
Copyright © 2024 Smaser AG

TRIP Connectivity Framework

Operating Manual

Version 1.5
UNIX and Windows

TRIPCOF OPERATING MANUAL

Page 2 of 34

End User License Agreement

All rights to this software, its documentation and logotypes of the TRIP product family and
software (altogether “Software”) supplied by Smaser AG (Smaser) are exclusively owned
by Smaser.

The transfer of this Software, solutions or parts thereof requires the prior written
agreement of Smaser. Furthermore, the customer has the right to use licensed Software
and / or process solutions supplied by Smaser to the extent specified in his contract with
Smaser.

The free-to-use non-commercial version doesn’t require a prior written agreement with
Smaser but such customers, organizations and/or third parties agree by using the software
and / or solution of Smaser to be strongly obliged to keep all rights to this software,
documentation and logotypes of the TRIP product family absolutely uninfringed and
protected.

TRIPCOF OPERATING MANUAL

Copyright © 2024 Smaser AG

Table of Contents

INTRODUCTION ... 5

ABOUT THIS DOCUMENT ... 5
RELATED DOCUMENTS ... 5
CONTENTS OF PRODUCT .. 5
DIFFERENCES FROM TRIPVIEW .. 5
DIFFERENCES FROM TRIPAGENT .. 6

USE CASES AND DEPLOYMENT ... 6

FILE FILTER USE CASES ... 6
Indexing: Text extraction without storage .. 6
Archiving: Text extraction and storage .. 7
Publishing: Storage and HTML conversion ... 7

IMPORT CONNECTOR USE CASES ... 8
Use TRIP as a search engine .. 8
Importing data for reuse... 8

DEPLOYMENT OPTIONS .. 9
Server-side .. 9
Client-side .. 9
TRIPview Considerations .. 9

FILE CONVERSION .. 9

TEXT EXTRACTION ... 9
Overview .. 9
Prerequisites .. 10
Server-side text extraction using TRIPjxp or TRIPnxp .. 10
Client-side text extraction using TRIPjxp or TRIPnxp ... 11
Alternatives for text extraction ... 11

HTML CONVERSION .. 11
Overview .. 11
Prerequisites .. 11
Server-side HTML conversion using TRIPjxp or TRIPnxp .. 12
Client-side HTML conversion using TRIPjxp or TRIPnxp .. 13
Alternatives for HTML conversion ... 14

IMPORT CONNECTORS .. 14

CONFIGURING THE STANDARD CONNECTORS ... 14
Configuring the file system connector (fsbot) .. 15

SETTING UP A DATA SOURCE FOR A CONNECTOR ... 15
Mapping document properties to TRIP fields .. 17
Mapping OS user and group names to TRIP .. 17
Creating a file system data source (fsbot) ... 17

USING IMPORT CONNECTORS .. 19
Listing existing data sources ... 20
Processing new and modified data in a data source ... 20
Processing only modified data in a data source .. 20
Checking a data source for deleted data ... 20
Running active monitoring interactively ... 21
Using cfwimport from scheduler software (e.g. Cron on Linux)... 21
Installing cfwimport as a service (Windows only) .. 21

USING DATA IMPORTED BY A CONNECTOR .. 22
Searching for by contents (extracted text) ... 22
Listing extracted document properties and their values .. 22
Defining read scopes ... 23

CUSTOM FILE FILTER ADAPTERS .. 24

CONCEPT OVERVIEW ... 24
ISOLATION ... 24

TRIPCOF OPERATING MANUAL

Page 4 of 34

IMPLEMENTING AN ADAPTER ... 24
Writing an adapter in Java ... 24
Writing an adapter in .NET .. 25

CONVERSION PROCEDURE ... 25
ERROR HANDLING .. 26
LOGGING ... 26
CONFIGURATION FILE ... 26

CUSTOM IMPORT CONNECTORS IN .NET ... 27

WRITING A CONNECTOR ... 27
CRAWLER PROCEDURE FOR NEW AND MODIFIED DATA ... 28
CRAWLER PROCEDURE FOR MODIFIED OR DELETED DATA ONLY .. 29
ERROR HANDLING .. 30
LOGGING ... 31
CONNECTOR CONFIGURATION FILE .. 31
DATA SOURCE CONFIGURATION FILE ... 31
DEPLOYMENT .. 32

APPENDIX A: SUPPORTED FILE FORMATS FOR TEXT EXTRACTION 33

APPENDIX B: SUPPORTED FILE FORMATS FOR HTML CONVERSION 34

TRIPCOF OPERATING MANUAL

Page 5 of 34

Introduction

About this Document
The TRIP Connectivity Framework (TRIPcof) provides access to file filter technologies and
to data import connectors. File filters provide text extraction and HTML conversion
components for use with TRIPsystem and selected TRIP SDK products. Import connectors
are used to import data from other data sources into TRIP for the purpose of search and/or
data reuse.

The collection of supported file formats and connectors is not a static set. Extensibility is at
the heart of the product and custom file format filter adapters and import connectors can
be written in Java and .NET to support file formats and data sources not handled by the
base product.

This manual for the TRIP Connectivity Framework describes:

• Common use cases and deployment scenarios

• How to use TRIPcof to add text extraction and HTML conversion features to
applications

• How to develop custom file filter adapters for use with TRIPcof.

Related Documents
Installation procedures and configuration options are not covered by this manual. Please
refer to the TRIPcof Installation Guide for more information on this topic.

Application development using TRIPnxp and TRIPjxp is not covered by this manual.
Please refer to the reference manuals for respective product and the "TRIPnxp & TRIPjxp
Programmer's Guide."

Contents of Product
The current version of TRIPcof contains the following components:

• Text extract filter for server execution (Windows, Linux, Solaris) and for client-side
use from TRIPnxp and TRIPjxp.

• HTML conversion filter for server execution (Windows, Linux, Solaris) and for
client-side use from TRIPnxp and TRIPjxp.

• SDK for Microsoft.NET and Java for the development of custom file filter adapters.

• Import connector framework that includes an SDK for Microsoft.NET for the
development of custom import connectors.

• Import connector for file systems.

Differences from TRIPview
TRIPcof is designed to be compatible with TRIPview (and TRIPview-C) with respect to the
text extraction and HTML conversion APIs in TRIPnxp and TRIPjxp. However, TRIPcof is
not TRIPview and its behavior is not the same in all aspects. TRIP applications should
therefore be validated against TRIPcof before TRIPcof is taken into production replacing
TRIPview or TRIPview-C. Below is a description of differences and known possible issues.

• No TRIPviewer. This TRIPview component is based on an OEM product included
in TRIPview and not in TRIPcof. It also requires TRIPclient, an older technology

TRIPCOF OPERATING MANUAL

Page 6 of 34

which no longer is recommended for use to create Windows based TRIP
applications. This technology is therefore not available in TRIPcof.

• TRIPclient use is not supported. The TRIPview APIs in TRIPclient are not
compatible with TRIPcof. In this situation we recommend to continue using
TRIPview or to rewrite such applications in TRIPnxp.

• TRIPjtk use is not supported. The TRIPview APIs in TRIPjtk are not compatible
with TRIPcof. In this situation we recommend to continue using TRIPview or to
rewrite such applications in TRIPjxp.

• The quality and availability of HTML hit highlighting depends on the file filter
adapter used for HTML conversion. The ability to convert a file to HTML does not
automatically mean that hit highlighting is supported, nor that the highlighting
exactly matches the hit locations in TRIP search results. Please refer to the
sections on the individual file filter adapters further on in this document for more
detail.

• Extraction of document properties during text extraction depends on whether the
file filter adapter and its underlying technology support property extraction.

• The structure and quality of the extracted text depends on the file filter adapter
used. Different adapters use different underlying technologies to parse files. Two
adapters who support the same file format may therefore produce a slightly
different structure of the extracted text.

Differences from TRIPagent
The import connector functionality in TRIPcof addresses the same type of use cases that
the now long-discontinued enterprise search module TRIPagent did. While conceptually
quite similar, they differ in some aspects:

• Connectors run on the TRIP server, bypassing the overhead of the TRIP network
communications protocol that caused TRIPagent to take a significant performance
hit. Talking directly to the TRIP database kernel allows TRIPcof to operate at
maximum efficiency with regard to reading and writing TRIP databases.

• The agent API in TRIPagent was more of an afterthought, as it was not originally
designed to be a public part of the product. It was therefore not always easy or
intuitive to use. TRIPcof comes with APIs for .NET and Java that simplifies the
process of writing custom connectors, allowing developers to focus more on the
data to import than on the use of the connector API.

Use Cases and Deployment

File Filter Use Cases

Indexing: Text extraction without storage
Brief description This use case applies to you if you want to make your existing

file-based information searchable in TRIP, but do not wish to
store the actual files in TRIP. TRIP will primarily be used as a
search engine.

Benefits The TRIP database (BAF file) will be significantly smaller than if
document copies are also stored in TRIP.

TRIPCOF OPERATING MANUAL

Page 7 of 34

Disadvantages Conversion to HTML will not be possible, since this requires that
the file to be converted is stored in TRIP.

Application
considerations

Consider using direct client-side text extraction to boost
performance. This means that TRIPcof must be installed on the
same machine with the (TRIPjxp/TRIPnxp based) application.

If TRIPcof is used in server-side operation together with
TRIPsystem, please note that there will be some extra overhead
caused by transmitting each file to process across the network to
the server.

Archiving: Text extraction and storage
Brief description This use case applies to those who want to create an archive or

content management style system that stores copies of the
original documents (or the actual original documents) in TRIP.
TRIP will be used as both a database and a search engine.

Benefits The full range of TRIPcof functionality is available, including
HTML conversion.

Disadvantages The size of the TRIP database (BAF file) will be much larger
compared to a database in which only the textual content of the
documents is stored.

Application
considerations

Only use server-side operation for text extraction. This minimizes
the amount of data that has to be sent between the application
and the TRIP server.

Publishing: Storage and HTML conversion
Brief description This use case applies if you want to publish documents stored in

a TRIP database to end users via the web, but only provide an
HTML rendition instead of a copy of the original document.

Benefits Returning an HTML version of a document can be a good idea if
you want to keep the original to yourself or if the file format of the
document is unusual and therefore unlikely to be readable by all
users.

Disadvantages HTML renditions are not perfect replicas. They will at best be an
approximation.

Some files can take a significant time to convert to HTML.
Especially files that contain a lot of images or files that are image
coded as a whole (such as certain types of PDF).

Application
considerations

Direct client-side operation is recommended, because a
generated HTML file is often accompanied by a set of image
files. Transferring these from the TRIP server to the application
may be complicated. Instead, fetch the document to convert to
the application, then have the application call TRIPcof directly
(via TRIPnxp or TRIPjxp) to perform the conversion.

If Multipart MIME (a.k.a. Web Archives, or .MHT files) is used

TRIPCOF OPERATING MANUAL

Page 8 of 34

as output from the HTML converter, please note that not all
browsers will be able to display this format. You will need a
browser extension to be able to view this format other
browsers than Internet Explorer. The benefit of the Multipart
MIME format is that HTML conversion can be done without
adverse problems even with only a server-side installation of
TRIPcof.

If large files (e.g. PowerPoints with over a hundred pages) are
converted to HTML using server-side operation, be prepared that
it may take some time. The default timeouts for a single c/s
request are all set to one minute. Consider raising these timeouts
(in TRIPnxp/TRIPjxp as well as in TRIPcof).

Import Connector Use Cases

Use TRIP as a search engine
Brief description Since TRIP has powerful search capabilities, it can be appealing

to regard TRIP more like a search engine than a database. This
use case involves importing data from other data sources into
TRIP so that TRIP can be used to search in those data sets. The
imported data is used for search only.

Benefits TRIP will be used to search in data imported from multiple
external data sources, some of which may not have good search
capabilities themselves.

Disadvantages TRIP is not a pure search engine. TRIP, also being a NoSQL
database, requires data to be stored in order to be indexed.
Duplication of some data is therefore unavoidable.

Application
considerations

TRIPcof will maintain one or more databases containing imported
data, making sure that it is regularly synchronized with changes
to the original data.

The responsibility of applications is therefore only to provide end
users search interfaces, possibly customized to the type of data
imported.

Importing data for reuse
Brief description NoSQL databases such as TRIP can be used to aggregate data

from other data sources so that the data can be further refined
and/or more conveniently reused. This use case involves using
TRIP as an aggregation database by keeping copies of extracted
data, possibly for further refinement.

Benefits TRIP will be used as a database and search engine for
potentially quite different types of data, and applications can work
with all manners of data using only TRIP.

Disadvantages Aggregation of data always some degree of redundancy, and this
use case can effectively involve the creation of a parallel version

TRIPCOF OPERATING MANUAL

Page 9 of 34

of the data that possibly may diverge from the original.

Application
considerations

TRIPcof is used to import data from other data sources. Once
imported, data is treated as a new, parallel version.
Synchronization of the imported data with changes to the original
data is typically not done.

Applications will likely be more than simple search portals, and
also used to manipulate and refine the data in various ways.

Deployment Options
TRIPcof can be installed on the server-side together with TRIPsystem, or on the client-side
together with TRIPnxp or TRIPjxp. The catch-all installation is the server-side one, but a
client-side installation can sometimes be preferable or used as a complement.

Server-side
Install TRIPcof together with TRIPsystem especially if:

• You want to store copies of the documents you extract text from in TRIP.

• You want to be able to use TRIPcof from any TRIP SDK product.

• You want to use the import connector functionality in TRIPcof.

Client-side
Install TRIPcof together with TRIPjxp or TRIPnxp especially if:

• You do not want to store copies of the documents you extract text from in TRIP.

• You want to perform HTML conversion to plain HTML.

TRIPview Considerations
Although it has been several years since the last and final version of TRIPview was
released, it supports a larger number of file formats for text extraction and HTML
conversion. TRIPview can therefore be considered to be more powerful than TRIPcof
when such operations are concerned.

This means than when using the text extraction and HTML conversion APIs in TRIPnxp
and TRIPjxp, they will always attempt to use TRIPview if it is installed. If you wish to
ensure that TRIPcof is used instead, you must not have TRIPview installed.

File Conversion
File conversion refers to the change of the representation of the file content from one
format to another. Conversion to plain text is referred to as "text extraction".

TRIPcof currently supports plain text and HTML as target formats for conversion.

Text Extraction

Overview
The process of extracting text from a file is almost identical when using TRIPcof and
TRIPview. The same classes and methods are involved in TRIPjxp and TRIPnxp.

TRIPcof also utilizes a backward compatibility layer that attempts to assure that also the
APIs in TRIPnxp and TRIPjxp that were originally written for TRIPview also can be used

TRIPCOF OPERATING MANUAL

Page 10 of 34

with TRIPcof, although the lack of filename as input argument in some of the backward-
compatible APIs means that TRIPcof is less likely to be able to locate a suitable file filter
adapter to use to extract text. Both TRIPnxp and TRIPjxp have from version 7.2 APIs that
are fully TRIPcof compliant.

Prerequisites
If you wish to use TRIPnxp or TRIPjxp with TRIPcof, you must avoid using the
TdbStringField.ExtractionTarget property. This has been made obsolete in favor of

the TdbTextField.TextExtractionInfo property. Continuing use of the

TdbStringField.ExtractionTarget property is not guaranteed to produce satisfactory results.

Server-side text extraction using TRIPjxp or TRIPnxp
Text extraction using TRIPjxp or TRIPnxp involves the use of the
TdbTextExtractionInfo class via the TdbStringField.ExtractionTarget property.

C# snippet, adapted from the CofClient sample in TRIPnxp, located in the directory
samples\CofClient under the TRIPnxp installation (for the Java equivalent, please refer

to the CofExtract example):

This code does the following, line by line:

1. Obtains a field object for the FILE_TEXT field that is to receive the extracted text
from a file

2. Opens a stream to the file data and assigns it

3. Assigns the name of the file (note: required argument for TRIPcof)

4. We want to store a copy of the file, so we specify FILE_BLOB as the field to
receive a copy of the file data

5. We want to extract document properties, so we specify PROP_NAME as the field
to hold the property names

6. We want to extract document properties, so we specify PROP_VALUE as the field
to hold the property values - this field is tupled with PROP_NAME

7. Set the ExtractText property to true to tell TRIP perform the text extraction upon the
commit of the record to which this field object is associated

For more information about text extraction in TRIPjxp and TRIPnxp, please refer to the
TRIPnxp & TRIPjxp Programmer's Guide version 2.2 or later, section "Interaction with
TRIPview and TRIPcof".

001 : TdbTextField fText =

 (TdbTextField)head.CreateField(db.GetFieldByName("FILE_TEXT"));

002 : fText.TextExtractionInfo.Stream =

 new System.IO.FileStream(filename, FileMode.Open);

003 : fText.TextExtractionInfo.FileName = filename;

004 : fText.TextExtractionInfo.BinaryCopyField = "FILE_BLOB";

005 : fText.TextExtractionInfo.PropertyNameField = "PROP_NAME";

006 : fText.TextExtractionInfo.PropertyValueField = "PROP_VALUE";

007 : fText.TextExtractionInfo.ExtractText = true;

TRIPCOF OPERATING MANUAL

Page 11 of 34

Client-side text extraction using TRIPjxp or TRIPnxp
Client-side text extraction requires a local installation of TRIPcof on the same machine
where TRIPjxp or TRIPnxp is running. The procedure is the same as for Server-side text
extraction above, aside from the addition of a single property assignment:

This tells TRIPnxp / TRIPjxp to find the local installation of TRIPcof (or TRIPview-C instead
if that is installed locally) and use it directly instead of going via TRIPsystem.

• TRIPnxp will look up the TRIPcof installation location TRIPCOF_HOME from the
registry.

• TRIPjxp requires TRIPCOF_HOME as system property or as environment variable
assigned the fully qualified path to the TRIPcof installation directory. If not
assigned, TRIPjxp cannot find TRIPcof and the text extraction procedure will fail.

Alternatives for text extraction
Text extraction always involves storing the extracted text into a text field. The following
combinations exist in which this may be performed.

• Uploading the contents of a file for text extraction, storing only the extracted text.

• Uploading the contents of a file for text extraction, storing the extracted text as well
as a copy of the original document. This alternative enables the use of HTML
conversion of the stored file.

• Storing the raw binary data of a file into a STRING field and later, possibly in
another session, extract the text of from the file data stored in this STRING field.

In addition, you can choose to store document properties discovered during text extraction
into a tupled pair of PHRASE fields, where one field holds the property names and the
other holds the property values.

Text extraction can be done server-side (using TRIPcof as a plug-in to TRIPsystem) or
client-side (using a local TRIPcof installation directly from TRIPnxp or TRIPjxp).

HTML Conversion
When using HTML conversion with hit highlighting, the highlighting information will be
taken from a TEXT field that contains the extracted text of the document. This field MUST
be defined with retained layout ("ORIG") in order for highlighting offsets to be correct.

Overview
The process of converting a document to HTML is almost identical when using TRIPcof
and TRIPview. The same classes and methods are involved in TRIPjxp and TRIPnxp.

Prerequisites
If you use TRIPnxp or TRIPjxp with TRIPcof, you must:

• For server-side HTML-conversion, you must use the classes TdbRendition or

TdbHighlightRendition with the constructor that takes three parameters and as

second parameter takes the name of a PHRASE field in which the original name of
the file to convert is stored.

• For client-side conversion, use the method Convert on the TdbStringField class.

fText.TextExtractionInfo.ClientSide = true;

TRIPCOF OPERATING MANUAL

Page 12 of 34

• If you wish to use highlighting, ensure that you have a file filter adapter installed
capable of highlighting the results and that it is enabled.

Server-side HTML conversion using TRIPjxp or TRIPnxp
Server-side HTML conversion using TRIPjxp or TRIPnxp involves the use of retrieval
templates. Use TdbRendition for normal output and TdbHighlightRendition for

highlighted output.

Java snippet, adapted and simplified from the CofConvert sample in TRIPjxp (for the .NET
equivalent, please refer to the CofClient sample in TRIPnxp):

This code does the following, line by line:

1. Creates a TdbRecord instance to act as a retrieval template.

2. Creates an instance of TdbHighlightRendition for HTML output as highlighted
multipart MIME and adds this to the retrieval template.

3. Creates a new TdbSearch instance.

4. Assigns the retrieval template to use

5. Disables creation of automatic retrieval templates

6. Opens the database in which the document to convert is stored.

7. Executes a query to locate the document

8. Obtains the TdbSearchSet instance that represent the latest search.

9. Get the first record from the search result.

10. Get the field object for the returned converted value of the FILE_BLOB field.

11. Write the conversion result to a file.

12. Close the TdbSearch instance and delete its associated search sets.

For more information about HTML conversion in TRIPjxp and TRIPnxp, please refer to the
TRIPnxp & TRIPjxp Programmer's Guide version 2.2 or later, section "Interaction with
TRIPview and TRIPcof".

001 : TdbRecord tmpl = new TdbRecord(session);

002 : tmpl.addToTemplate(new TdbHighlightRendition("FILE_BLOB","FILE_TEXT",

 "FILE_NAME", TdbRenditionType.MimeEncodedHtml));

003 : TdbSearch s = new TdbSearch(session);

004 : s.setRetrievalTemplate(tmpl);

005 : s.setAutomaticRetrievalTemplate(false);

006 : s.execute("BASE cofdemo");

007 : s.execute("FIND trip#");

008 : TdbSearchSet ss = s.getLastSearchSet();

009 : TdbRecord rec = ss.getRecord(0);

010 : TdbStringField str = (TdbStringField) rec.getHead().getField("FILE_BLOB");

011 : str.copyToFile(outputDirectory + "mydocument.mht");

012 : s.close();

TRIPCOF OPERATING MANUAL

Page 13 of 34

Client-side HTML conversion using TRIPjxp or TRIPnxp
Client-side HTML conversion extraction requires a local installation of TRIPcof. Note that
TRIPview-C it will be used instead if it is installed.

The procedure involves the use of the method Convert of the TdbStringField class. This
method is dedicated to client-side conversion and cannot be used for server-side
operation.

C# snippet based on the CofClient sample in TRIPnxp (for the Java equivalent, please
refer to the CofConvert example in TRIPjxp):

This code does the following, line by line:

1. Creates a TdbRecord instance to use as field template

2. Adds the field FILE_BLOB to the retrieval template.

3. Add the field FILE_NAME to the retrieval template.

4. Add the field FILE_TEXT to the retrieval template. Fetching the field in which the
extracted text is stored is necessary if hit highlighting is to be applied. Can be
omitted otherwise.

5. Create a new TdbSearch object.

6. Assigns the retrieval template to use

7. Disables creation of automatic retrieval templates

8. Opens the database in which the document to convert is stored.

9. Executes a query to locate the document

10. Obtains the TdbSearchSet instance that represent the latest search.

001 : TdbRecord tmpl = new TdbRecord(session);

002 : tmpl.AddToTemplate("FILE_BLOB");

003 : tmpl.AddToTemplate("FILE_NAME");

004 : tmpl.AddToTemplate("FILE_TEXT");

005 : TdbSearch s = new TdbSearch(session);

006 : s.RetrievalTemplate = tmpl;

007 : s.AutomaticRetrievalTemplate = false;

008 : s.Execute("BASE cofdemo");

009 : s.Execute("FIND trip#");

010 : TdbSearchSet ss = s.LastSearchSet;

011 : TdbRecord rec = ss[0];

012 : TdbComponent h = r.Head;

013 : TdbStringField blob = (TdbStringField) h.GetField("FILE_BLOB");

014 : TdbPhraseField name = (TdbPhraseField) h.GetField("FILE_NAME");

015 : TdbTextField text = (TdbStringField) h.GetField("FILE_TEXT");

016 : String storedName = "";

017 : if (name.ValueCount > 0) storedName = name.Values[0].Trim();

018 : if (storedName.Length == 0) storedName = "dummy.doc";

019 : blob.Convert(TdbRenditionType.MimeEncodedHTML, storedName,

 outputDirectory, "myDocument.mht", "apachepoi", text, true);

020 : s.close();

TRIPCOF OPERATING MANUAL

Page 14 of 34

11. Get the first record from the search result.

12. Get the head component of the record

13. Get the field object for the FILE_BLOB field

14. Get the field object for the FILE_NAME field

15. Get the field object for the FILE_TEXT field

16. Declare a variable to hold the name of the original document.

17. If the field FILE_NAME contains a value, assign that to the file name variable.

18. If the original file name is not known assign a dummy value. This is necessary
because TRIPcof requires the name of the original file even if the underlying file
filter technology may not always do so.

19. Perform the conversion to highlighted HTML in multipart MIME format using a local
TRIPcof installation.

20. Close the TdbSearch instance and delete its associated search sets

For more information about HTML conversion in TRIPjxp and TRIPnxp, please refer to the
TRIPnxp & TRIPjxp Programmer's Guide version 2.2 or later, section "Interaction with
TRIPview and TRIPcof".

Alternatives for HTML conversion
HTML conversion always involves processing file data stored in a STRING field. The only
significant alternatives you have at your disposal are:

• Server-side or client-side operation?

• Hit highlighting or not?

Server-side HTML conversion utilizes TRIPcof as a plug-in to TRIPsystem and can be
performed from applications based on TRIPjxp and TRIPnxp.

Client-side HTML conversion from TRIPnxp or TRIPjxp calls a local TRIPcof installation
directly.

The important thing to remember with hit highlighting and TRIPcof is that different
underlying file filter technologies may support different ways to apply such markup. This
means that the highlighting may not always match the hit locations that TRIPsystem
produces. If exact hit locations cannot be used with a particular technology, TRIPcof will
instead highlight all words identical to those that hit.

Import Connectors
Import connectors are plugins to TRIPcof that are used to import data from external data
sources into TRIP. Using the connector API, custom connectors can be written, allowing
data from any kind of external data source to be imported into TRIP for search and/or data
reuse purposes.

Configuring the standard connectors
For information about the configuration of the main configuration file for the import
connector functionality in TRIPcof (cfw.conf), refer to the TRIPcof Installation Guide.

TRIPCOF OPERATING MANUAL

Page 15 of 34

Configuring the file system connector (fsbot)
The “fsbot” file system connector is capable of indexing new and modified files, detecting
deleted and renamed files, and can be run in the background in so-called active monitoring
mode to detect changes in file system as they occur.

The configuration file for the “fsbot” connector is named “fsbot.conf” and is by default
located in the TRIPcof installation under conf/cfw.connectors.d. This directory can be
customized in the main connector configuration file cfw.conf (see TRIPcof Installation
Guide).

Most of the properties in the fsbot.conf file must be left unchanged in order for the
connector to operate correctly. The following properties may however be modified:

LogDir The directory where log files are written.

Default: ../../log

LogPrefix A string that log file names will start with.

Default: icn_fsbot

LogLevel Names the log level that the connector will use. Valid
values are:

 0 Off
 1 Fatal errors only
 2 Errors
 3 Errors and warnings
 4 Errors, warnings and information
 5 Errors, warnings, information and debug statements

Default: 3

Setting up a data source for a connector
Connectors operate on data sources. What a data source is depends on the connector.
For the “fsbot” file system connector, the data source is any directory tree on the local file
system. For a hypothetical web connector, a data source would be a web site. For a
custom connector that reads a data from a relational database, the data source could be a
table or a view. For a hypothetical email connector, the data source could be an email
account or even all email accounts on an email server. Et cetera.

Regardless of what kind of connector and data source to use, data sources are always
configured in data-source-dedicated files in the conf/cfw.importds.d directory under the
TRIPcof installation. What goes into a data source configuration file depends totally on the
type of the connector, as they are quite likely to need rather different configuration
properties.

Use the provided mkdscfg utility program to generate a template for a data source
configuration file that suits the connector you want to use. A sample starter configuration
file for the fsbot connector is also provided and can be found in the conf/samples.cfw
directory under the TRIPcof installation.

Some of the data source configuration properties are common to all data sources,
regardless of type and connector. These are:

TRIPCOF OPERATING MANUAL

Page 16 of 34

[datasourcename] The first line in the configuration must be the unique name
of the data source within square brackets. A good practice
is to prefix the name with the name of the connector.

Replace the sample name with your own data source
name. E.g. “fsbot-localfiles” for a file system data source.

Type Identifies the section type. For data sources, this value
must be “DataSource”.

Default: DataSource (do not change this value)

Connector The name of the connector to use with this data source.

For file system data sources, this property must be set to
“fsbot”. For custom data sources, set this property to the
name of your custom connector.

Enable Set to “True” to enable the data source and to “False” to
disable the data source.

Default: True

LocalStore The name of the TRIPcof import connector database in
which the imported data will be stored. Compatible
databases can be created via TRIPmanager by selecting
the “connector” database type, and similarly in a
programmatic fashion via TRIPjxp and TRIPnxp.

Default: TRIPCOF

PropertyMapFile The name of the file containing the property map to use.
This file contains a list of mappings between property
names and field names, such that properties of the
specified types go into the specified TRIP fields.

The default name std_propmap.conf is used if no value is
specified for this property.

UserMapFile The name of a file that contains mappings of user and
group names between the operating system and TRIP.

The default name is tripcof.usermap, assumed to be
located in the conf directory. To use the default file, this
property can be left out. To disable mapping, set this
property to an empty value. To use a custom mapping file
(recommended if user/group mapping is used), specify the
fully qualified path to the file here.

StoreCopy Indicates if copies of indexed documents are to be stored
in TRIP. Set to True to store a copy of the file in TRIP, and
False to only store the extracted text (if extraction is
possible).

Default: False

TRIPCOF OPERATING MANUAL

Page 17 of 34

Mapping document properties to TRIP fields
If the connector produces data that is accompanied by properties or similar meta data
information, such meta data are normally stored in two tupled fields in TRIP; one field for
the property names and the other for property values. This information can be searched
using AND.T and KVP-style DISPLAY orders, and is a convenient way to represent any
kind of property for an item. The connector database design uses the part record fields
V_PROPNAME and V_PROPVALUE for this purpose.

In some circumstances it may be preferable to have properties assigned to their specific
fields instead, so that author information goes into an author field, keyword information into
a keyword field, etc. A default mapping is provided for common document properties that
describe author, title, subject and description. To extend or modify this mapping, follow
these steps:

1. Examine the std_properties.conf file. This is a configuration file that declares
common names for document properties. This is needed because different file
formats and sometimes different versions of the same format will contain property
quite different names for the same property.

If you extend this file, please note that any extensions will have to be reapplied
after an upgrade of TRIPcof.

2. Implement or reuse a document property map file. This file maps property names
as declared in std_properties.conf to TRIP field names. The default property map
file std_propmap.conf is provided. If you wish to extend or modify this configuration,
you should create a copy, then edit the copy. Do not edit the file itself.

3. Add a PropertyMapFile line to your data source configuration file(s) that you wish to
use property mapping with. The value is either a relative or absolute path to the
property map file you selected in step 2.

Mapping OS user and group names to TRIP
The data imported by a connector may have specific user access privileges associated
with each item. A file from a file system, for example, will typically have an access control
list specifying users and groups that have (or shouldn’t have) access. This information is
imported into TRIP as is, but the operating system users and group names may not always
correspond to TRIP user and group names. To make sure that the OS user and group
names are also inserted as their TRIP counterparts, the data source configuration must
include a UserMapFile property.

The value of the UserMapFile property can be set in one of the following ways:

• Left out entirely or commented out. This causes TRIPcof to use the default user
map file (tripcof.usermap) located in the conf directory.

• Set to an empty value. This disables user and group name mapping for the data
source.

• Set to the fully qualified path of the mapping file to use, preferably located outside
the TRIPcof installation directory to make upgrades easier.

Creating a file system data source (fsbot)
The simplest way to create a data source for the fsbot connector is to copy the
fsbot.sampleds.conf file to the cfw.importds.d directory and give it a new name. Open the
copy in a text editor to customize it. The table below list the fsbot-specific properties:

TRIPCOF OPERATING MANUAL

Page 18 of 34

StartPath The name of the directory at the root of the directory tree
to index.

To refer to a remote directory (share) on WIndows, use a
UNC path (e.g. \\server\share\my\directory).

Mount Indicates if the StartPath indicates a mount point or a
remote file system of some kind that need to be mounted
by the connector.

Set to True if the StartPath requires mounting, and False if
it is a regular, local directory, or one that does not require
explicit mounting.

Windows: If not set, this property will default to True if the
StartPath is a UNC path, and False otherwise.

Unix/Linux: If not set, this property will default to False.

NB: Mounting is currently only supported on Windows.

FileShareUser Windows only: Username including domain for the user
to be used to to mount the file share referred to by the
StartPath.

This property is only considered if StartPath is a UNC
path.

NB: Leaving the FileShareUser and FileSharePass
properties unset is possible if the user that runs the
connector process has rights to mount the remote
directory indicated by StartPath.

FileSharePass Windows only: Password for the user indicated by the
FileShareUser property.

Excludes A semicolon-delimited list of patterns for names of file or
directories that must be ignored. The * wildcard is
supported.

Includes A semicolon-delimited list of patterns for names of files
that must be processed. The * wildcard is supported.

If undefined or empty, all files except those indicated by
the Excludes property will be processed. If defined, only
the files that match the patterns specified here will be
processed.

NOTE

The “fsbot” file system connector may not be able to:

• Obtain access control information for files read from a network file share.

• React to change events on a network file share. Running a connector in active

TRIPCOF OPERATING MANUAL

Page 19 of 34

monitoring mode against a network file share is therefore not supported.

If access control information is required and/or active monitoring use is required, the
connector should run on the file server itself.

The mkdscfg utility program can be used to generate a template for a configuration file
suitable for the fsbot connector. For example:

 mkdscfg -i fsbot -n MyFileDataSource -o myfileds.conf

The complete list of arguments and options for the mkdscfg tool can be seen if it is started
using the “--help” argument.

Using import connectors
The use of an import connector to retrieve data from a data source for storage and
indexing in TRIP involves running the cfwimport command line tool. This tool can be used
in the following ways:

• Manual interactive use to index new and/or modified data, or to check for deleted
data.

• Scheduled invocation (via separate third-party scheduling software) to perform
regular indexing of new and/or modified data, and to check for deleted data.

• Background process with active monitoring, indexing changes in the data source
as they occur. This requires that the connector is written to support active
monitoring. This is currently only the “fsbot” file system connector.

In all three cases, a specific data source must be selected. Processing multiple data
sources at the same time is not supported, but must be done as separate calls to
cfwimport.

NOTE

Even if the associated TRIP database is populated with new or modified data from
the data source, it will not be indexed automatically. This is best practice for bulk
loading data into TRIP. Indexing the TRIP database should therefore be done as a
separate step after the cfwimport process successfully completes and no additional
data will be imported for the time being.

The complete list of arguments and options for the cfwimport tool can be seen if it is
started using the “--help” argument. For instance, on Windows:

USAGE: cfwimport [options]

Options:

 -conf <file> Read configuration from this config file

 -datasource <id> The data source to connect to

 -list List data sources

 -new Locate new items

TRIPCOF OPERATING MANUAL

Page 20 of 34

 -modified Locate modified items

 -deleted Clear out deleted items from index

 -active Run in active (event triggered) mode

 -headless Run in non-interactive mode

 -daemon Run as a service (implies -active and -headless)

 -in <file> File to process (non-active/daemon use only)

 -loglevel <level> Set logging level (0=off, 5=debug)

 -logdir <dir> Override logging directory

 -install Install cfwimport as a service

 -uninstall Uninstall the cfwimport as a service

 -username <name> DOMAIN/USERNAME for user to run the service as

 -password <pwd> The password for the specified user

Listing existing data sources
To list configured and enabled data sources for all connectors, use the “-list” option to the
cfwimport program. The output will be a list of the data source names (as specified within
the square brackets on the first line of the data source configuration file).

Example:

C:\> cfwimport -list

fsbot-local

myconnector-ds1

The above example shows that there are two data sources available for use; the “fsbot-
local” and the “myconnector-ds1”.

Processing new and modified data in a data source
To import new and modified data in a data source, use the “-new” option to the cfwimport
program. You may want to specify a logging level of at least 4 to get a bit more information
on what is going on while the connector is working.

Example:

 C:\> cfwimport -datasource fsbot-local -new -loglevel 4

Processing only modified data in a data source
To only check a data source for updates to already imported data, use the “-modified”
option to the cfwimport program. You may want to specify a logging level of at least 4 to
get a bit more information on what is going on while the connector is working.

Example:

 C:\> cfwimport -datasource fsbot-local -modified -loglevel 4

Checking a data source for deleted data
To only check a data source for deletions of already imported data, use the “-deleted”
option to the cfwimport program. You may want to specify a logging level of at least 4 to
get a bit more information on what is going on while the connector is working.

Example:

 C:\> cfwimport -datasource fsbot-local -deleted -loglevel 4

TRIPCOF OPERATING MANUAL

Page 21 of 34

Running active monitoring interactively
When running in active monitoring a connector will detect changes in data source as they
are happening. The standard “fsbot” file system connector supports this mode of
operation.

To start cfwimport in active monitoring mode, use the “-active” option. You may want to
specify a logging level of at least 4 to get a bit more information on what is going on while
the connector is working.

Example:

 C:\> cfwimport -datasource fsbot-local -active -loglevel 4

In this mode, the connector will run indefinitely, or until a critical error is detected. To stop
the cfwimport program when it is running in active monitoring mode, press Ctrl-C on
Windows and Ctrl-D on Linux.

To guarantee best results for active monitoring on Windows, the cfwimport program should
be run as an administrator user with UAC elevated privileges.

Using cfwimport from scheduler software (e.g. Cron on Linux)
The only difference between manual interactive use of cfwimport and scheduled use is that
when used from a scheduler software it gets more important to generate log files that can
be examined in case something goes wrong. Otherwise all arguments and options remain
the same.

By adding the “-headless” option to the cfwimport argument list, you inform it that it is
running in non-interactive mode and cannot expect any kind of user interaction. This
optional argument mainly affects console output, and can be safely omitted if console
output happens to be desired also when executed from a scheduler.

Installing cfwimport as a service (Windows only)
To have a particular data source be actively monitored for changes all the time, the
cfwimport program can be installed as a service for the data source in question. Multiple
data sources can be run as services, each one will then get its own service name and
configuration.

Example (run in a console opened in Administrative mode – “run as”):

 C:\> cfwimport -datasource fsbot-local -install -loglevel 4

 -username MYDOMAIN\username

 -password password

The name of the service will be “cfwimport-“ followed by the name of the data source. The
above example will result in the service “cfwimport-fsbot-local”. If creation of the service is
successful, it will be configured to start automatically, but not started. Start the service in a
regular fashion via the control panel or by using the “net start” command in a console
started with administrative privileges (“run as”).

To uninstall a cfwimport service, use the “-uninstall” option:

 C:\> cfwimport -datasource fsbot-local -uninstall

If “-uninstall” is specified without a data source, all installed cfwimport services will be
uninstalled.

TRIPCOF OPERATING MANUAL

Page 22 of 34

Using data imported by a connector
TRIPcof use the same, generalized database design for all connectors. Databases in this
design can be created via TRIPmanager using the “connector” database type..

The principles behind its design are:

• Main focus on text-oriented data

• A record can represent a data item that have several parts (e.g. an email with
attachments).

• Each data item part can have its own properties.

• Each data item part can have its own extracted text.

• Support for access control list entries (for data sources that can provide them).

Searching for by contents (extracted text)
The field X_TEXT contains the extracted text.

For example:

 FIND X_TEXT=example

There is also a field group “content” that allows searching in several textual fields; the
extracted text, text provided directly from the data source, and the fields holding extracted
properties for document title and description. For example:

 FIND CONTENT=example

Listing extracted document properties and their values
The fields V_PROPNAME and V_PROPVALUE are tupled and contain a list of the
document properties that could be obtained from the source data.

To enumerate all property names:

 DISPLAY V_PROPNAME=#

To search for documents having a particular property:

 FIND V_PROPNAME='AUTHOR'

To search for documents having a particular property value:

 FIND V_PROPNAME='AUTHOR' AND.T V_PROPVALUE='John Doe'

Alternatively, a KVP definition can be used. This would make all values in the
V_PROPNAME field searchable as if they would be field names:

 DEFINE KVP=V_PROPNAME,V_PROPVALUE

 FIND AUTHOR='John Doe'

A KVP definition can also be used with display orders to enumerate the values of a
property:

 DEFINE KVP=V_PROPNAME,V_PROPVALUE

 DISPLAY AUTHOR=#

TRIPCOF OPERATING MANUAL

Page 23 of 34

Note that once a KVP is defined, it will stay defined until the end of the session.
Redefinition is not necessary unless different fields are to be used.

Defining read scopes
If access control list data has been supplied by the connector(s), the I_ACL_* fileds will
have contents. These fields indicate which users and groups have (or doesn’t have) read
access to the record. These names are from the data source, and do not necessarily
describe TRIP users and groups.

I_ACL_USERS Users with read access to this item

I_ACL_GROUPS Groups with read access to this item

I_ACL_NOUSERS Users with denied read access to this item

I_ACL_NOGROUPS Groups with denied read access to this item

If user group mapping is enabled for the data source, the TRIP-specific counterparts of the
above fields are populated. If the user and group names imported from the data source are
not TRIP names, these are the ones that should be used in read scopes in order to enable
record-level security, reflecting that of the data source:

I_TACL_USERS Users with read access to this item

I_TACL_GROUPS Groups with read access to this item

I_TACL_NOUSERS Users with denied read access to this item

I_TACL_NOGROUPS Groups with denied read access to this item

To make proper use of this information in TRIP so that users can only search and retrieve
data that they have access to, read scopes should be defined.

A catch-all condition for a read scope could be:

((I_ACL_USERS="" AND I_ACL_GROUPS="" AND I_ACL_NOUSERS="" AND

I_ACL_NOGROUPS="") OR I_TACL_USERS=USER() OR

I_TACL_GROUPS=GROUP()) NOT I_TACL_NOUSERS=USER() NOT

I_TACL_NOGROUPS=GROUP()

This would match records that:

• Do not have any ACL defined (and therefore should be readable by anyone with
access to the database). The fields that should used for this are the ones whose
values are from the data source (e.g. OS user and group names).

• Contains the current TRIP user named in I_TACL_USERS

• Contains any of the current user’s TRIP groups in I_TACL_GROUPS

• Do not have the current TRIP user named in the I_TACL_NOUSERS field and do
not have the any of the current user’s TRIPP groups mentioned in
I_TACL_NOGROUPS.

TRIPCOF OPERATING MANUAL

Page 24 of 34

If deny-access ACLs are not used in your organization, the conditions on the
I_TACL_NOUSERS and I_TACL_NOGROUPS fields can be omitted from the scope
query, simplifying it somewhat. For example:

(I_ACL_USERS="" AND I_ACL_GROUPS="") OR I_TACL_USERS=USER() OR

I_TACL_GROUPS=GROUP()

Refer to the TRIPsystem documentation for information on how to define scopes.

Custom File Filter Adapters

Concept Overview
There may be file formats you wish to process that are not supported by any of the file
filter technologies for which TRIPcof has adapters. In order to be able to process such file
formats, TRIPcof comes with an API that allows the development of custom file filter
adapters.

A custom file filter adapter is a shared library (Unix/Linux) or dynamically linked library
(Windows) that interfaces TRIPcof with an underlying file filter technology. The API used to
build these custom file filter adapters is the same one used to create the file filter adapters
included in TRIPcof.

Custom file filter adapters can be written in Java and using the Microsoft .NET framework
in languages such as C# or VB.NET.

Isolation
A file filter adapter is always loaded in a process dedicated for the conversion of a single
file. There will not be concurrent threads in the same process doing multiple conversions in
parallel. Each individual file conversion will take place in its own isolated process. The
reason for this is to isolate TRIP from any instability in the file filter adapters and in
whatever underlying third party technology they may be using. The overhead incurred by
running the conversion in a separate process is compensated by increased application
and system stability.

Note that the current version of TRIPcof never performs more than one conversion in a
single process. This may change in future versions, which may implement features that
require multiple sequential conversions within the same, dedicated process.

Considerations:

• Write custom file filter adapters so that it avoids doing unnecessary work during
load and initialization of the adapter and the conversion process.

• The custom file filter adapter must be able to handle multiple sequential
conversions in the same process without overusing or leaking system resources.

Implementing an Adapter

Writing an adapter in Java
Using Java to write a custom file filter adapter involves subclassing the FilterAdapter

class and using its associated support classes and JNI libraries.

A good place to start is to use the sample "fifi_java_sample" as a reference. It implements
a bare-bones text extraction adapter, which you can use as a "skeleton" upon which to
base your own adapter.

TRIPCOF OPERATING MANUAL

Page 25 of 34

Writing an adapter in .NET
Using a .NET language to write a custom file filter adapter involves subclassing the
FilterAdapter base class and using its associated support classes.

A good place to start is to use the sample "InfinITServices.Trip.FileFilter.Example" as a
reference. It implements a bare-bones text extraction adapter, which you can use as a
"skeleton" upon which to base your own adapter.

Conversion Procedure
After an adapter has been loaded into the conversion process, the adapter sees the
following workflow.

1. The adapter is asked to initialize.

This involves a call to the InitializeAdapter method.

2. The adapter is asked if a file with a given name can be converted to a specified
output format.

This involves a call to the CheckConversion method that should perform a

check based of file name suffix. Return Yes if the adapter definitely can
handle the conversion, Maybe if the adapter is likely to be able to handle
the conversion, or No otherwise.

3. If the Connectivity Framework decides to use the adapter, the adapter will receive
a reference to the file contents and asked to prepare for conversion.

This involves a call to the OpenConversion method..

4. If the conversion involves hit markup (e.g. for HTML conversions), the adapter will
be supplied with a character-based list of length/offset pairs describing locations in
the text that should be highlighted.

If hit highlighting is requested, hit information is available via the
HitWords and HasHitWord properties of the FilterAdapter base class.

5. The adapter is asked to perform the requested conversion.

This involves a call to the Convert method which must implement the

main conversion routine for the adapter.

Adapters are expected to call the methods AddConversionResult and

AddExtractedProperty to provide the result of a text extraction to the

connectivity framework.

When performing HTML conversion, all adapters are required to write the
result to a file named by the second argument to the Convert method.

6. When the conversion is complete (regardless of success/fail status), the adapter is
asked to close the conversion.

The adapter receives a call to the CloseConversion method. This

function or method should perform any cleanup required after the prior
call to the Convert method,

7. If conversions of additional files are requested within the same process, repeat
from step 2. Otherwise continue.

TRIPCOF OPERATING MANUAL

Page 26 of 34

8. The adapter is unloaded when the converter process shuts down.

Just prior to this, the adapter receives a call to the UninitializeAdapter

function so that the adapter may perform a controlled clean up and
release of resources.

Error Handling
Whenever an error occurs in your processing such that you cannot continue, you must
throw a FileFilterException and call setError:

An alternative to this is use the throwError method, which will properly register the error

state and throw an exception:

Failure to call the setError method directly or indirectly as described above may result in

TRIPcof getting incorrect information about the status of the current conversion operation.
Logging and application feedback may also get confusing and contradictory.

Logging
The file filter adapter framework supports logging. Java and .NET based adapters can use
the logDebug method declared on the FilterAdapter base class to output debug logging

statements. Also, whenever the setError method gets called to register a processing

failure, the error message will also be logged, provided that the log level is 2 (errors) or
higher.

All logging statements, even ones used for debug purposes, will only be output if the log
level of the logging system is higher or equal to the log level of the statement. This means
that you can safely leave them in place even in production. The performance hit for
checking the logging level for each statement is negligible.

Configuration File
All adapters need their own configuration file. This also applies to custom adapters. Please
refer to the conf/samples.fifi directory for template configuration file. It has detailed
comments for each setting, so please study it carefully.

throwError(FilterReturnCode.ConversionError, "Conversion failed because...");

setError(FilterReturnCode.ConversionError, "Conversion failed because...");

throw new FileFilterException(FilterReturnCode.ConversionError,

 "Conversion failed because...");

TRIPCOF OPERATING MANUAL

Page 27 of 34

An adapter written in C# may for instance have the following configuration:

Custom import connectors in .NET
TRIPcof comes with a Microsoft.NET API for writing custom import connectors. This
section covers how to create one, the relevant parts of the API, how to create configuration
files for the connector and the connector’s data sources, and finally deployment.

Writing a connector
The following points outline the procedure:

• Create a Visual Studio project for a .NET Framework class library

• Add a reference to InfinITServices.Trip.ConnectorFramework.dll, which you can
find in the TRIPcof bin directory.

• Create class for your connector and make it inherit from the abstract base class
ImportConnector.

• Implement all abstract methods: Connect, Disconnect, FirstItem, NextItem,
CheckItem and LoadItem.

• Optionally override the methods InitializeConnector and UninitializeConnector.

• If your connector uses custom data source properties (which is likely), override the
method DescribeProperty to make sure that data source configuration templates
generated using the mkdscfg tool are complete.

Instead of starting all of the above from scratch, you can use the provided sample project
“InfinITServices.Trip.ConnectorFramework.SampleImportConnector” to base your
connector upon.

[mydotnetadapter]

Enable=True

Priority=25

Label=My .NET Adapter

Manufacturer=Example Inc

ConvLib=..\..\bin\InfinITServices.Trip.FileFilter.ApiWrapper.dll

WorkDir=..\..\tmp

TargetFormats=text/plain

SupportsProperties=False

SupportsHighlighting=False

IsDotNet=True

DotNetAssembly=..\..\bin\mydotnetadapter.dll

DotNetClass=Example.TripCof.MyAdapter

Logging options

LogLevel=3

LogDir=..\..\log

LogPrefix=fifi_dotnetsample

TRIPCOF OPERATING MANUAL

Page 28 of 34

Crawler Procedure for new and modified data
After a connector has been loaded into the driver process for scanning for new and
modified data (typically using the cfwimport program invoked with the “-new” option), the
connector sees the following workflow.

1. The connector is loaded and the connector class is instantiated. Properties loaded
from the connector’s configuration are provided.

To query these properties, the connector should use the methods
HasConnectorProperty and GetConnectorProperty.

2. The connector is asked to initialize.

This the connector receives a call to the InitializeConnector method,

which may optionally be overridden. This happens only once during the
lifetime of the process.

3. Data source-specific properties are provided to the connector. These have been
read from the data source configuration file by the connectivity framework.

To query these properties, the connector should use the methods
HasConnectorProperty and GetConnectorProperty.

4. The connector is asked to connect to the data source whose configuration
properties were provided in step 3.

The connector receives a call to the Connect method. If the ‘active’

parameter is True and the connector does not support active monitoring, it
must throw an exception using the ThrowError method.

5. The connector is asked to return an ImportItem for the first data item.

The connector receives a call to the FirstItem method. The argument is

the object returned from the connector on the call to the Connect method.

If no data could be found at all, the connector should return null.

The ImportItem instance must only contain the id of the data item and

either a timestamp for the last change to the data item, or a checksum
value. Do not load the data for the item at this stage!

6. If the FirstItem call returned null, skip to step 11.

7. Unless the data item has been previously retrieved and stored in TRIP and has not
been updated in the data source since then, the connector is asked to load the
item’s actual data. If the data item has not changed, this step will be skipped.

The connector receives a call to the LoadItem method. The argument is the

object returned from the connector on the call to the Connect method. The

second argument is an ImportItem instance identical to the one that was

returned from the connector in step 5.

8. The connector is asked to return an ImportItem for the next data item.

The connector receives a call to the NextItem method. The argument is

the object returned from the connector on the call to the Connect method.

If no more data can be found, the connector should return null.

TRIPCOF OPERATING MANUAL

Page 29 of 34

The ImportItem instance must only contain the id of the data item and

either a timestamp for the last change to the data item, or a checksum
value. Do not load the data for the item at this stage!

9. Unless the data item has been previously retrieved and stored in TRIP and has not
been updated in the data source since then, the connector is asked to load the
item’s actual data. If the data item has not changed, this step will be skipped.

The connector receives a call to the LoadItem method. The argument is the

object returned from the connector on the call to the Connect method. The

second argument is an ImportItem instance identical to the one that was

returned from the connector in step 8.

10. If last NextItem call did not return null, repeat from step 8.

11. The connector is asked to disconnect from the data source.

The connector receives a call to the Disconnect method. The argument

is the object returned from the connector on the call to the Connect

method.

12. The connector is unloaded when the process shuts down.

Just prior to this, the connector may receive a call to the
UninitializeConnector method, which may optionally be overridden.

This happens only once during the lifetime of the process, and after this has
occurred, the adapter will no longer be used in the current process.

Crawler Procedure for modified or deleted data only
After a connector has been loaded into the driver process for scanning for modified and/or
deleted data (typically using the cfwimport program invoked with the “-modified” or “-
deleted” options), the connector sees the following workflow.

1. The connector is loaded and the connector class is instantiated. Properties loaded
from the connector’s configuration are provided.

To query these properties, the connector should use the methods
HasConnectorProperty and GetConnectorProperty.

2. The connector is asked to initialize.

This the connector receives a call to the InitializeConnector method,

which may optionally be overridden. This happens only once during the
lifetime of the process.

3. Data source-specific properties are provided to the connector. These have been
read from the data source configuration file by the connectivity framework.

To query these properties, the connector should use the methods
HasConnectorProperty and GetConnectorProperty.

TRIPCOF OPERATING MANUAL

Page 30 of 34

4. TRIPcof searches the TRIP database that is specified in the data source
configuration file for items previously imported by the connector.

5. The connector is asked to check if a previously imported item has been changed or
deleted in the data source.

The connector receives a call to the CheckItem method. The ImportItem

argument will contain a UTC timestamp that must be compared to the
current value by the connector. The method must return 1 if update is
required, 2 if the item can no longer be found in the data source and 0 if the
item remains unchanged.

6. If step 5 indicated that the item has been deleted, TRIPcof will delete the
corresponding TRIP record.

7. If step 5 indicated that the item has been modified, the connector will be asked to
load the item’s actual data and provide an updated timestamp. The TRIP record for
the item is updated with the new data.

The connector receives a call to the LoadItem method. The ImportItem

argument should be populated with the new data for the item and an
updated last-modified timestamp.

8. While there are more records to check, repeat from step 5.

9. The connector is asked to disconnect from the data source.

The connector receives a call to the Disconnect method. The argument

is the object returned from the connector on the call to the Connect

method.

10. The connector is unloaded when the process shuts down.

Just prior to this, the connector may receive a call to the
UninitializeConnector method, which may optionally be overridden.

This happens only once during the lifetime of the process, and after this has
occurred, the adapter will no longer be used in the current process.

Error handling
Whenever an error occurs in your processing such that you cannot continue, you must call
SetError and throw a ConnectorException:

An alternative to this is use the ThrowError method, which will properly register the error

state and throw an exception:

Failure to call the SetError method directly or indirectly as described above may result in

TRIPcof getting incorrect information about the status of the current operation. Logging
and application feedback may also get confusing and contradictory.

ThrowError(ConnectorReturnCode.InvalidArgument, "Error message here...");

SetError(ConnectorReturnCode.InvalidArgument, "Error message here...");

throw new ConnectorException(ConnectorReturnCode.InvalidArgument,

 "Error message here...");

TRIPCOF OPERATING MANUAL

Page 31 of 34

Logging
The connectivity framework supports logging. Connectors can use the LogDebug method

declared on the ImportConnector base class to output debug logging statements. Also,

whenever the SetError method gets called to register a processing failure, the error

message will also be logged, provided that the log level is 2 (errors) or higher.

All logging statements, even ones used for debug purposes, will only be output if the log
level of the logging system is higher or equal to the log level of the statement. This means
that you can safely leave them in place even in production. The performance hit for
checking the logging level for each statement is negligible.

Connector configuration file
All connectors need their own configuration file. This also applies to custom connectors.
Please refer to the conf/samples.cfw directory for a template configuration file for a .NET
connector (dotnetconnector.conf). It has detailed comments for each setting, so please
study it carefully.

Deployed connector configuration files belong in the conf\cfw.connectors.d directory

under the TRIPcof installation.

A connector written in C# may for instance have the following configuration:

Data source configuration file
The configuration of what data the connector should work with and how to reach it must be
specified in a separate configuration file.

There are a few properties that all data source configuration files must have:

• Type

• Connector

• Enable

• LocalStore

• StoreCopy

Details on these can be found in section “Setting up a data source for a connector” in this
document. Aside for these, the data source configuration should contain any properties
needed by the connector to work with a particular data source.

[myconnector]

Type=ImportConnector

Enable=True

LabelSample custom connector for .NET

Manufacturer=infinIT Services GmbH

SupportsActiveMonitoring=False

SupportsOnDemandScanning=True

ConnectorLib=..\..\bin\InfinITServices.Trip.ConnectorFramework.ApiWrapper.dll

DotNetAssembly==..\..\bin\Exampe.Trip.Connector.dll

DotNetClass=Exampe.Trip.Connector.MyCustomConnector

WorkDir=..\..\tmp

IsDotNet=True

IsJava=False

LogLevel=5

LogDir=..\..\log

LogPrefix=myconnector

TRIPCOF OPERATING MANUAL

Page 32 of 34

Deployed connector configuration files belong in the conf\cfw.importds.d directory

under the TRIPcof installation.

Example of a data source configuration for a custom data source, utilizing two custom
properties:

Deployment
Deploying your custom connector involves:

• Copying the connector assembly DLL to the target machine. You can put this into
the bin directory of the TRIPcof installation, or in any directory of your choice.

• Copy the data configuration file for your connector to the directory
conf\cfw.connectors.d under the TRIPcof installation.

• Copy the data source configuration file(s) for your connector to the directory
conf\cfw.importds.d under the TRIPcof installation.

• Verify that the data sources for your connector are seen by TRIPcof by running
“cfwimport -list”.

[myconnector-ds1]

Type=DataSource

Connector=myconnector

Enable=True

LocalStore=CONNECTORDB

MyPropertyOne=Alpha;Beta

MyPropertyTwo=True

TRIPCOF OPERATING MANUAL

Page 33 of 34

Appendix A: Supported File Formats for Text Extraction

Via Apache Tika (adapter "tikaserver")

• Apple iWorks document formats (Numbers, Pages, Keynote).

• Electronic Publication Format (EPUB)

• HTML and Compressed HTML Help (CHM)

• Microsoft Excel
versions '97-2007

• Microsoft Word
versions '97-2007, also limited support for the Word 6 and Word 95 file formats

• Microsoft PowerPoint
versions '97-2007

• OOXML - Office Open XML (ECMA-376)
XML-based file format, supported by Microsoft Office 2007 and later
(file extensions “.docx”, “.pptx” and “.xlsx”)

• OpenDocument format, the default format of OpenOffice and LibreOffice

• WordPerfect WP6+

• QuattroPro QPW v9+

• Portable Document Format (PDF)

• Rich Text Format (RTF)

• XML

Via Microsoft IFilter (adapter "ifilter")

• The formats supported depends on what IFilters are installed on the local Windows
machine.

• Please refer to http://en.wikipedia.org/wiki/IFilter for more information and links to
other resources.

http://en.wikipedia.org/wiki/IFilter

TRIPCOF OPERATING MANUAL

Page 34 of 34

Appendix B: Supported File Formats for HTML Conversion

Via ICEpdf (adapter "icepdf")

• Portable Document Format (PDF)

Via LibreOffice (adapter “libreoffice”)

• Microsoft Office

o Versions '97-2007, also limited support for the Word 6 and Word 95

o OOXML - Office Open XML (ECMA-376), with versions 2007 and later

• OpenDocument format, the default format of OpenOffice and LibreOffice

	Introduction
	About this Document
	Related Documents
	Contents of Product
	Differences from TRIPview
	Differences from TRIPagent

	Use Cases and Deployment
	File Filter Use Cases
	Indexing: Text extraction without storage
	Archiving: Text extraction and storage
	Publishing: Storage and HTML conversion

	Import Connector Use Cases
	Use TRIP as a search engine
	Importing data for reuse

	Deployment Options
	Server-side
	Client-side
	TRIPview Considerations

	File Conversion
	Text Extraction
	Overview
	Prerequisites
	Server-side text extraction using TRIPjxp or TRIPnxp
	Client-side text extraction using TRIPjxp or TRIPnxp
	Alternatives for text extraction

	HTML Conversion
	Overview
	Prerequisites
	Server-side HTML conversion using TRIPjxp or TRIPnxp
	Client-side HTML conversion using TRIPjxp or TRIPnxp
	Alternatives for HTML conversion

	Import Connectors
	Configuring the standard connectors
	Configuring the file system connector (fsbot)

	Setting up a data source for a connector
	Mapping document properties to TRIP fields
	Mapping OS user and group names to TRIP
	Creating a file system data source (fsbot)

	Using import connectors
	Listing existing data sources
	Processing new and modified data in a data source
	Processing only modified data in a data source
	Checking a data source for deleted data
	Running active monitoring interactively
	Using cfwimport from scheduler software (e.g. Cron on Linux)
	Installing cfwimport as a service (Windows only)

	Using data imported by a connector
	Searching for by contents (extracted text)
	Listing extracted document properties and their values
	Defining read scopes

	Custom File Filter Adapters
	Concept Overview
	Isolation
	Implementing an Adapter
	Writing an adapter in Java
	Writing an adapter in .NET

	Conversion Procedure
	Error Handling
	Logging
	Configuration File

	Custom import connectors in .NET
	Writing a connector
	Crawler Procedure for new and modified data
	Crawler Procedure for modified or deleted data only
	Error handling
	Logging
	Connector configuration file
	Data source configuration file
	Deployment

	Appendix A: Supported File Formats for Text Extraction
	Appendix B: Supported File Formats for HTML Conversion

