procedures
In order to modify an existing procedure, simply retrieve the procedure from the server
using the Get method, modify it locally and then store the resulting updated procedure to

the server using the Put method.
Method: TdbProcedure:Get

Type: void
Throws: TdbException

Java

void get(String owner, String name)
void get()

.Net

void Get(String owner, String name)
void Get()

Retrieve the named procedure from the server. In the first version of the method,
set the owner parameter to null for the calling user. The second version of the
method is only available if the TdbProcedure object was constructed using a valid
Control object reference for the procedure in question.

page 171

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,' vision
group

Method: TdbProcedure:Put

Type: void
Throws: TdbException
Java
void put()
.Net
void Put()

Store an updated procedure back to the server. Note that if the procedure was not
first retrieved using the Get method, the Put method will attempt to create a new
procedure potentially causing an exception to be thrown by the server if the
procedure already exists.

The following example shows how to retrieve, modify and then store an updated group
procedure.

page 172

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Java

TdbProcedure proc = new TdbProcedure(session);

// Retrieve the procedure from the server

proc.get(“group_1”, “grp_proc”);

// Show the procedure to the end user
for(string 1line : proc)

System.out.println(line);

// Modify the procedure in some way

proc.putComment(“Some new comment”);

// Now store the updated procedure back to the server
proc.put();
VB.Net

Dim proc As New TdbProcedure(session)

Retrieve the procedure from the server
proc.Get(“group_1”, “grp_proc”);
> Show the procedure to the end user
For Each Tine As String In proc

myEditBox.Text += line + Environment.NewLine
Next
> Modify the procedure in some way
proc.Comment = “Some new comment”
’ Now store the updated procedure back to the server

proc.Put()

page 173

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

Deleting existing procedures
To delete a procedure, simply create a TdbProcedure object and invoke the Delete
method.

Method: TdbProcedure:Delete

Type: void
Throws: TdbException

Java

void delete(String owner, String name)
void delete()

.Net

void Delete(String owner, String name)

void Delete()

Delete the named procedure from the server. Applications can pass a null
reference for the owner to signify the calling user. Note that the second version of
the method is only usable if the TdbProcedure object was constructed using a valid
Control object reference for the procedure in question.

page 174

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

18. Connection pooling

In certain application contexts, it can be very valuable in terms of performance to reuse a
single session many times rather than starting a new session for each request. This is
particularly important when the startup cost for a session, for example in the face of a
complex startup procedure, is very high compared to the amount of time that the session is
expected to live.

For applications that require a large number of users to access TRIP via a common login
(i.e. the same username for all, or the majority of, sessions), a connection pool can provide
a convenient means for managing this startup time issue.

For the sake of illustration, assume that a particular application has a security environment
such that the manager of the data authenticates using an account called MANAGER,
whilst all read-only users of that application access data using an account called USER. In
this case, all of those query users can be managed via a single connection pool, whilst the
manager would access the system via a normal session login, as described in chapter 3.

A connection pool simply manages an extensible set of sessions (of either TRIPnet or
Web types only). Sessions in a connection pool are acquired and released to the pool,
rather than being created and logged out, as is the case with a normal session.

Connection pools are created using a specialization of the connection pool class:
Class: TdbConnectionPool

Derived from: object
Located 1in: pool

Note that this is an abstract class and therefore cannot be instantiated directly.
Instead create an instance of one of the following specialized types.

Class: TdbTripNetConnectionPool

Derived from: TdbConnectionPool
Located 1in: pool

This class creates and manages a pool of TRIPnet sessions.
Class: TdbwebConnectionPool

Derived from: TdbConnectionPool
Located 1in: pool

This class creates and manages a pool of XML/HTTP web sessions.

Once the connection pool is created, sessions are acquired from the pool using the
Acquire method. When the application is done with the session, the Logout method can be
used on the session to return that session to the pool.

page 175

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

constructor: TdbTripNetConnectionPool
Java
TdbTripNetConnectionPool(String server, int port,
String username, String password,
TdbLanguage lang, int stepping)
.Net
TdbTripNetConnectionPool(String server, int port,

String username, String password,
TdbLanguage lang, int stepping)

Create a connection pool with sessions that uses a TRIPnet network connection to
the server.

The final constructor argument is a “stepping” value that details the number of
connections that will be created at any one time. Note that sessions are not
authenticated, and hence do not take the cost of the login process, whatever that
might be for the application in question, until the session is acquired for the first
time from the connection pool.

Method: TdbConnectionPool:Acquire

Type: TdbPooledSession
Throws: TdbException

Java
TdbPooledSession acquire();
.Net

TdbPooledSession Acquire();

Returns a session from the connection pool. If the connection pool is full, this
method will throw a TdbException exception with the Code property (in TRIPjxp,
use getCode() to get the value) set to UNUSABLE_SESSION. If this is the case,
the application should wait a bit an try calling acquire() again. For any other Code
value, the application should fail the acquire attempt.

Method: TdbConnectionPool:Close

Type: TdbPooledSession
Throws: n/a

Java
void close();
.Net

void Close();

page 176

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Shuts down the connection pool.

Even though a connection pool will eventually be destroyed anyway by the garbage
collector, the pool is associated with a number of resources on both the client
machine and the server machine. It is therefore strongly recommended that your
code explicitly calls the Close() method when it is done with the pool.

The following example shows how to create a connection pool, set up purging of idle
sessions, how to acquire sessions from the pool, and how to return sessions to the pool for
reuse.

Java

// Create a connection pool of TRIPnet sessions - all sessions
// that are acquired from this pool will be authenticated as
// the system manager

TdbConnectionPool pool;

pool = new TdbTripNetConnectionPool(“myserver”, 23457

“system”, “z”,

TdbLanguage.English, 5);

// Set up how idle sessions are to be handled. Allow

// idle sessions to time out after 55 seconds, the purge

// routine is run every 60 seconds, and 5 idle sessions may
// remain in the pool.

pool.setIdleTimeout(55);

pool.setPurgeInterval(60);

pool.setMinIdle(5);

// Acquire a session from the pool - if necessary this will

// perform a full login, otherwise the session will simply be
// initialized for reuse if it has already been authenticated.
// NOTE: This acquire-Toop omits things like sleep (optional)
// and a timeout for when the app should stop trying.
TdbSession session = null;

do

{

page 177

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 :i:,’ vision
group

try
{
session = pool.acquire();
}
catch (TdbException tdbx)
{
if (tdbx.getCode()!=TdbException.UNUSABLE_SESSION)
{
// Error other than 'no sessions available'.
// Abort the acquire attempt!
throw new Exception("Acquire failed.",tdbx);
}
}
}
while (null == session);

// The session can now be used exactly like a normal
// TRIPnet session

TdbDatabaseList dblist = new TdbDatabaseList(session);
// ... etc.

// Now return the session to the connection pool

session.logout();

// At application shutdown, or when the pool 1is no Tonger
// needed, you MUST close the pool!

pool.close();

VB.Net
Dim pool As TdbConnectionPool = NOthing
Dim dblist as TdbbatabaseList = Nothing

Dim session As TdbSession = Nothing

page 178

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Create a connection pool of TRIPnet sessions - all sessions

that are acquired from this pool will be authenticated as
‘ the system manager
pool = New TdbTripNetConnectionPool(“myserver”, 23457,

“system”, “z”,

TdbLanguage.English, 5)

Set up how idle sessions are to be handled. Allow

idle sessions to time out after 55 seconds, the purge
routine is run every 60 seconds, and 5 idle sessions may
remain in the pool.

pool.IdleTimeout = 55

pool.PurgeInterval = 60

pool.MinIdle = 5

Acquire a session from the pool - if necessary this will
perform a full login, otherwise the session will simply be
initialized for reuse if it has already been authenticated
NOTE: This acquire-Toop omits things like sleep (optional)
and a timeout for when the app should stop trying.
while (session Is Nothing)
Try
session = pool.Acquire()
Catch ex As TdbException
If ex.Code <> TdbException.UNUSABLE_SESSION Then
' other error than "no session is available now".
' Abort the attempt.
Throw New Exception("Acquire failed.", ex)
End If
End Try
End while

The session can now be used exactly like a normal

TRIPnet session

page 179

vision

digital
TRIPNXP & TRIPJXP PROGRAMMER'’S GUIDE V8.4 D
group

db1list = New TdbDatabaseList(session)

Now return the session to the connection pool

session.Logout()

At application shutdown, or when the pool is no longer

needed, you MUST close the pool!

pool.Close()

page 180

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

19. Interaction with TRIPcof

TRIPcof implement functionality for extraction of text and properties from the most popular
document file formats (office documents, PDF, etc), and conversion of said formats to
HTML, optionally with search hit highlighting.

This functionality area was previously handled by the add-on products TRIPview and
TRIPview-C. These are no longer available, although the APIs described in this chapter
also applies to them.

APl overview

Property TdbStringField:ExtractionTarget
Use the ExtractionTarget property of the field object to define the name of the TExt field
that will receive any textual content found.

NOTE: Extracting text this way is NOT supported with TRIPcof. This method is only
provided for backward compatibility purposes.

This property is DEPRECATED from version 3.0 of TRIPnxp and TRIPjxp.
Property: TdbStringField:ExtractionTarget

Type: String
Access: Read, Write

Java

String getExtractionTarget();

void setExtractionTarget(String name);
.Net

String ExtractionTarget { get; set; }

If this property is set before the record is committed, the commit process will
include a call to TRIPview (assuming the server is suitably licensed for that
operation). The original binary content will be stored in the related STring field of
the record, and any text extracted from the STring by TRIPview will be stored in the
TEXxt field named by this property.

page 181

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property TdbTextField:TextExtractionInfo

For text extraction operations with version 1.2 or later of TRIPnxp or TRIPjxp, use of the
TextExtractionInfo property on the TdbTextField class is recommended instead of using
the ExtractionTarget property on the TdbStringField.

Property: TdbTextField:TextExtractionInfo

Type: TdbTextExtractionInfo
Access: Read

Java
TdbTextExtractionInfo getTextExtractionInfo();
NET

TdbTextExtractionInfo TextExtractionInfo { get; }

This property returns a TdbTextExtractionInfo object that is used to control and enable text
extraction operations.

Class TdbTextExtractioninfo
This class is a container for text extraction directives.

Class: TdbTextExtractionInfo

Derived from: Object
Located 1in: data

This class has no public constructor. Instances can be accessed via the
TdbTextField. TextExtractionInfo property described above.

Property: TdbTextExtractionInfo:BinaryCopyField

Type: String
Access: Read, Write

Java

String getBinaryCopyField(Q);

void setBinaryCopYField(String fieldName);
-NET

String BinaryCopyField { get; set; }

Gets and sets the name of the string field that receives a copy of the document
data, and/or contains the document data to extract text from.

If a string field is specified in this property and neither the FileName nor the Stream
property is specified, text extraction will be performed from the data already stored
in the specified string field. Note that this is only supported for updates of existing
records.

page 182

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbTextExtractionInfo:ClientSide

Type: bool)
Access: Read, Write

Java

boolean getClientSide();

void setClientSide(boolean enable);
.NET

bool ClientSide { get; set; }

Determines if the text extraction should be performed on the server or on the client-
side. Default is false, which results in server-side text extraction.

Client-side text extraction requires a local installation of TRIPcof. Users who owns
a license of TRIPview-C and have such an installation on the client-side, will also
be able to use this functionality.

If TRIPcof is used:

e For TRIPjxp, the TRIPcof installation directory must be specified as either a
system property with the name TRIPCOF_HOME, or an environment
variable with the name TRIPCOF_HOME.

e TRIPnxp reads the TRIPCOF_HOME information from the Windows
registry.

If TRIPview-C is used:

e For TRIPjxp, the TRIPview-C installation directory must be specified as
either a system property with the name TRIPVIEW_HOME, or an
environment variable with the name TRIPVIEW_HOME.

o TRIPnxp reads the TRIPVIEW_HOME information from the Windows
registry.

If the text extraction is performed on the client-side, it is fully performed before
commit of the record. The data transmitted to the server for the associated text field
will be the extracted text. No further processing is done on the server.

page 183

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbTextExtractionInfo:ExtractText

Type: bool)
Access: Read, Write

Java

boolean getExtractText();

void setExtractText(boolean enable);
NET

bool ExtractText { get; set; }

This property determines if a text extraction operation is to be performed. If set to
true, text will be extracted from the specified file data and stored in the TEXT field
that the current TdbTextExtractionInfo instance is associated with.

When ExtractText is set to true, you must also in addition at least set FileName
property. To store a copy of the file, provide the name of a STRING field to the
BinaryCopyField property. The file data can also be provided via a stream (use the
Stream property), which is an option if the file does not exist physically on the local
machine.

To extract text during update of a record from data already stored in a STRING
field, set the BinaryCopyField to the STRING field name and the
ExtractFromStored property to true.

Property: TdbTextExtractionInfo:ExtractFromStored

Type: String
Access: Read, Write

Java

boolean getExtractFromStored();

void setExtractFromStored(boolean enable);
NET

bool ExtractFromStored { get; set; }

This property determines if the text extraction should be performed from the value
already stored in the STRING field defined by the property BinaryCopyField.

Set this property to true if you wish to perform a text extraction on data previously
added to a STRING field, but do not intend or wish to supply the value again. The
text extraction specification should not be assigned a value to the Stream property,
but the FileName property is still a good idea to set in order to inform TRIPcof of
the name (and type) of the file.

This property is false by default.

page 184

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbTextExtractionInfo:FileName

Type: String
Access: Read, Write

Java

String getFileName()

void setFileName(String fileName);
NET

String FileName { get; set; }

The file name is a valuable aid to the text extractor in helping to determine the type
of the file, if it cannot be determined by any other means. It is therefore
recommended that the file name is specified even if the data to extract from is
specified using the Stream property.

If FileName is specified and refers to an existing local file and the Stream property
is null, text extraction will be performed from the named file. This is the preferred
choice if the application is running on the TRIP server machine.

Property: TdbTextExtractionInfo:PropertyNameField

Type: String
Access: Read, Write

Java

String getPropertyNameField()

void setPropertyNameField(String name);
.NET

String PropertyNameField { get; set; }
A phrase field to recieve document property names during text extraction.

This property is used together with the PropertyValueField property. Either these
two properties are both set, or both are not set. A text extraction operation cannot
be performed if one of these properties are set and the other is not.

Property: TdbTextExtractionInfo:PropertyvalueField

Type: String
Access: Read, Write

Java

String getPropertyvalueField()

void setPropertyvalueField(String name);
NET

String PropertyvalueField { get; set; }

A phrase field to recieve document property values during text extraction.

page 185

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

This property is used together with the PropertyNameField property. Either these
two properties are both set, or both are not set. A text extraction operation cannot
be performed if one of these properties are set and the other is not.

Property: TdbTextExtractionInfo:Stream

Type: InputStream (java), Stream (.NET)
Access: Read, Wwrite

Java

java.io.InputStream getStream()

void setStream(java.io.InputStream 1is);
NET

System.IO.Stream Stream { get; set; }

Stream for document data to extract text from and optionally store a copy of. If the
application is not running on the same machine with the serve, this property should
be used to provide document data. Note that the FileName property should still be
set if a file name is known, since this helps TRIPcof to determine the type of the file
if the file type cannot be determined by other means.

Property: TdbTextExtractionInfo:StringField

Type: TdbsStringField
Access: Read, Write

Java

TdbStringField getStringField();

void setStringField(TdbstringField field)
.NET

TdbStringField StringField { get; set; }

If this property is assigned a non-null value, text extraction will be performed from
any value assigned to the provided TdbStringField instance.

When this property is assigned a non-null value, the following apply:

¢ the value of the BinaryCopyField is assigned the name of the assigned
string field automatically.

e the property Stream will be ignored during text extraction

If text extraction is to be performed from a value already stored in a string field, it is
better not to include the TdbStringField instance at all in the TdbRecord object
used for commit, and to set the ExtractFromStored property to true instead.

page 186

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Property: TdbTextExtractionInfo:TextField

Type: String
Access: Read

Java
String getTextField();
.NET

String TextField { get; }

Returns the name of the text field in which the extracted text is to be stored. This is
the name of the TdbTextField object that the current TdbTextExtractioninfo
instance is obtained from.

page 187

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

MethodTdbStringField:Convert

This method was added to version 3.0 of TRIPnxp and TRIPjxp for the purpose of
performing client-side HTML conversion using a local installation of TRIPcof. Users of
TRIPview-C will also be able to use this method.

A good practice with regard to HTML conversion is to perform it as close to the consumer
as possible. This normally means on an application server running a web application
based on TRIPjxp or TRIPnxp.

Method: TdbstringField:Convert

Type: void
Throws: TdbException

Java

void convert(TdbRenditionType rendition,
String originalFilename,
String outputDirectory,
String outputFilename,
String preferredAdapter,
TdbTextField highlightSourceField,
boolean refreshHitLocations)

.Net

void Convert(TdbRenditionType rendition,
String originalFilename,
String outputDirectory,
String outputFilename,
String preferredAdapter,
TdbTextField highlightSourceField,
bool refreshHitLocations)

The use of this method requires a local installation of TRIPcof or TRIPview-C.
If TRIPcof is used:

e For TRIPjxp, the TRIPcof installation directory must be specified as either a
system property with the name TRIPCOF_HOME, or an environment
variable with the name TRIPCOF_HOME.

o TRIPnxp reads the TRIPCOF_HOME information from the Windows
registry.

If TRIPview-C is used:

e For TRIPjxp, the TRIPview-C installation directory must be specified as
either a system property with the name TRIPVIEW_HOME, or an
environment variable with the name TRIPVIEW_HOME.

e TRIPnxp reads the TRIPVIEW_HOME information from the Windows
registry.

In order to perform client-side HTML conversion with this method, the string field
value to convert must first be fetched from the server without a rendition
specification (use a normal TdbFieldTemplate or a TdbRendition with
DefaultRendition as the rendition type). When the string value has been fetched,
call this method with a HTML-specific rendition type.

page 188

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Note that the rendition type BasicHTML may generate any number of graphic files
for the images in the document. These files will be put in the same directory with
the generated HTML file. Be sure to specify the filename argument so that it is
easy to clean up these files when they are no longer needed.

Hit highlighting is supported when the associated search set has been created by a
FIND or FUZZ CCL order to either the TdbCclCommand class or the TdbSearch
class. The TdbRecordSet class is only supported if a pre-existing search order is
supplied to it. Using the query capability of the TdbRecordSet class itself is not
supported because such search sets are automatically deleted before the data is
returned to the client.

In order to generate an HTML file where search hits are highlighted, supply the text
field object to the highlightSourceField parameter. This text field must contain the
extracted document text.

The refreshHitLocations parameter should be set to true when you are using HTML
conversion with TRIPview-C. Assigning this parameter to false when TRIPview-C is
used may result in incorrect offset values to hit words. This is because fill
characters produced during text extraction may differ from version to version.
Setting this parameter to true results in extra network 1/O.

To produce an HTML document without hit highlighting, pass null to the
highlightSourceField parameter.

For server-side conversion, add a TdbRendition or TdbHighlightRendition instance
as field template to the retrieval template instead of a normal TdbFieldTemplate.
Then use the file CopyToFile to store the rendered data to a local file, or access it
using the Rendition property.

Requesting an HTML conversion with hit highlighting results in network 1/O.

page 189

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Extracting text from a stream with server-side processing
This procedure requires version 1.2 or later of TRIPnxp or TRIPjxp. TRIPcof or TRIPview-
C must be installed on the server.

Java

TdbDatabaseDesign db;
TdbRecord rec;
TdbTextField tfield;

TdbTextExtractioninfo txi;

// Retrieve database design, create new record
db = new TdbDatabaseDesign(session);

db.get (“VIEWDEMO2™);

record = new TdbRecord(session, db, false);

head = record.getHead();

// Create field object
TdbFieldbesign fdes = db.getFieldByName(“FILE_TEXT”)

tfield = (TdbTextField) head.createField(fdes);

// Assign extraction data

txi = tfield.getTextExtractionInfo();
txi.setBinaryCopyField(“FILE_BLOB”)
txi.setExtractText(true);

txi.setFileName (“EXAMPLE.DOC”);
txi.setStream(streamToDocumentbata); // Provided by app
txi.setPropertyNameField(“PROP_NAME”);

txi.setPropertyvalueField(“PROP_VALUE”);

// Store new record to database
record.commitQ);

VB.NET

’ Retrieve database design, create new record
Dim db As New TdbDatabaseDesign(session)
db.Get (“VIEWDEMO2”)

Dim record As New TdbRecord(session, db, false)

page 190

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Dim head As TdbComponent = record.Head
’ Create field object
Dim field As TdbTextField

field = _
DirectCast(head.CreateField(db(“FILE_TEXT”)),TdbTextFiel)

' Set text extraction options
with field.TextExtractionInfo
.ExtractText = true
.BinaryCopyField = “FILE_BLOB”
.FileName = “EXAMPLE.DOC”
.Stream = streamToDocumentData ' Provided by application
.PropertyNameField = “PROP_NAME”
.PropertyvalueField = “PROP_VALUE”
End with
’ Store new record to database

record.commit()

page 191

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Extracting text from a previously stored file during update
This procedure requires TRIPnxp/TRIPjxp 2.1 version 2.1-8 or later, or TRIPnxp/TRIPjxp
3.0 version 3.0-2 or later.

Java

TdbbDatabaseDesign db;
TdbRecord rec;
TdbTextField tfield;

TdbTextExtractioninfo txi;

// Retrieve database design, create new record object
db = new TdbDatabaseDesign(session);
db.get (“VIEWDEMO2™);

record = new TdbRecord(session, db, true);

// set 1D of record to update - 'rid' provided by application

record.setRecordId(rid);
head = record.getHead();

// Create field object
TdbFieldbesign fdes = db.getFieldByName(“FILE_TEXT”)

tfield = (TdbTextField) head.createField(fdes);

// Assign extraction data

txi = tfield.getTextExtractionInfo();
txi.setBinaryCopyField(“FILE_BLOB”)
txi.setExtractText(true);
txi.setExtractFromStored(true);
txi.setFileName (“EXAMPLE.DOC”);
txi.setPropertyNameField(“PROP_NAME”) ;

txi.setPropertyvalueField(*“PROP_VALUE”);

// Perform update of record

record.commitQ);

page 192

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4]i:]’ vision
group

VB.NET

’ Retrieve database design, create new record object
Dim db As New TdbDatabaseDesign(session)

db.Get (“VIEWDEMO2”)

Dim record As New TdbRecord(session, db, false)

' Set ID of record to update - 'rid' provided by application

record.Recordid = rid
Dim head As TdbComponent = record.Head

’ Create field object
Dim field As TdbTextField

field = _
DirectCast(head.CreateField(db(“FILE_TEXT”)),TdbTextFiel)

' Set text extraction options

with field.TextExtractionInfo
.ExtractText = true
.ExtractFromStored = true
.BinaryCopyField = “FILE_BLOB”
.FileName = “EXAMPLE.DOC”
.PropertyNameField = “PROP_NAME”
.PropertyvalueField = “PROP_VALUE”

End with

’ Store new record to database

record.commit()

HTML conversion
This procedure requires version 1.2 or later of TRIPnxp or TRIPjxp, and TRIPcof or
TRIPview-C.

Rendering the contents of a STRING field as HTML is a procedure that makes use of the
TdbRendition class, which is a specialization of the TdbFieldTemplate class. How to
produce HTML renditions has been described elsewhere in this document, but here is a
short example:

page 193

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
TdbRecord tmpl = new TdbRecord(session);
String filebataField = "FILE_BLOB";

String fileNameField = "FILE_NAME";

tmpl.addToTemplate(new TdbRendition(fileDataField,
fileNameField, TdbRenditionType.BasicHTML));

rs.setRetrievalTemplate(tmpl);

// Set other properties
// ...

rs.get();

VB.NET
Dim rs as new TdbRecordset(session)
Dim tmpl as new TdbRecord(session)

Dim fileDataField As String = "FILE_BLOB"

Dim fileNameField As String "FILE_NAME"

tmpl.AddToTemplate(new TdbRendition(fileDataField, _
fileNameField, TdbRenditionType.BasicHMTL))

rs.RetrievalTemplate = tmpl

Set other properties

rs.cet()

This will produce a result set where the contents of the STRING field (in this example
called “FILE_BLOB”), is returned rendered as HTML.

Note that the a field containing the name of the file is required. Without this information,
TRIPcof may not be able to create an HTML rendition of the file. This version of the
TdbRendition constructor was introduced in version 3.0 of TRIPnxp and TRIPjxp.

page 194

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

HTML conversion with HTML highlighting
With TRIPjxp and TRIPnxp version 1.2 it is possible to convert a STRING field to HTML
with search hit highlighting using the TdbHighlightRendition class.

Class: TdbHighlightRendition

Derived from: TdbRendition
Located 1in: data

This specialization of the rendition field template is identical to its base class in all aspects
except that it specifies that search hit highlighting is to applied to the output using the hit
vector from a TEXT field.

Java

TdbHighTightRendition(String stringFieldName,
String textFieldName,
TdbRenditionType type)

TdbHighTlightRendition(String stringFieldName,
String textFieldName,
String filenameFieldName,
TdbRenditionType type)

.Net

TdbHighTightRendition(String stringFieldName,
String textFieldName,
TdbRenditionType type)

TdbHighTlightRendition(String stringFieldName,
String textFieldName,
String filenameFieldName,
TdbRenditionType type)

The TRIPcof-associated rendition types supported for TdbHighlightRendition via the
TdbRenditionType enumeration are HTML and Mime-Encoded HTML (MHTML file format,
including all embedded graphics).

The first version of the constructor is suitable only for use with TRIPxml to retrieve stored
XML documents with hit markup applied.

The second version of the constructor is recommended for use with TRIPcof and
TRIPview-C for HTML conversion. This constructor variant was added in version 3.0 of
TRIPnxp and TRIPjxp.

page 195

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,) vision
group

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setQuery(“FIND FILETEXT=TRIPjxp”);

String fileDataField = "FILE_BLOB";

String fileTextField = "FILE_TEXT";

String fileNameField "FILE_NAME";

TdbRecord tmpl = new TdbRecord(session);

tmpl.addToTemplate(new TdbHighlightRendition(fileDataField,
fileTextField, fileNameField, TdbRenditionType.BasicHTML));

rs.setRetrievalTemplate(tmpl);

// Set other properties
//

rs.get();

VB.NET

Dim rs as new TdbRecordSet(session)

String filebataField = "FILE_BLOB";

String fileTextField = "FILE_TEXT";
String fileNameField = "FILE_NAME";
rs.Query = “FIND FILETEXT=TRIPnxp”

Dim tmpl as new TdbRecord(session)

tmpl.AddToTemplate(new TdbHighlightRendition(fileDataField, _
fileTextField, fileNameField, TdbRenditionType.BasicHMTL))

rs.RetrievalTemplate = tmpl

Set other properties

rs.cet()

page 196

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,) vision
group

Example of client-side HTML conversion with highlighting

This shows how to use the Convert method in the TdbStringField class to perform client-
side HTML conversion with highlighting using the LibreOffice file filter adapter in a local
TRIPcof installation.

See also the TRIPnxp example program CofClient and the TRIPjxp example programs
CofConvert and CofExtract.

Java

// Use TdbSearch (not TdbRecordSet) to search
TdbSearch search = new TdbSearch(session);
search.execute("BASE COFDEMO");

search.execute("FIND FILE_TEXT=TRIPcof");

TdbRecord rec = search.getLastSearchsSet().getRecord(0);

TdbComponent head

rec.getHead();

TdbstringField sf (TdbstringField) head.getField("FILE_BLOB");

TdbPhraseField nf

(TdbPhraseField) head.getField("FILE_NAME");

String outputDirectory = "C:\Data\output";

String outputFile = "example.html";

f1d.convert(TdbrRenditionType.BasicHTML, nf.getvalue(0),
outputDirectory, outputFile, "Tibreoffice",

"FILE_TEXT", true);

page 197

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Text Analysis

Version 3.0-1 of TRIPnxp and TRIPjxp added support for TRIPcof-based analysis of text
stored in TRIP records in order to extract keywords and metadata. This analysis requires
that TRIPcof has been configured with an NLP analysis adapter.

Property: TdbRecord:N1pInfo

Type: TdbNlpInfo
Access: Read

Java
TdbN1pInfo getNIpInfo(Q);
.NET

TdbN1pInfo NlpInfo { get; }

This property returns a TdbNIpInfo object that is used to control and enable text analysis
operations.

Class TdbNIpInfo
This class is a container for NLP analysis directives.

Class: TdbN1pInfo

Derived from: Object
Located 1in: data

This class has no public constructor. Instances can be accessed via the
TdbRecord.NlIpInfo property described above.

Property: TdbN1pInfo:IsEnabled

Type: Boolean
Access: Read

Java
boolean iseEnabled();
.NET

bool Isenabled { get; }

Returns true if TRIPcof NLP interaction is enabled and false otherwise. TRIPcof
NLP analysis is enabled if either keywords or meta-data extraction has been
enabled. See properties ExtractKeywords and ExtractMetadata.

page 198

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Property: TdbN1pInfo:Extractkeywords

Type: Boolean
Access: Read

Java

boolean getExtractKewords();

void setExtractkeywords(boolean enable);
NET

bool Extractkeywords { get; set; }

Enables or disables the extraction of keywords. If enabled, the KeywordField
property must also be set.

Property: TdbN1pInfo:ExtractMetadata

Type: Boolean
Access: Read, Write

Java

boolean getExtractMetadata();

void setExtractMetadata(boolean enable);
NET

bool ExtractMetadata { get; set; }

Enables or disables the extraction of metadata. If enabled, the property
FieldMapping must also be set.

Method: TdbNl1pInfo:SetInputLanguage

Type: void
Throws: N/A

Java

void setInputLanguage(int Tlang);

void setInputLanguage(String lang);

void setInputLanguage(TdbLanguage Tang);
.Net

void SetInputLanguage(int lang);

void SetInputLanguage(String lang);

void SetInputLanguage(TdbLanguage Tang);

Defines the input language of the text in the record to be analyzed. Input language
should be declared if the database design does not include a natural language
specification.

Depending on the NLP adapter used with TRIPcof, specifying the input language
may not be necessary if the adapter is a capable of determining the language of
the text to be analyzed. However, as such extra analysis adds some (minor)

page 199

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

overhead to the total processing time, so it is better to specify the language
explicitly if it is known beforehand.

Property: TdbN1pInfo:FieldmMapping

Type: FieldvappingType
Access: Read, write

Java

FieldMappingType getFieldMapping();

void setFieldMapping(FieldMappingType type);
.NET

FieldMappingType FieldMapping { get; set; }

Get or set the field name mapping mode that controls how extracted meta-data is
stored in the record. The FieldMappingType type is an enum declared in the
TdbNIplInfo class. Its values are:

None No metadata analysis output used.

Fields Each metadata category correspond to a separate field
in the database.

Tuples The database has two fields that form a name/value pair
tuple list that can store any category name and value
found during analysis.

Property: TdbNl1pInfo:PreferredAdapter

Type: String
Access: Read, Write

Java

String getPreferredAdapter();

void setPreferredAdapter(String adapter);
NET

String PreferredAdapter { get; set; }

Assign the ID of the adapter that must be used to perform the analysis. If not set
(or set to an empty string), any suitable one installed on the server will be used.

page 200

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:’ vision
group

Property: TdbN1pInfo:Fallback

Type: Boolean
Access: Read, Write

Java

boolean getFallback();

void setFallback(boolean enable);
.NET

bool Fallback { get; set; }

If fallback is enabled and processing fails using one adapter, TRIPcof will attempt
to use other NLP adapters if any are available.

Property: TdbN1pInfo:KeywordField

Type: String

Access: Read, write

Throws: TdbException
Java

String getkKeywordrield();

void setkeywordField(string fieldname);
.NET

String KeywordField { get; set; }

Get or set the name of the PHRASE field to receive extracted keywords. To extract
keywords, you must also set the ExtractKeywords property to true.

Method: TdbNlpInfo:SetMetadataTupleFields

Type: void
Throws: TdbException

Java

void setMetadataTupleFields(String namefield,
String valuefield);

.Net

void SetMetadataTupleFields(String namefield,
String valuefield);

Set the names of the PHRASE fields to receive extracted meta-data. The field
mapping must be set to TdbNIpinfo.FieldMappingType.Tuples if these field names
are to be considered by TRIPcof.

page 201

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Property: TdbN1pInfo:MetadataNameField

Type: String
Access: Read

Java
String getMetadataNameField();
.NET

String MetadataNameField { get; }
Get the name of the tupled PHRASE field to receive extracted meta-data names.
Property: TdbN1pInfo:MetadatavalueField

Type: String
Access: Read

Java
String getMetadatavalueField();
.NET

String MetadatavalueField { get; }
Get the name of the tupled PHRASE field to receive extracted meta-data values.

Method: TdbNl1pInfo:MapMetadataField

Type: void
Throws: TdbException

Java

void mapMetadataField(String categoryName
String fieldName);

.Net

void MapMetadataField(String categoryName
String fieldName);

Define a field to hold the values for a particular meta-data category.

Please refer to the NLP adapter’s documentation for valid category names.
Method: TdbNlpInfo:AddInputField

Type: void
Throws: TdbException

Java
void addInputField(String fieldName);
.Net

void AddInputField(Sstring fieldName);

Add the name of a TEXT or PHRASE field on which to base meta-data processing.
The aggregated value of several fields can be used.

page 202

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Text Analysis Example
The example below updates an existing record with keywords and metadata extracted
from a text field in the record.

Java

// Retrieve existing record nr 123. Note that we do not

// require any field values to be fetched for this procedure.
TdbRecord record = new TdbRecord(session, '"COFDEMO", false);
record.setRecordid(123);

record.get();

// Define NLP analysis behavior

TdbN1pInfo nlp = record.getNlpInfo(Q);
nlp.setkeywordField("KEYWORDS");
nlp.setExtractkeywords(true);
nlp.setFieldMappingType(TdbNIpInfo.FieldMappingType.Tuples);
nlp.setMetadataTupleFields ("META_NAME","META_VALUE");
nlp.setExtractMetadata(true);

n1p.addInputField("FILE_TEXT");

// Analysis performed on server as part of commit operation.

record.commit();

page 203

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

20. Using JSON/XML Databases

Overview
TRIP contains a hybrid JSON and XML storage and search solution with the following
features:

o Ability to represent and store XML and JSON documents with their complete
structure.

¢ One single TRIP database design supports all kinds of XML and JSON documents,
plus any kind of unstructured document or file.

e Support TRIP queries to find XML and JSON documents and sections within the
documents.

e TRIP queries against a JSON/XML database can utilize the structure of the stored
data.

e Optional storage of related DTD or schema for validation and stylesheet files for
rendering of XML documents

e The contents and attributes of documents that are neither XML nor JSON are
automatically extracted and indexed if TRIPcof is installed on the server.

e For hits in text nodes, hit markup can be applied so that the XML documents can
be rendered with highlighting by the application (e.g. using XSL style sheets).

The XML-related functionality was prior to TRIP 8 available in a separately installed add-
on product called TRIPxml. This is now integrated in TRIPsystem. Installing TRIPxml with
TRIPsystem 8.0 or later is not needed nor supported.

APl overview

Enumeration TdbXmlIRecord.lIOMode
The IOMode enumeration is used to control how document data is sent between the client
and the server.

Enumeration: TdbXmlRecord.IOMode

Located in: data

The values within this enumeration are as follows:

IOMode:Inline

Transmission of document data will be inline (base64-encoded) in XPI requests
and responses. This is the default.

IOMode:File

Transmission of document data will be to and from a file. This mode is only valid if
the client and the server are running on the same machine.

page 204

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

IOMode:Stream

Transmission of document data will be streamed via a temporary HTTP connection
between the client and the server.

Enumeration TdbXmIRecord.XmlIRecordType
The XmIRecordType enumeration is used to indicate the file format of the document to
import to a TRIPxmI database.

Enumeration: TdbxmlRecord.XmlRecordType

Located in: data

The values within this enumeration are as follows:

XmTRecordType : UNKNOWN

The format of the file is not known. The client will assume that any file having a
suffix ".xml" or ".xsl" is an XML file, and any other file is not. This is the default.

XmlRecordType: XML
The document is an XML file.
XmlRecordType: JSON

The document is a JSON file.

Xm1RecordType : NONXML

The document is not in XML format. A DTD file is an example of a non-XML
document usually stored in a TRIPxml database (for validation purposes).

Class TdbXmlIRecord
The TdbXmlRecord class is a subclass of TdbRecord and represents a record in a
JSON/XML database.

Class: TdbxXmlRecord

Derived from: TdbRecord
Located 1in: data

The TdbXmlIRecord class can be used just like the TdbRecord class, but its use is
exclusive for JSON/XML databases.

page 205

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

constructor: TdbXmlRecord

Java

TdbXmTRecord(TdbSession session)

TdbXmlRecord(TdbSession session,
TdbDatabaseDesign_design,
boolean createFields)

TdbxmlRecord(TdbSession session,
String name,)
boolean createFields)

.Net

TdbXmTRecord(TdbSession session)

TdbXmlRecord(TdbSession session,
TdbDatabaseDesign design,
bool createFields)

TdbXxmTRecord(TdbSession session,

String name,
bool createFields)

Construct a TdbXmlIRecord to use for JSON and XML import and export
operations. The simple version is sufficient for JSON/XML databases without
custom fields. For such databases with custom fields, one of the two more
elaborate versions are recommended. Please note that the database specified by
name or design object cannot be anything else than a JISON/XML database.

Property: TdbXmlRecord:FileName

Type: String
Access: Read

Java
String getFileName()
NET

String FileName { get; }
Contains the name of the exported file.

After a the contents of a JSON/XML record has been exported to a file, this
property contains the name of the file. The intended use is in a situation when a
directory name has been specified as export location, but no file name is available.
A file name will be generated at that point, and the generated file name is provided
via this property.

page 206

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbXmlRecord:HitMarkup

Type: Boolean
Access: Read, Write

Java

boolean getHitMarkup()

void setHitMarkup(boolean hitMarkup)
.NET

bool HitMarkup { get; set; }
Indicates if the exported XML document is to have hit markup applied.

This property is used when the TdbXmIRecord instance is applied as a retrieval
template for a TdbRecordSet. Hit markup consists of a pair of XML elements
TRIPHLBEGIN and TRIPHLEND surrounding hits in XML text nodes. Highlighting
can be produced by the application using hit markup, e.g. via an XSL stylesheet.

Property: TdbXmlRecord:InputOutputMode

Type: TdbXm1Record.IOMode
Access: Read, Write

Java

TdbXmlRecord.IOMode getInputOutputMode()

void setInputoutputMode(TdbXmlRecord.IOMode mode)
.NET

TdbXmlRecord.IOMode InputOutputMode { get; set; }

The IOMode enumeration is used to control how document data is sent between
the client and the server. The default and recommended value for this property is
IOMode.Inline, which causes document content to be sent as Base64-encoded
strings in the XPI requests and responses.

Property: TdbXmlRecord:NetworkStreamPort

Type: int]
Access: Read, Write

Java

int getNetworkStreamPort()

void setNetworkStreamPort(int port)
NET

int NetworkStreamport { get; set; }

The number of the TCP port to use for network streaming based import and export
operations. A value of 0 (zero) will cause a port number to be dynamically
allocated.

If there is a firewall between the client and the server, make sure that you specify a
port number from a range that is enabled in the firewall. Remember to set the
InputOutputMode property to Stream in order to use network streaming.

page 207

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Also remember that in multithreaded situations, there may be multiple
TdbXmlIRecord exports and imports active simultaneously. Unless the port number
is set to O (zero), the application is in such cases responsible for making sure that
only available port numbers are used.

Property: TdbXmlRecord:RecordType

Type: TdbXml1Record.XmI1RecordType
Access: Read

Java
TdbXxmlRecord.XmTRecordType getRecordType()
NET

TdbXml1Record.Xml1RecordType RecordType { get; }

After a successful export, this property indicates the type of document that the
record contains. Prior to import after a successful call to the Preparelmport method,
this property indicates the type of document to be imported.

Property: TdbXmlRecord:StoreCopy

Type: Boolean
Access: Read, Write

Java

boolean getStoreCopy()

void setStorecCopy(boolean storeCopy)
.NET

bool StoreCopy { get; set; }

Determines if a binary copy of an imported XML document is to be stored, or only
the parsed version of it. This property is ignored for JSON documents.

Property: TdbXmlRecord:Stream

Type: Stream
Access: Read
Java
N/A
NET

Stream Stream { get; }
Returns the stream that receives data from the XML record.

This is usually the stream as specified as argument to PrepareExport(Stream).
However, in certain circumstances (e.g. when no file and no stream has been
specified by the application) this property may return a MemoryStream instance
with the received data.

page 208

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Property: TdbXmlRecord:outputStream

Type: outputStream
Access: Read

Java
OutputStream getoutputStream()
.NET
N/A
Returns the stream that receives data from the XML record.

This is usually the stream as specified as argument to
PrepareExport(OutputStream). However, in certain circumstances (e.g. when no
file and no stream has been specified by the application) this property may return a
ByteArrayOutputStream instance with the received data.

Property: TdbXmlRecord:UrlAlias

Type: String
Access: Read, Write

Java

String geturlAlias()

void setUrlAlias(String urlAlias)

.NET

String UrlAlias { get; set; }
The URL alias for the document.

The URL alias is the "real" URL of the document, i.e. the URL that is used to link
two documents together via an XLink, for example. The URL alias is identical to the
URL base and filename unless the URL alias has been explicitly specified to be
something else during the import process.

Property: TdbXmlRecord:UrlBase

Type: String
Access: Read

Java
String getuUrlBase()
NET

String UrlBase { get; }

This method returns the URL base of the document, i.e. the URL without the actual
file name.

If the document was imported directly from a file (e.g. using the server-side txput
tool, or by using IOMode.File as InputOutputMode), then this property will be
empty.

page 209

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Property: TdbXmlRecord:validate

Type: Boolean
Access: Read, Write

Java

boolean getvalidate()

void setvalidate(boolean validate)
.NET

bool validate { get; set; }

Determines if XML documents are to be validated upon import.
Method: TdbXmlRecord:Clear

Type: void
Throws: N/A

Java
void clear(boolean all)
.Net

void Clear(bool all)
Clear any existing state from the TdbXmlIRecord instance.

If the parameter 'all' is set to true, all state is cleared, including the database with
which the record is associated, the record name/ID, etc. If false, the record
structure is initialized, but the basic state of the record's association is maintained.

This method must always be called by the application when it is done with the
record object if the I/O mode IOMode.Stream has been used. This is especially
important if something has gone wrong during import or export. Failure to call this
method may result in hanging threads.

Method: TdbXmlRecord:PrepareExport

Type: void
Throws: TdbException

Java

void prepareexport()

void prepareexport(OutputStream stream)
void prepareExport(string fileorDir)
.Net

void Prepareexport()

void PrepareExport(Stream stream)

void PrepareExport(string fileorDir)

Prepares to export the contents of the record. The actual export is done when the
get() method is called.

page 210

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:)) vision
group

The first and simplest overloaded version of the method exports the contents of the
record to a MemoryStream (.NET) or ByteArrayOutputStream (Java), accessible
via the Stream and OutputStream properties, respectively. This is a special case of
the overloaded version of the method that explicitly takes a stream as argument.
Both mentioned overloads require use of either IOMode.Inline or IOMode.Stream
as value for the InputOutputMode parameter.

The third overloaded version of the method takes a string that can refer to a file or
a directory. If the parameter is a directory, the name of the file (minus the path) will
be read from the D_DOCNAME field and created in the specified directory. In any
other case, the parameter is assumed to refer to a file to be created during the
export procedure.

Method: TdbXxmlRecord:PrepareImport

Type: void
Throws: TdbException

Java

void prepareImport(OutputStream stream,
TdbXmlRecord.xXmlRecordType type,
String fileName)

.Net

void PrepareImport(Stream stream,
TdbXmlRecord.xmlRecordType type,
String fileName)

Prepares to import a document into a TRIPxml record. The actual import is done
when the commit() method is called.

If the type parameter is XmIRecordType.UNKNOWN, then this method will try to
ascertain the type from the provided file name. If the file name is not specified and
the type is XmIRecordType.UNKNOWN, this method will throw an exception.

Direct file import (InputOutputMode set to IOMode.File) is possible if the stream
parameter is set to null, the filename refers to an existing local file and the client
application is running on the same machine as the TRIP server the current session
is connected to.

Always have the application specify the name of the file if it is known. This also
applies if the stream parameter is not null.

Insert XML documents

Inline import

The inline 1/O mode (IOMode.Inline) is the default. For import operations this means that
the document to be imported is converted to Base64 and inserted into the XPI request.
The server will decode, parse and store the document.

Applications should always use this mode unless one of the special scenarios for direct file
import or stream import applies.

While being useful in most scenarios, this mode is especially recommended for the import
of moderately sized documents that do not use external entities and (in case of validation

page 211

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

during import) refer to DTDs or XML schemas that already have been imported into the
same JSON/XML database.

Example:
C#
using TietoEnator.Trip.Nxp.Database;

using TietoEnator.Trip.Nxp.Data;

pubTlic void InTineImport(TdbSession session,
TdbDatabaseDesign db,
String xmlFiTleName)

// Open a stream to the file to be imported.

Stream inputStream = new System.IO.FileStream(strFile,
FileMode.Open,
FileAccess.Read,
FileShare.Readwrite);

// Create a new TdbXmlRecord object
TdbXmTRecord rec = new TdbxmlRecord(session,db,false);

// Specify that we'll use Inline mode to import.
rec.InputoOutputMode = TdbxmlRecord.IOMode.Inline;

rec.StoreCopy = true; // Store a copy in the database
rec.validate = false; // Don't validate the document

// Prepare the TdbxmlRecord instance to perform an XML

// import upon the next call to Commit.

rec.PrepareImport (inputStream,
TdbXm1Record.Xml1RecordType. XML,
xm1FileName) ;

// Performs the actual import
rec.commitQ;

Direct file import
The scenario for direct file import (the 1/0O mode IOMode.File) is usable when the client and
the server are located on the same machine. This is the case if either:

¢ Aninstance of the TdbLocalSession class is used as the session object.

e The address of the host connected to via TdbTripNetSession is the loopback
address (127.0.0.1) or one of the addresses associated with one of the network
interfaces of the local machine.

If either of the two conditions above is met, then feel free to use the IOMode.File as the
value for the InputOutputMode property.

page 212

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Note that if the TdbTripNetSession is used to connect to a TRIP installation on the local

host, make sure that the user that the tbserver process is set up to run as has read access
to the file to be imported.

This mode is especially recommended for:

¢ the import of very large documents, as no network read or write buffers are
required or used for the file data when this mode is active

o the import of documents that refer to other files, such as entity files and unimported
DTDs and XML schemas

Example:
C#
using TietoEnator.Trip.Nxp.Database;

using TietoEnator.Trip.Nxp.Data;

public void DirectFileImport(TdbSession session,
TdbDatabaseDesign db,
String xmlFileName)

{
// Create a new TdbxmlRecord object
TdbXxmTRecord rec = new TdbxmlRecord(session,db,false);
// Specify that we'll use File mode to import.
rec.InputoutputMode = TdbxmlRecord.IOMode.File;
rec.StoreCopy = true; // Store a copy in the database
rec.validate = false; // Don't validate the document
// Prepare the TdbxmlRecord instance to perform an XML
// import upon the next call to Commit.
rec.PrepareImport (null,
TdbXmlRecord.Xml1RecordType. XML,
xml1FileName);
// Performs the actual import
rec.commit(Q);
ks

Stream import

Stream import (the I/O mode IOMode.Stream) is usable for the occasional import of very
large documents when the client and the server are located on separate machines.

During stream import, the client creates a dedicated HTTP listener on a TCP socket whose
port number is dynamically allocated or explicitly specified by the application. The XPI
request sent to the server indicates the temporary URL from which the document is to be
read. If the document refers to other files (e.g. external entities), these files are also
requested. When TRIP is finished with the import, the listener shuts down.

page 213

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Please note that if an exception occurs while importing in stream mode, the HTTP listener,
which is running on its own thread, may not be properly shut down. In order to avoid
hanging HTTP listener threads, always be sure to call the Close method on the
TdbXmlRecord object used for the import operation when the import has finished
(successfully or otherwise).

Example:
C#
using TietoEnator.Trip.Nxp.Database;

using TietoEnator.Trip.Nxp.Data;

pubTlic void StreamImport(TdbSession session,
TdbDatabaseDesign db,
String xmlFileName)

// Create a new TdbXmlRecord object
TdbXxmTRecord rec = new TdbxmlRecord(session,db,false);

rec.NetworkStreampPort = 0; // Use dynamic port

// Specify that we'll use stream mode to import.
rec.InputOutputMode = TdbXxmlRecord.IOMode.Stream;

rec.StoreCopy = false; // No copy in database
rec.validate = false; // Don't validate the document

// Prepare the TdbxmlRecord instance to perform a TRIPxm]
// import upon the next call to Commit.
rec.PrepareImport (null,
TdbXm1Record.Xm1RecordType. XML,
xml1FileName);

// Performs the actual import
rec.commit(Q);

}

Insert unstructured files in JISON/XML databases

JSON/XML databases can also store unstructured files. If TRIPcof or TRIPview-C is also
installed on the server, the document text and properties are automatically extracted and
stored in the database.

If DTD files are stored, they will be handled as unstructured files, but with the added
benefit that they can be used by during validation of any XML document that is written
according to the DTD.

The following fields are exclusive to the storage of non-XML data:

e DAV_NONXMLBLOB A binary copy of the unstructured file.
e D DOCTEXT Extracted text of the file.
e D PROPNAME Extracted property names.
¢ D PROPVALUE Extracted property values.
page 214

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Inline import

Inline import of an unstructured file means that the file is converted to Base64 and inserted
into the XPI request. The server will decode the document and store it, optionally using
TRIPcof or TRIPview-C to extract text and document properties.

This mode is default. It is recommended that applications always use this mode unless
one of the special scenarios for direct file import applies.

The use of the TdbXmIRecord class is identical to when inline import of XML documents is
performed, except for the second parameter to the Preparelmport method, which must be
set to NONXML

Example:
C#
// See XML inline import example for the rest of the code.

rec.PrepareImport (inputStream,
TdbxmlRecord.XmTRecordType.NONXML ,
fileName);

Direct file import
The scenario for direct file import (the 1/0O mode IOMode.File) is usable for non-XML files
when the client and the server are located on the same machine. This is the case if either:

¢ An instance of the TdbLocalSession class is used as the session object.

e The address of the host connected to via TdbTripNetSession is the loopback
address (127.0.0.1) or one of the addresses associated with one of the network
interfaces of the local machine.

If either of the two conditions above is met, then feel free to use the IOMode.File as the
value for the InputOutputMode property.

Note that if the TdbTripNetSession is used to connect to a TRIP installation on the local
host, make sure that the user that the tbserver process is set up to run as has read access
to the file to be imported.

The use of the TdbXmIRecord class is identical to when inline import of XML documents is
performed, except for the second parameter to the Preparelmport method, which must be
set to NONXML

Example:
C#

// See XML direct file import example for the rest of
// the code.

rec.PrepareImport (null,
TdbXxmTRecord.XmTRecordType.NONXML ,
fileName);

page 215

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Retrieve documents from a JSON/XML database

The procedure for retrieving documents from a JSON/XML database is similar to that of
retrieving any other type of record from TRIP. Either use TdbSearch or TdbRecordSet to
search for the records to retrieve, or use the TdbXmIRecord directly to fetch a record
based on its record ID.

When exporting a structured document, i.e. an XML or JSON document, the RecordType
property should be assigned before retrieval to specify the format in which the document
should be returned. If left unspecified, XML will be used.

Inline export
Inline export means that the file to be exported is converted to Base64 and inserted into
the XPI response. The client will decode the document and pass it on the application.

This mode is default. It is recommended that applications always use this mode unless
one of the special scenarios for direct file export or stream export applies.

Example:
C#

using System.IO;)
using TietoEnator.Trip.Nxp.Database;
using TietoEnator.Trip.Nxp.Data;

pubTic void InTineExport(TdbSession session,
TdbDatabaseDesign db,
int recordid,
String outputFileName)

// Create a new TdbXmlRecord object
TdbXxmTRecord rec = new TdbxmlRecord(session,db,false);

rec.Recordid = recordid; // The ID of the record to export

// Use inTine mode for the export
rec.InputoutputMode = TdbxmlRecord.IOMode.Inl1ine;

// Specify the file format to export the record as
rec.RecordType = TdbXmlRecord.TdbXxmlRecordType.XML;

// Open an output stream to receieve the data.

FileStream outStream = new FileStream(m_ outputFileName,
FileMode.Create, FileAccess.Write,
FileShare.Readwrite);

// Prepare the TdbxXxmlRecord instance to perform a TRIPxm]
// export upon the next call to Get.
rec.PrepareExport(outStream);

// Perform the export.
rec.Get();

Direct file export
The scenario for direct file export (the /0 mode IOMode.File) is usable when the client and
the server are located on the same machine. This is the case if either:

page 216

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

¢ An instance of the TdbLocalSession class is used as the session object.

e The address of the host connected to via TdbTripNetSession is the loopback
address (127.0.0.1) or one of the addresses associated with one of the network
interfaces of the local machine.

If either of the two conditions above is met, then feel free to use the IOMode.File as the
value for the InputOutputMode property.

Note that if the TdbTripNetSession is used to connect to a TRIP installation on the local
host, make sure that the user that the tbserver process is set up to run as has write access
to the file to be imported.

This mode is especially recommended to export very large documents, as no network read
or write buffers are required or used for the file data when this mode is active.

Example:
C#

using TietoEnator.Trip.Nxp.Database;
using TietoEnator.Trip.Nxp.Data;

pubTlic void DirectFileExport(TdbSession session,
TdbDatabaseDesign db,
int recordid,
String outputFileName)

// Create a new TdbxmlRecord object
TdbXxmTRecord rec = new TdbxmlRecord(session,db,false);

rec.RecordIid = recordid; // The ID of the record to export

// Use inTine mode for the export]
rec.InputoutputMode = TdbXmlRecord.IOMode.File;

// Specify the file format to export the record as
rec.RecordType = TdbXmlRecord.TdbXmIRecordType.XML;

// Prepare the TdbxmlRecord instance to perform an
// export upon the next call to Get.
rec.PrepareExport(outputFileName);

// Perform the export. After successful completion of this
// command, the requested document has been exported to the
// specified file.

rec.get();

Stream export
Stream export (the I/O mode IOMode.Stream) is usable for the occasional export of very
large documents when the client and the server are located on separate machines.

During stream export, the client creates a dedicated HTTP listener on a TCP socket whose
port number is dynamically allocated or explicitly specified by the application. The XPI
request sent to the server indicates the temporary URL to which the document is to be
posted. When the export is complete, the listener shuts down.

page 217

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Please note that if an exception occurs while exporting in stream mode, the HTTP listener,
which is running on its own thread, may not be properly shut down. In order to avoid
hanging HTTP listener threads, always be sure to call the Close method on the
TdbXmlRecord object used for the export operation when the export has finished
(successfully or otherwise).

Example:
C#

using System.IO;)
using TietoEnator.Trip.Nxp.Database;
using TietoEnator.Trip.Nxp.Data;

pubTlic void InTineExport(TdbSession session,
TdbDatabaseDesign db,
int recordid,
String outputFileName)

// Create a new TdbxmlRecord object
TdbXxmTRecord rec = new TdbxXxmlRecord(session,db,false);

rec.Recordid = recordid; // The ID of the record to export
rec.NetworkStreampPort = 0; // Use dynamic port

// Use inTine mode for the export
rec.InputoutputMode = TdbxmlRecord.IOMode.Stream;

// Specify the file format to export the record as
rec.RecordType = TdbXmlRecord.TdbXxmIRecordType.XML;

// Prepare the TdbxmlRecord instance to perform an
// export upon the next call to Get.
rec.PrepareExport(outputFileName);

// Perform the export.
rec.get();

Update JSON/XML database records

The procedure for updating JSON/XML database records is the same as for creating new
ones; to import the required file. You need to make sure that the record instance is
referring to an existing record, however. To do this assign the Recordld property to the ID
of the record you wish to update, or use a record instance as returned from a search using
the TdbRecordSet class.

For a detailed code example, please refer to the TRIPnxp sample program XmlPut or the
TRIPjxp example class XmIExport.

page 218

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Using XPath Queries

While CCL can be used to query JSON/XML databases, using XPath is provides a much
better control of the query against such data. XPath queries works over all structured
records (JSON and XML) in the currently open database. For a description of the syntax,
refer to the document “JSON and XML Databases”, available in the TRIPsystem
documentation set.

Using XPath with the TdbSearch Class

The ExecuteXPath method was added to the TdbSearch class in version 2.1-0. This
method takes an XPath expression that is evaluated to a TRIP search set matching the
specified expression.

Method: TdbSearch:ExecutexPath

Type: void
Throws: TdbException

Java
void executeXPath(String xpathStatement)
.Net

void ExecutexPath(String xpathStatement)

This method executes an XPath statement as a query. A JISON/XML database
must be open in order for this to work.

Use ExecuteXPath method just like you would use the Execute method. The behavior with
respect to TdbSearch state and usage is the same. However, for retrieval of records, you
should either export the JISON or XML documents (see page 216), or retrieve the search
results as an XML fragment set (see page 221).

C#

using TietoEnator.Trip.Nxp.Data;

void XPathSearchTest (TdbSearch searchHandler)

searchHandler.ExecutexPath("//paral[@lang="EN']");
TdbSearchSet searchSet = searchHandler.LastSearchSet;

console.writeLine("{1} record(s)",searchSet.RecordCount);

Using XPath with the TdbRecordSet Class

In version 2.1 there is a new property IsQueryXPath (Java) and QuerylsXPath (.NET) that
you can use to specify that the query statement assigned to the Query property is an
XPath expression and should be executed as such.

page 219

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 iz:’ vision
group

Property: TdbRecordset:QueryIsxPath

Type: boolean
Access: Read, Write

Java
boolean isQueryxpath()
void setQueryxPath(boolean enable);
.Net
bool QueryIsxpath { get; set; }
Establish whether the query statement is an XPath experssion.

So to execute an XPath query via the TdbRecordSet class, the only thing that sets the
procedure apart from executing CCL queries is that you need to set the aforementioned
property to true before calling get().

Java

TdbRecordSet rs = new TdbRecordSet(session);
rs.setDatabase("myxmlbase");
rs.setQuery("//paral[@lang="En']");
rs.setQueryxpath(true) ;
rs.setFrom(1l);

rs.setTto(5);

rs.get();

VB.Net

Dim rs as New TdbRecordSet(session)
rs.Database = "myxmlbase"

rs.Query = "//para[@lang="En']"
rs.QueryIsXPath = true

rs.From = 1

rs.To = 5

rs.cet()

Using XPath with the TdbCclCommand Class

The ExecXPath method was added to the TdbCclCommand class in version 2.1-0. This
method takes an XPath expression that TRIP evaluates to a search set matching the
specified expression.

page 220

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

Method: TdbCclCommand:ExecXPath

Type: void
Throws: TdbException

Java
void execXPath(String xpathStatement)
.Net

void ExecXPath(String xpathStatement)

Executes an XPath statement as a query. A JSON/XML database must be open in
order for this to work.

Retrieving Search Results as XML Fragment Sets

If you have a search set that contains XML and/or JSON documents, and you only want to
get fraction of the contents from each document, you can ask TRIP to generate such an
extract itself instead of you having to retrieve all documents to your application and
process them there. What you get is a single XML document that contains fragments from
the documents in the search set.

Method: TdbSearchSet:AsFragmentSet

Type (Java): XmlDocument
Type (.NET): org.w3c.dom.Document
Throws: TdbException

Java

Document asFragmentSet(String xpathExpression,
int from,
int to,
boolean hitMarkup);

.Net

XmlDocument AsFragmentSet(string xpathExpression,
Int32 from,
Int32 to,

bool hitMarkup);

This method retrieves a document containing XML fragments from the specified
range of records in the current search set, optionally with hit markup applied.

The retrieved fragments will only be those matched by the supplied XPATH
expression; if this expression does not match a certain record in the current search
set, no fragments (and hence no information) from that record will be retrieved.

page 221

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 jE:’ vision
group

Example of fragment set retrieval:
C#

using TietoEnator.Trip.Nxp.Data;

XmiDocument FragmentTest (TdbSearchSet sset)

return sset.AsFragmentSet("//para[l]",1,2,false);

The XML document produced by the above example could look like this:
XML Fragment Set Example
<?xml version="1.0" encoding="UTF-8" standalone="no" 7>

<tripxml:FRAGMENTSET _ _
xmins:tripxml="http://www.tieto.com/trip/xml"
tripxml: FRAGMENTCOUNT="2" tripxml:RECORDCOUNT="129"
tripxml:SEARCHSET="1">
<tripxml:FRAGMENT tripxml:DATABASE="XPATHTEST" tripxml:RID="1">

<para lang="EN">I love money, but not that despicable
Mr. Simpson.</para>

</tripxml: FRAGMENT>

<tripxml:FRAGMENT tripxml:DATABASE="XPATHTEST" tripxml:RID="2>
<para>wWelcome to TRIPxml version 3.0-0!</para>

</tripxml: FRAGMENT>

</tripxml:FRAGMENTSET>

Although the above example shows one fragment from each document, any number of
fragments may actually be returned from a single document (even none at all). The
number of fragments produced from each document depends entirely on the XPath
expression used to select the fragments. The fragments from a single document always
come together and in document order.

Note that the attribute FRAGMENTCOUNT is not the number of fragments, but the
number of records matched by the XPath expression used to extract the fragments.

page 222

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

21. Facets

Definition

Attributes or other characteristics of objects that when used to classify objects often are
referred to as facets. Such classification is used in faceted search to enable the user to
easily navigate and drill down into a data set.

Facets in TRIP

A facet is a classification by the above definition. The values of a facet are in the case of
TRIP taken from the live data in the currently opened database or cluster. There is no
separate facet definition that needs to be set up. Facets can be set up, used and dropped
without any sort of design or other definition required in advance.

Facet Classes
There are four facet classes in TRIPnxp and TRIPjxp, all of which derive from the abstract
base class TdbFacet:

Class: TdbFacet

Derived from: IEnumerable
Located 1in: facet

A database for which a TRIP classification scheme been enabled can be used with the
TdbClassificationFacet. The values for this facet class are the automatically assigned
classification categories.

Class: TdbClassificationFacet

Derived from: TdbFacet
Located 1in: facet

The values of fields in TRIP databases can be used as facet values using the
TdbFieldTermFacet class. It generates facets in a fashion quite similar to the way term
lists are generated by a display order.

Class: TdbFieldTermFacet

Derived from: TdbFacet
Located 1in: facet

The TdbKvpFacet class generates facets based on a key/value pair (KVP) display order,
using the values from one field as facet names, tupled with another field that contains the
facet values.

Class: TdbKvpFacet

Derived from: TdbFacet
Located 1in: facet

Some facets are of a type that have no explicit values that can be used directly, but must
be derived instead. TRIPnxp and TRIPjxp offers one way to do this using the
TdbSearchFacet class. Each facet value is one search result. For example, date ranges
can be used as facets using this class.

Class: TdbSearchFacet

Derived from: TdbFacet
Located 1in: facet

page 223

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Using TRIP Facets

The TdbFacetSet Class
A facet search user interface tend to use multiple facets. Because of this, the facet
implementation in TRIPnxp and TRIPjxp contains the class TdbFacetSet.

Class: TdbFacetSet

Derived from: TdbMessageProvider
Located in: facet

This class is the means by which facet values are retrieved from TRIP. You prepare it by
adding TdbFacet instances to it that define the facets to retrieve values for. Then values
for all facets are retrieved at the same time. If a facet happens to be associated with a lot
of values, only the first few values will actually be fetched immediately. The remaining
values will be automatically retrieved as they are requested by the application.

The TdbFacetValue Class
The values of a facet are retrieved from the facet classes in the form of instances of
TdbFacetValue.

Class: TdbFacetvalue

Derived from: Object
Located 1in: facet

The easiest way to use it is to use the facet instance (i.e. TdbFacet subclass instance) as
a collection and iterate over it.

Facet Example
Generate a field term facet with the 10 most frequent values from the PERSON field in the
ALICE database, but with minimum frequency set to 2.

C#

TdbFacet facet

new TdbFieldTermFacet("PERSON");
facet.Database = "ALICE";
facet.sortorder = TdbFacetSortorder.valueAscending;

facet.SetFrequencyLimits(10, 0);

TdbFacetSet fs = new TdbFacetSet(session);
fs.Add(facet);
fs.Get();

It is also possible to take the facet values from a search set instead of directly from a
database. To do this, replace the "facet.Database" assignment with an assignment of the
"facet.SearchSet" property.

NOTE: The FetchFrom and FetchTo properties have been DEPRECATED without
replacement. These values are no longer used, and the associated properties will be
removed in a future release. All retrieval of facet value ranges is now fully automatic. If
your application sets FetchFrom and/or FetchTo, it must be modified. Use the GetValue
method on the TdbFacet instance to access the values you need.

page 224

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Facet Baselines

Version 7.2-1 of TRIPsystem and TRIPjxp/TRIPnxp introduced a feature referred to as
“facet baseline”. This makes it possible to recall a previous, initial set of facet values so
that a new facet request can 1) include the previous and 2) add values from the baseline
to the new result if the new result is smaller than the requested range.

Each facet in a TdbFacetSet is individually configured for baseline use. The first step is to
define a baseline. This is done when then facets are configured for retrieval as a facet set,
using the new TdbFacet properties RegisterBaseline, BaselineSize and BaselineKey.

Property: TdbFacet:RegisterBaseline

Type: bool
Access: Read, Write

Java

void setRegisterBaseline(boolean enable)
boolean isRegisterBaseline()

.Net

void RegisterBaseline { get; set; }

Register a new baseline by setting the property to true. A registration can be
cancelled before the TdbFacetSet.Get method is called by setting this property
back to false.

Property: TdbFacet:BaselineSize

Type: String
Access: Read, Write

Java

int getBaselineSize()

void setBaselineSize(int size);
.Net

int BaselineSize { get; set; }

Set the number of facet values to store in the baseline for this facet. The default
and minimum number is 100.

Property: TdbFacet:BaselineKey

Type: String
Access: Read, Write

Java

String getBaselinekey()

void setBaselineKey(String key);
.Net

String BaselineKey { get; set; }

Set a key identifying the facet baseline to set or use. This is by default the same as
the name supplied to the constructor. You will normally not have to set this

page 225

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

property, unless you have more than one field term facet for the same field, or you
have a search facet against the same field as a field term facet.

When the facet set that includes the baseline definitions is executed, the facet results are
stored as baselines. The baselines remain active and possible to use in the current
session until either:

e A new baseline requested for the same facet. This will only affect the facet
specifying the new baseline, although one would normally specify new baselines
for all facets at the same time.

e The database open for search is changed. This affects all facets. After a BASE
command (explicit or implicit), facet baselines should be re-registered.

e The application calls the TdbFacetSet.removeBaselines method.

The facet values returned as part of the request to establish a baseline can be used
normally by the application. These facet value would typically represent an initial
navigational state, e.g. after just having started a new session, or opening a new or
different database or cluster.

Once the baseline is established, subsequent facet requests will have to specify that they
wish to use the previously established baseline. This is done by using the new property
TdbFacet.UseBaseline and (if needed) the TdbFacet.BaselineKey property.

Property: TdbFacet:UseBaseline

Type: bool]
Access: Read, Write

Java

String isUseBaseline ()

void setUseBaseline(Boolean enable);
.Net

bool UseBaseline { get; set; }
Set to true to use a previously registered baseline for this facet.

A facet request with the UseBaseline property set to true must use the same definition as
the facet used to establish the baseline. For classification, field and KVP facets this means
the same field (the mask and search set may vary). For search facets, this means the
order of the queries that comprise the facet.

NOTE: The BaselineSize property of the TdbFacet class has been DEPRECATED and is
from version 8.0 of TRIPsystem no longer used. The assignment of this property is only
valid for TRIPsystem 7.2.

page 226

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Facet Baseline Registration Example
Register baselines for two facets.

C#

TdbFacetSet fs new TdbFacetSet(session);

TdbFacet facet = new TdbFieldTermFacet("PERSON");

facet.Database = "ALICE";
facet.RegisterBaseline = true;

fs.Add(facet);

facet = new TdbFieldTermFacet("SPEAKER");
facet.Database = "ALICE";
facet.RegisterBaseline = true;

fs.Add(facet);

fs.Get();

As mentioned, this produces the same results as a normal facet request would. So after a
successful call to TdbFacetSet.get(), the application would typically render the facets and
facet values as it normally does.

page 227

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Facet Baseline Usage Example
Request facet values that makes sure that values missing from the new request are
included from the baseline, so that the number of values per facet remain fixed.

Cc#
// ‘search’ is here assumed to be instance of TdbSearch that
// previously has been used to open the database ALICE.

search.eExecute(“FIND CARPENTER”);

TdbFacetSet fs

new TdbFacetSet(session);

TdbFacet facet = new TdbFieldTermFacet("PERSON");
facet.SearchSet = search.LastSearchSet.Searchild;
facet.UseBaseline = true;

facet.BaselineAtEnd = true;

fs.Add(facet);

facet = new TdbFieldTermFacet("SPEAKER");
facet.SearchSet = search.LastSearchSet.Searchid;
facet.UseBaseline = true;

facet.BaselineAtEnd = true;

fs.Add(facet);

fs.Get();

This example would without baselines result in 8 values for the PERSON field facet and 2
values for the SPEAKER field facet. But with baselines we get the complete list of 10 facet
values returned for each facet (102 and 60, respectively).

Setting BaselineAtEnd to true means that we get the facet values that are present in the
search first, and values that are only present in the baseline at the end of the list.

page 228

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Facet Scrolling Usage Example

If the number of values for a facet is large, applications tend to only display a smaller
range of values in the user interface. The values are typically rendered in a widget that
allows scrolling. When the user scrolls, additional values are displayed.

The application does not necessarily have retrieved all values up front (and neither should
it). If it doesn’t have access to the same TdbFacet instances that originally were used to
obtain the first values, the OpenExisting property can be used.

NOTE: This only works with baselined facets.
C#

TdbFacetSet fs new TdbFacetSet(session);

TdbFacet facet = new TdbFieldTermFacet("PERSON");
facet.UseBaseline = true;

facet.OpenExisting = true;

facet.BaselineAtEnd = true;

fs.Add(facet);

facet = new TdbFieldTermFacet("SPEAKER");
facet.UseBaseline = true;
facet.OpenExisting = true;
facet.BaselineAtEnd = true;

fs.Add(facet);

fs.Get();

This example would recreate the TdbFacet instances for the latest facet request. The
application can after this proceed to retrieve the values to be displayed in the user
interface using the GetValue method.The benefit here is that this is very quick since no
search or DISPLAY operation has to be performed to retrieve the facet values from the
TRIP database — it is all there already.

page 229

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

22. Graphs
TRIP is from version 7.1 of TRIPsystem supporting graph databases. APIs for this are
available in version 3.1 of TRIPjxp and TRIPnxp.

Graphs in TRIP
A graph is a structure that uses vertices, edges and properties to represent data. A graph
database is a database that use graph structures.

When creating a database in TRIPmanager 7.1 and later, it is possible to choose to create
a graph database. This kind of database design is primarily used by the graph
implementation in TRIP in order to store and represent edges. An edge is a relation
between vertices (nodes), and a vertex in the TRIP graph implementation is a regular
record. Any kind of record in any database on the local system. The records used as
vertices in a TRIP graph do not have to be explicitly created for use in a graph, nor do they
have to be modified in order to be used.

Graphs in general can be directed or undirected. An edge in an undirected graph states
that the associated vertices are related in a bidirectional manner. If A and B are related, it
goes both ways. An edge in a directed graph is unidirectional - it only goes one way. In
order to state bi-directionality in such a graph, two edges are required.

TRIP graphs are directional in order to enable the representation of graph data where the
edge direction matters (e.g. a street map with some one-way streets).

Main Graph Classes

The main graph class in TRIPjxp and TRIPnxp is TdbGraph. An instance of this class
represents a graph database and via this instance the application can access graph query
and navigation operations.

Class: TdbGraph

Derived from: TdbMessageProvider
Located 1in: graph

The TdbGraph class does not provide all functionality itself. While it can be used to create
graph edges and a simple kind of vertices, the main search and navigation funcitonality is
available in the TdbGraphSet class, an instance of which can be obtained using the
GraphSet property of the TdbGraph class.

Class: TdbGraphset

Derived from: Object
Located in: graph

The TdbGraphSet class is abstract. Its subclasses are TdbGraphDatabase and
TdbSubGraph.

Class: TdbGraphbDatabase

Derived from: TdbGraphset
Located 1in: graph

The TdbGraphDatabase class represents an entire graph database.

page 230

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Class: TdbSubGraph

Derived from: TdbGraphset
Located in: graph

The TdbSubGraph class represents the result of a graph search operation, which in TRIP
always is a subgraph.

Basic Graph Operations

Source, Target and Edge Sets

TRIP is inherently set based, and so is its graph implementation. When executing a graph
search or navigation operation, search sets of three types must be specified. The source
set is a set of vertices that will act as starting point for the graph operation. The edge set is
the set of graph edges to restrict your operations to. The target set is the set of vertices
you want to restrict your results to.

Employed

Edge set

Source set Target set

(PERSON.1 i (COMPANY.1 i
;) PERsON2 | | COMPANY.2 | !
i [PERSON.4 | [COMPANY.4 |
; SON.3 | ; |
: C : : C :

The set number 0 (zero) indicates the "universal set", i.e. that no restrictions are to be
imposed. In contrast to regular TRIP semantics, search set zero does not refer to the last
executed search.

Note that if the edges are traversed backwards, the target and source sets switches roles
because of the semantics of the operation.

page 231

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:]) vision
group

Forward Navigation
Forward navigation starts from a set of one or more vertices and follows edges from there.
Edges can be specified by name, e.g. FRIEND, LIKE, etc.

To use forward navigation, use the Follow method of the TdbGraphSet class.
Method: TdbGraphSet:Follow

Type: TdbGraphset
Throws: TdbException

Java
TdbGraphset follow(String edge, int targetSet);
.Net

TdbGraphSet Follow(string edge, int targetSet);
This method is called on the TdbGraphSet instance representing the edge set.

The Follow method works on the graph database itself. Normally, one or a few specific
source vertices are required by the operation, so these must be selected before the Follow
method can be invoked. This is done by calling the Source method. This turns a search set
with the relevant vertices into a graph set where the vertex records are used as source
vertices in the edge records in the graph.

Method: TdbGraphSet:Source

Type: TdbGraphsSet
Throws: TdbException

Java
TdbGraphSet source(int searchSet);
.Net

TdbGraphSet Source(int searchSet);

This method is called on the TdbGraphSet instance representing the graph edge
set.

An example. Assume that we have a set nr 3 that consists of regular TRIP records
representing users in a social web site. We wish to find out what these users LIKE.

Java
TdbGraphSet edgesFromuUsers = graph.source(3);

TdbGraphset likes = edgesFromuUsers.follow("LIKE",0);
The set 'likes' now contains the LIKE edges from the users specified by set 3.

Backward Navigation

The TRIP graph representation uses directional, one-way edges. This means that it is
possible to represent relationships between two objects that goes one way, but no both, in
an unambiguous way.

This means that a bi-directional relationship in TRIP must have two edges. One in each
direction. But sometimes that is not strictly necessary nor desired, but it still is so that
some use cases involves following the relationships in the reverse direction.

page 232

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Backward navigation thus involves following the edges in reverse direction. The method to
use is called Backtrack:

Method: TdbGraphset:Backtrack

Type: TdbGraphset
Throws: TdbException

Java
TdbGraphSet backtrack(string edge, int sourceSet);
.Net

TdbGraphset Backtrack(string edge, int sourceSet);

This method is called on the TdbGraphSet instance representing the graph edge
set.

The Backtrack method works on the graph database itself. Normally, one or a few specific
target vertices are required by the operation, so these must be selected before the
Backtrack method can be invoked. This is done by calling the Target method. This turns a
search set with the relevant vertices into a graph set where the vertex records are used as
target vertices in the edge records in the graph.

Method: TdbGraphSet:Target

Type: TdbGraphset
Throws: TdbException

Java
TdbGraphSet target(int searchSet);
.Net

TdbGraphset Target(int searchSet);

This method is called on the TdbGraphSet instance representing the graph edge
set.

An example. Assume that we have a set nr 3 that consists of regular TRIP records
representing users in a social web site. We want to find out what other users LIKE the
ones in set 3.

Java
TdbGraphSet edgesFromuUsers = graph.target(3);

TdbGraphset likes = edgesFromuUsers.backtrack("LIKE",O0);
The set 'likes' now contains the LIKE edges to the users specified by set 3.

Resolving Vertices

The results of the Follow, Backtrack, Source and Target methods are all graph sets, i.e.
they consist of edges. This is fine as long as the (navigation) operation continues within
the graph. But eventually, the application will want to access a set with the actual vertex
records. This is done using the methods ResolveTargets and ResolveSources.

page 233

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Method: TdbGraphSet:ResolveTargets

Type: TdbSearchsSet
Throws: TdbException

Java
TdbSearchSet resolveTargets();
.Net

TdbSearchset ResolveTargets();

This method is called on the TdbGraphSet instance representing the graph edge
set with the targets to resolve.

Method: TdbGraphSet:ResolveSources

Type: TdbSearchsSet
Throws: TdbException

Java
TdbSearchset resolveSources();
.Net

TdbSearchset ResolveSources();

This method is called on the TdbGraphSet instance representing the graph edge
set with the sources to resolve.

By adding target vertex resolution to the Forward navigation example, the code will look
something like this:

Java
TdbGraphSet edgesFromuUsers = graph.source(3);
TdbGraphset likes = edgesFromuUsers.follow("LIKE",0);

TdbSourceSet liked = Tlikes.resolveTargets();

And the Backward navigation example with source vertex resolution will look like this:
Java
TdbGraphSet edgesFromuUsers = graph.target(3);
TdbGraphSet 1likes = edgesFromuUsers.backtrack("LIKE",O0);

TdbSourceset fans = likes.resolveSources();

In either case, the result is a TdbSourceSet object that refers to a regular TRIP search set
with the records acting as sources and targets, respectively, in the resolved graph set.

Transitive Search

The previous examples used a social network type of scenario where users LIKE things.
Such relationships are not transitive. If they were, it would mean that if user A likes B and
user B likes C, then it would follow that user A likes C. This is clearly not automatically the
case and is not normally the semantics of the LIKE relationship.

page 234

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:)) vision
group

Some relationships are transitive. Take a road map that shows roads between cities, for
example. The semantics of the ROAD relationship is clearly transitive. If somebody can
drive between Dusseldorf and Cologne and between Cologne and Frankfurt, it follows that
somebody can go from Dusseldorf to Frankfurt via Cologne.

Whether or not an edge (a relationship) is transitive is not something that TRIP enforces or
controls. The semantics is up to the application to determine in this case.

While the Forward and Backtrack methods can be used in sequence to perform a
transitive type of graph search, the Transitive method offers a quicker way to do this.

Method: TdbGraphSet:Transitive

Type: TdbSearchset
Throws: TdbException

Java

TdbGraphset transitive(int sourcesSet, int targetsSet,
String[] edgeNames, int maxDepth,
boolean reverse, boolean allEdges);

.Net

TdbGraphset Transitive(int sourcesSet, int targetsSet,
String[] edgeNames, int maxDepth,
bool reverse, bool allEdges);

This method is called on the TdbGraphSet instance representing the sub to
perform the transitive search within.

The sourceSet parameter indicates the regular search set that specifies the
vertices from which to start the transitive search operation. This parameter is
required and must not be zero.

The targetSet parameter can be used to restrict the transitive search to a specific
set of vertices, e.g. destination(s) in a road map scenario. If no restriction is
needed, pass zero to indicate the universal set.

The edgeNames parameters is an array of edge names. This specifies what edges
to traverse. Pass null or an empty array to traverse all kinds of edges.

The maxDepth parameter can be used to limit the search depth. Pass zero to allow
the entire graph to be traversed.

In order to perform a transitive search in reverse direction with regard to the edges,
set the reverse parameter to true. Note that this swaps the roles of the sourceSet
and targetSet parameters; sourceSet will indicate the starting points being the
target vertices of the edges, and targetSet indicates the destination vertices being
the source vertices to find.

Passing true to the allEdges parameter indicates that the returned graph set should
contain all the edges traversed in the transitive search. Passing false will only
return the final edges that refer to the destination vertices.

page 235

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

As an example of a transitive search we'll use a genealogy scenario. Assume that there is

a graph with CHILD edges. A transitive search in a forward direction will find descendants,
and in the reverse direction it will find ancestors. The following example shows how to find

the children and grandchildren of a certain individual or individuals indicated by search set
number 3.

Java

TdbGraphSet edges = graph.transitive(3,0,new String[]{"CHILD"},
2,true,true);

TdbSourceSet descendants = edges.resolveSources();

Graph Path Analysis

Path analysis is a fairly common task when using graphs. The methods described
previously in this chapter can be used for this purpose, but they leave it up to the
application to string edges up to form paths, determine the shortest path, and avoid getting
trapped in circular paths.

TRIP uses a set-based approach to path analysis. Instead of traversing each edge
individually and analyze the vertex to find the outgoing edges for the next steps, TRIP
processes all edges in parallel for all vertices at the same level of traversal depth. This is
different than established algorithms such as Dijkstra's, but makes better use of TRIPs
behavior than a more vertex oriented approach would.

The three small graphs in the above illustration shows how this type of path analysis
works. All outgoing edges from the current source vertices at each stage are all analyzed
simultaneously (current analysis step marked in red). Each such step generates one
search set internally in TRIP.

TRIPjxp and TRIPnxp makes two path analysis methods available to the application;
FindPaths, and ShortestPath. These methods return instances of the TdbGraphPath class.

Class: TdbGraphPath

Derived from: TdbSessionObject
Located in: graph

This class represents a path through a graph.

page 236

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

The FindPaths method:
Method: TdbGraphSet:FindPaths

Type: TdbGraphpPath[]
Throws: TdbException

Java

TdbGraphset findpaths(int startsSet, String[] edgeNames,
int targetSet, int maxDepth,
boolean reverse);

.Net

TdbGraphset FindPaths(int startsSet, String[] edgeNames,
int targetSet, int maxDepth,
bool reverse);

This method calculates all paths associated with the current graph set that use
vertices in the specified start set as origins (edge sources). This operation may
take a long time to complete for large graphs. Consider raising the session timeout
if the operation takes close to or more than one minute.

The ShortestPath method:
Method: TdbGraphsSet:shortestPath

Type: TdbGraphPath
Throws: TdbException

Java

TdbGraphset shortestPath(int startSet,
Sstring[] edgeNames,
int targetSet);

.Net

TdbGraphset shortestPath(int startSet,
String[] edgeNames,
int targetSet);

This method calculates the shortest path associated with the current graph. Paths
are calculated between vertices in the specified start and target sets. It is possible
to restrict the kind of edges to traverse by specifying an array of edge names. If the
edgeNames parameters is not null and not an empty array, any edge whose name
is not included will be ignored.

This analysis uses TRIP's own set-based edge approach and not a vertex based
algorithm such as Dijkstra's.

page 237

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 D vision
group

Example of path analysis call:
Java
// Create search sets with start and destination
TdbSearch search = new TdbSearch(session);
search.execute("BASE CITYINFO");
search.execute("FIND CITY=Frankfurt");
int sourceSet = search.getLastSearchset().getSearchid();
search.execute("FIND CITY=Cologne");

int targetSet = search.getLastSearchSet() .getSearchid();

// Open the graph
TdbGraph graph = new TdbGraph(m_session, "ROADMAP");

TdbGraphset gset = graph.getGraphset();

// Perfrom the path analysis
TdbGraphPath route;
string[] edgeNames = new String[]{"ROAD","HIGHWAY","STREET"};

route = gset.shortestPath(sourceSet, edgeNames, targetSet);

Dealing with Lengthy Path Analysis Operations

A graph path analysis operation may take a very long time to complete if the graph is large
or heavily interconnected. This section describes how to deal with such situations in the
application.

Session Timeout

The default session timeout is set to one minute (60000 milliseconds). This is most likely to
short for path analysis in even moderately sized graphs. To turn this up, use the timeout
parameter to the TdbTripNetSession constructor.

For example, setting the timeout to 45 minutes:

page 238

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

Java
// Login to TRIP using a 45 minute read timeout
TdbSession session;

session = new TdbTripNetSession("localhost",23457,"",2700000);

session.login("me","secret™);

Notificaitons

A notifcation is a type of signal sent from the server during the course of a lengthy
operation. Graph analysis notifications are sent for each level deeper into the graph the
analysis procedure steps and reports information on the current working state and the
candidate results so far.

In order to set up the application to receive graph notifications, the abstract class
TdbNotificationSink must be extended and the onGraphComforter method overridden. An
instance of the subclass must then be passed to the current TdbSession object via the
NotificationSink property. Finally, graph notifications are enabled by calling the
TdbSession method EnableNotification.

Example of a simple TdbNotifcationSink subclass:
Java

class GraphReport extends TdbNotificationSink

public GraphReport (TdbSession session) throws TdbException
{ super(session);

@verride
public boolean onGraphComforter] o])
(TdbGraphNotification notificationbDetail)
// TODO: Use the notification detail object

// Return true to continue with analysis and false to abort
return true;

}
Example of how to enable graph notifications:

Java

session.setNotificationSink(new GraphReport(session));
session.enableNotification(TdbNotificationType.GRAPH_ANALYSIS,true);

// To receieve actual path details, set the notification type
// on the TdbGraph object used. Oomitting this will only return
// current path counts.

graph.setNotificationType(]
TdbGraphNotificationType.PATH_SNAPSHOT,
true);

page 239

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i::’ vision
group

The TRIP Graph Query Language

TRIP implements a small graph query language tailored for TRIP's behavior and the way
that graph support is implemented in TRIP. Using this query language, an application can
perform several graph operations in sequence within the context of the same network
transaction. All operations supported by the graph query language are possible to do
programmatically, but such use will add performance overhead in terms of network traffic.
This overhead is reduced when using the query language.

Syntax

A query STATEMENT is a list of STEPSs, separated by the '/' character. A valid
STATEMENT must contain at least one STEP. Some steps may only be found at the
beginning of the statement, others may only be found at the end.

<STATEMENT> ::= <BEG-STEP> { "/" <MID-STEP> } ["/" <END-STEP>]

A query STEP can open a graph database (<GRAPH>), navigate forwards (<FOLLOW>),
navigate backwards (<BACK>), search transitively (<TRANSITIVE>), search transitively in
reverse (KREVERSE-TRANSITIVE>) resolve source vertices (<SOURCES>) and resolve
target vertices (KTARGETS>).

<BEG-STEP> ::= <GRAPH> | <FOLLOW> | <BACK> | <TRANSITIVE> |
<REVERSE-TRANSITIVE>

<MID-STEP> ::= <FOLLOW> | <BACK> | <TRANSITIVE> |
<REVERSE-TRANSITIVE>

<END-STEP> ::= <SOURCES> | <TARGETS>

Each step is has the search generated by the previous step as context.

The GRAPH Step

The GRAPH step opens a graph database for search. This can only be put as the first step
of the statement and can open a graph database, a permanent cluster of graph databases,
or create a runtime cluster of graph databases.

If the GRAPH step is absent, the currently open database must be a graph database or a
cluster of graph databases in order for the statement to execute successfully.

<GRAPH> ::= "GRAPH" "::" <IDENTIFIER>
| "GRAPH" "::" <CLUSTER-DEF>
<CLUSTER-DEF> ::= <IDENTIFIER> "(" <IDENTIFIER> { "," <IDENTIFIER> } ")"

Example of opening a single graph database:

GRAPH: : GRAPHBASE

Example of creating a runtime cluster of graph databases:

GRAPH: : GRAPHCLUSTER(MAPS_DE ,MAPS_SV,MAPS_FI)

The FOLLOW Step
The FOLLOW step does what the Follow method in TRIPjxp and TRIPnxp does. It
navigates edges in the graph from source to target.

<FOLLOW> ::= "FOLLOW" "::" <EDGE-NAME> [<FOLLOW-ARGS>]
<FOLLOW-ARGS> ::= "(" <SOURCE-SET> ")"
"(" <SOURCE-SET> "," <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ")"

page 240

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

The BACK Step
The BACK step does what the Backtrack method in TRIPjxp and TRIPnxp does. It
navigates edges in the graph from target to source.

<BACK> ::= "BACK" "::" <EDGE-NAME> [<BACK-ARGS>]
<BACK-ARGS> ::= "(" <TARGET-SET> ")"

| "(" <SOURCE-SET> "," <TARGET-SET> ")"

| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ")"

The TRANSITIVE Step

The TRANSITIVE step performs a forward-transitive search like what the Transitive
method in TRIPjxp and TRIPnxp can do. Transitive search may be depth-limited and its
result can be either all edges traversed or only the last set of edges traversed.

<TRANSITIVE> ::= "TRANSITIVE" "::" <EDGE-NAME> [<TRANSITIVE-ARGS>]
<TRANSITIVE-ARGS> ::= "(" <SOURCE-SET> ")"
"(" <SOURCE-SET> "," <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ","
<DEPTH> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ","
<DEPTH> "," <ALLEDGES> ")"

The REVERSE-TRANSITIVE Step

The REVERSE-TRANSITIVE step performs a backwards-transitive search like what the
Transitive method in TRIPjxp and TRIPnxp can do. Reverse transitive search may be
depth-limited and its result can be either all edges traversed or only the last set of edges
traversed.

<REVERSE-TRANSITIVE> ::= "REVERSE-TRANSITIVE" "::" <EDGE-NAME>
[<REVERSE-TRANSITIVE-ARGS>]
<REVERSE-TRANSITIVE-ARGS> ::= "(" <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ","
<DEPTH> ")"
| "(" <SOURCE-SET> "," <EDGE-SET> "," <TARGET-SET> ","
<DEPTH> "," <ALLEDGES> ")"

The SOURCES Step

The SOURCES step can only be put at the very end of the query statement. It resolves a
graph set of edges into a regular set with the records acting as source vertices in the
edges of the graph set.

<SOURCES> ::= "SOURCES"

The TARGETS Step

The TARGETS step can only be put at the very end of the query statement. It resolves a
graph set of edges into a regular set with the records acting as source vertices in the
edges of the graph set.

<TARGETS> ::= "TARGETS"

Miscellaneous Syntax Entities
An edge name is either an identifier naming the edge type or an asterisk, meaning that all
edges are valid:

<EDGE-NAME> ::= <IDENTIFIER> | "*"

page 241

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4]i:]’ vision
group

Set numbers are integers:

<SOURCE-SET> ::= <INTEGER>
<TARGET-SET> ::= <INTEGER>
<EDGE-SET> ::= <INTEGER>

Depth information is an integer indicating how deep a transitive search may go.

<DEPTH> ::= <INTEGER>

The ALLEDGES value is an integer that acts as Boolean, indicating if all a set of all edges
are to be returned from a transitive search or only the final set. Valid values are 0 for false
and 1 for true.

<ALLEDGES> := "0" | "1"

Graph Query APIs
The Query method of the TdbGraphSet class is used in order to use the TRIP Graph
Query Language.

Method: TdbGraphSet:Query

Type: TdbGraphQueryResult
Throws: TdbException

Java
TdbGraphQueryResult query(String statement);
.Net

TdbGraphQueryResult Query(String statement);

This method is called on the TdbGraphSet instance representing the total graph
database edge set.

The query, if successful, returns an instance of TdbGraphQueryResult that can be used to
explore the result.

Class: TdbGraphQueryResult

Derived from: TdbQueryResult
Located 1in: graph
Examples

Shared Interests

Finding out shared interests with ones friends. Assume a graph with the following
structure. Blue vertices are individuals, green are interests, violet edges denote FRIEND
relations and black edges denote INTEREST relations. Red is used to highlight the focus
of the current operation.

page 242

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

We start with the middle person and locate its friends:

]

Then we find out what they are interested in:

M

Then we check if any of those are such that our starting person also are interested in:

\M

Finally, we obtain the record(s) for the interest(s) we found:

W

In the TRIP Graph Query Language, we get the following expression. Set number 2 is
assumed to contain the record for the individual we want to find shared interests for.

GRAPH: : SOCIAL/FOLLOW: : FRIEND(2) /FOLLOW: : INTEREST/
BACK: : INTEREST(2) /TARGETS

Extended Social Network

Locating all friends, their friends, and their friends as well. This will be a forward transitive
search with a max depth of 3. Set number 2 is assumed to contain the record for the
individual we want to find shared interests for.

GRAPH: : SOCIAL/TRANSITIVE: :FRIEND(2,0,0,3,1)/TARGETS

Here we pass zeroes for the edge and target sets. This indicates that we wish to impose
no restriction on the edges and individuals we use in the search operation.

The set returned to the application would typically be used to display information like "you
have 12345 people in your extended network", or to process this set further in order to find
and display recent updates by these people.

page 243

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

The network we eventually find could have a topology like in the above illustration
(centered on the starting person).

Populating a Graph

A TRIP graph database consists of records representing edges, i.e. relations. These
relations are directional from a source vertex to a target vertex. Vertices are regular TRIP
records; they do not have to be created specifically for use with the graph database. Any
kind of record can be used as a graph vertex.

It is also possible to create records in a graph database that represent vertices. There are
two main uses for this:

1. The vertices are very simple objects, usually with one identifying string.

2. Need for additional graph data about existing records without having to modify said
records.

Create a Graph Database
Use TRIPmanager 7.1 or later to create a graph database. Select "graph" in the database
type dropdown list.

Mew Database / Thesaurus ﬂ

General Properties
Define the location of the database | thesaurus files mE

Files should be located using a logical name rather than a physical file path so that these files
can be moved around at a later date without affecting the design.

Name: | MYGRAPH

Database type: =
Available location names: ILDCAL_BASES j
Current mapping: I D:\TripData\DB

[Use a transaction log file for backup / restore

Description:

My graph database

< Back Cancel Help

page 244

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 :i:,’ vision
group

The graph database is a complete design with all fields required by TRIP to handle graph
database, but it is also possible to add custom fields to a graph database if there is a need
for it.

Adding an Edge
In order to add an edge record to a graph database, use the method CreateEdge on the
TdbGraph class.

Method: TdbGraph:CreateEdge

Type: TdbGraphPath
Throws: TdbException

Java

TdbGraphRecord createtEdge(String name, TdbRecord source,
TdbRecord target, boolean commit);

.Net

TdbGraphRecord CreateEdge(String name, TdbRecord source,
TdbRecord target, bool commit);

This method creates an edge record with a specified edge (relation) name between
a source and a target record. The record is committed before return if the commit
parameter is set to true. Set it to false in order to continue adding data to the
record. If set to false, the application needs to call the Commit method on the
returned record object.

Adding a Vertex
In order to add a vertex record to a graph database, use the method CreateVertex on the
TdbGraph class.

Method: TdbGraph:Createvertex

Type: TdbGraphPath
Throws: TdbException

Java

TdbGraphRecord createvertex(String label,
TdbRecord reference,
booTlean commit);

.Net

TdbGraphRecord Createvertex(String label,
TdbRecord reference,
bool commit);

This method creates a vertex record with a specified label. The label can be any
value, but it is recommended that it is a unique value if the reference record is not
set. The reference record will, if specified, associate the vertex with another record
on the system. The record is committed before return if the commit parameter is
set to true. Set it to false in order to continue adding data to the record. If set to
false, the application needs to call the Commit method on the returned record
object.

page 245

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

Modifying a Graph Record

The TdbGraphRecord class is used both in order to add further data to a record before it is
committed for the first time, and to update it at a later stage. Instances of this class can be
created directly using its constructors, or obtained via the TdbRecordSet and
TdbSearchSet classes.

Class: TdbGraphRecord

Derived from: TdbRecord
Located 1in: data

The class contains methods for the manipulation of edges and vertices. Note that a graph
record cannot change characteristics once it has been created. |.e. an edge must remain
an edge and a vertex must remain a vertex. While circumventing this restriction is
possible, it is NOT recommended because it will risk breaking the graph.

page 246

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE v8.4 i:,’ vision
group

23. Cancelling Commands

In some circumstances it is necessary to be able to send a new request without having to
wait for the previous one to finish. For example, a web application handling a field with
search suggestions will cause rapid re-issuing of new versions of the search order. In such
a situation, waiting for the previous order to complete is unnecessary since it will contain
results that already are obsolete.

With TRIP 7.2 it is possible to cancel such commands from another thread.

To enable this functionality, first enable comforter notifications for the session object,
passing the COMFORTER type and ‘true’ to enable to the EnableNotification method on
the session object.

Method: TdbSession:EnableNotification

Type: void
Throws: TdbException

Java
session.enableNotification(TdbNotificationType, boolean);
.Net

Session.EnableNotification(TdbNotificationType, bool);

In order to be able to cancel a command, the property ‘cancelable’ needs to be set to true
on the object responsible to the command before the command is executed.

Property: TdbSessionObject:Cancelable

Type: Boolean
Access: Read, Write

Java

boolean isCancelable();

void setCancelable(boolean);
.Net

bool Cancelable { get; set; }

In order to cancel a running command, call the Cancel method on the object from another
thread.

Method: TdbSessionObject:cCancel

Type: void
Throws: TdbException

Java
void cancel();
.Net

void Cancel();

page 247

digital
TRIPNXP & TRIPJXP PROGRAMMER’S GUIDE V8.4 D vision
group

For example:
Java

session.enableNotification(TdbNotificationType.COMFORTER,true);

TdbCclCommand cmd = TdbCclCommand(session);
cmd.setCancelable(true);
Thread cmdThread = new Thread(new Runnable() {
@verride
void run() {

cmd.execDirect(query);

D
cmdThread.start();

cmd.cancel(Q);
cmdThread.join(Q);

cmd.execDirect(newQuery());

page 248

	Introduction
	Files and locations
	TRIPjxp for Java Programming
	TRIPnxp for .Net Programming

	Code sample format
	Package / Namespace conventions
	Class hierarchy
	Recommendations regarding search and retrieval
	Serializable objects
	Control objects

	1. Errors and exceptions
	2. Success messages
	3. Establishing / terminating a session
	Local connections
	TRIPnet connections
	Encrypted sessions

	Web connections
	Grid connections
	Authentication
	Logging into a physical connection
	Authenticating with a TRIPgrid session
	Logging out from a physical session

	Token-based Authentication
	Querying TRIPsystem Configuration
	API Keys
	Obtaining a Token Pair
	Refreshing a Token
	Revoking a Token Pair
	Other Token Considerations

	Accessing the session
	Activity logging

	4. Performing CCL commands
	Initializing the CCL command interpreter
	Executing commands
	Retrieving the result of the command
	Handling search history updates
	Handling term lists
	Handling hierarchical Display results
	Handling output buffers

	Notifications
	The Notification Mechanism
	Comforters

	Term lists loaded on demand

	5. Retrieving data from databases or search sets
	Preparing for retrieval
	Searched retrieval
	Reverse Retrieval
	Sorted results
	Defining result content
	Retrieving STring fields

	Processing results using TdbRecord
	Processing results in XML
	Structure of the XML response
	Transforming the result XML
	Hit terms in the XML
	Summary

	6. TdbSearch
	Rationale
	TdbCclCommand
	TdbRecordSet
	Requirements

	Creating a TdbSearch Instance
	The TdbSearch Class
	TdbSearch Constructor

	Executing CCL Statements
	Overview

	Performing a Search
	API Summary
	Search Example

	Fetching Structured Data
	Search Set Statistics
	Record Cache
	Record Retrieval
	TdbSearchSet in for-each loops
	Automatic Retrieval Templates
	Assigning a Custom Retrieval Template

	Using Output Formats

	7. Retrieving data from CONTROL
	Control objects
	Creating and using Control object lists
	Transforming Control object lists

	8. Updating databases
	Creating or retrieving single records
	Modifying or establishing the content of a TdbRecord
	Working with structured field types
	Working with TExt fields
	Working with STring fields

	Deleting single records
	Affecting multiple records with one request
	Multiple insert
	Multiple update
	Multiple delete

	Calling ASE Routines While Inserting or Updating a Record
	ASE List Properties on the TdbRecord Class
	The TdbCallAse Class
	Writing an ASE Routine

	9. Tuple Lists
	Creating a tuple list
	Specifying a tuple list using a field group
	Specifying a tuple list explicitly
	Ensuring presence of fields

	New tuples
	Accessing tuples
	Clearing tuples
	Removing tuples

	10. Managing databases and thesauri
	Creating a new database or thesaurus
	Modifying an existing database or thesaurus
	Deleting fields

	Copying an existing database or thesaurus
	Deleting existing databases and thesauri

	11. Managing formats
	Creating new formats
	Modifying existing formats
	Testing output formats
	Deleting existing formats

	12. Managing database clusters
	Creating a new cluster
	Modifying existing clusters
	Deleting existing clusters

	13. Managing classification schemes
	Creating a new scheme
	Modifying an existing scheme
	Managing categories within a scheme
	Creating new categories
	Retrieving existing categories
	Training a category
	Viewing training material for a category
	Removing training for a category
	Deleting an existing category

	Testing classification
	Using an existing TRIP database to create and train categories
	Deleting an existing classification scheme

	13. Managing access rights
	Working with access rights

	15. Managing users
	Creating new users
	Modifying the properties of an existing user
	Deleting existing users
	Changing ownership

	16. Managing user groups
	Creating new groups
	Modifying group membership
	Deleting existing groups
	Changing ownership

	17. Managing stored procedures
	Creating new procedures
	Create procedure based on a search
	Modifying existing procedures
	Deleting existing procedures

	18. Connection pooling
	19. Interaction with TRIPcof
	API overview
	Property TdbStringField:ExtractionTarget
	Property TdbTextField:TextExtractionInfo
	Class TdbTextExtractionInfo
	MethodTdbStringField:Convert

	Extracting text from a stream with server-side processing
	Extracting text from a previously stored file during update
	HTML conversion
	HTML conversion with HTML highlighting
	Example of client-side HTML conversion with highlighting
	Text Analysis
	Class TdbNlpInfo
	Text Analysis Example

	20. Using JSON/XML Databases
	Overview
	API overview
	Enumeration TdbXmlRecord.IOMode
	Enumeration TdbXmlRecord.XmlRecordType
	Class TdbXmlRecord

	Insert XML documents
	Inline import
	Direct file import
	Stream import

	Insert unstructured files in JSON/XML databases
	Inline import
	Direct file import

	Retrieve documents from a JSON/XML database
	Inline export
	Direct file export
	Stream export

	Update JSON/XML database records
	Using XPath Queries
	Using XPath with the TdbSearch Class
	Using XPath with the TdbRecordSet Class
	Using XPath with the TdbCclCommand Class

	Retrieving Search Results as XML Fragment Sets

	21. Facets
	Definition
	Facets in TRIP
	Facet Classes

	Using TRIP Facets
	The TdbFacetSet Class
	The TdbFacetValue Class
	Facet Example

	Facet Baselines
	Facet Baseline Registration Example
	Facet Baseline Usage Example
	Facet Scrolling Usage Example

	22. Graphs
	Graphs in TRIP
	Main Graph Classes

	Basic Graph Operations
	Source, Target and Edge Sets
	Forward Navigation
	Backward Navigation
	Resolving Vertices
	Transitive Search

	Graph Path Analysis
	Dealing with Lengthy Path Analysis Operations
	Session Timeout
	Notificaitons

	The TRIP Graph Query Language
	Syntax
	The GRAPH Step
	The FOLLOW Step
	The BACK Step
	The TRANSITIVE Step
	The REVERSE-TRANSITIVE Step
	The SOURCES Step
	The TARGETS Step
	Miscellaneous Syntax Entities

	Graph Query APIs
	Examples
	Shared Interests
	Extended Social Network

	Populating a Graph
	Create a Graph Database
	Adding an Edge
	Adding a Vertex
	Modifying a Graph Record

	23. Cancelling Commands

